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In the present study, the momentum and heat fluxes (MF and HF) in subsonic or
supersonic channel flows are studied and compared via resorting to the established analysis
tools developed for incompressible flows, such as the conditional sampling and the spectral
linear stochastic estimation, by leveraging the newly built database. Particular attention is
paid to clarifying the effects of the inner-outer scale interactions on the statistical character-
istics of MF and HF in the near-wall and logarithmic regions. To this end, by employing the
spectral linear stochastic estimation, the near-wall fluxes are decomposed into large- and
small-scale components, and the logarithmic-region fluxes are decomposed into active and
inactive parts, respectively. For the near-wall region, the large-scale component is found to
be the footprints of large-scale eddies and rather uniform in physical space, whereas the
remaining small-scale component is uneven in space and includes the strong transports of
momentum and heat in the near-wall region. For the logarithmic region, both the inactive
and active components of MF and HF are found to contribute to their mean flux. In the
outer region, the ejections of HF are remarkably stronger than those of the MF, and the
former is more sparse in the physical space. Reynolds number is shown to have a minor
effect on the statistical characteristics of the two fluxes, and the enlargement of the Mach
number only appears to lessen the linkages between the inner and outer region fluxes,
adjust the proportions of the inactive and active components in the logarithmic region, and
rarely alter the overall properties of them. The findings of the present study may contribute
to the development of the modeling approach in compressible wall turbulence.

DOI: 10.1103/PhysRevFluids.8.094602

I. INTRODUCTION AND MOTIVATION

One of the most typical properties of turbulent flows in comparison to laminar flows is the
increase of transport processes, particularly momentum and heat. Intrinsically, the wall-normal
transportations of the momentum and heat fluxes (denoted as MF and HF hereafter) are responsible
for the generation of the wall friction and heat in high-speed flow, respectively. Uncovering their
fundamental properties can be revealing to the development of the flow-control strategies and the
modeling approaches. Previous studies largely focus on the statistical characteristics of the MF
in incompressible flows [1–4], whereas few works are concentrated on the MF and the HF in
compressible wall turbulence. The objective of the present study is to fill this gap. We will compare
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the basic characteristics of the MF and the HF in subsonic or supersonic channel flows via resorting
to the matured analysis tools developed in previous studies for incompressible flows by leveraging
the newly built database [5].

From the 1970s, to shed light on the coherent structures associated with the bursting of the near-
wall low-speed streaks [6], several conditional sampling techniques were developed successively to
analyze the Reynolds stress (i.e., MF) in incompressible wall turbulence. For example, the quadrant
analysis [1,2,7], the variable interval time average [8], the u-level detection [7], and the variable
interval space average [9], to name a few. Bogard and Tiederman [10] examined these methods in
detail and concluded that the quadrant analysis has the greatest reliability with a high probability
of detecting the ejections and a low probability of false detections among these techniques. In this
methodology, the signals of the Reynolds stress are classified into four quadrants as per the signs
of the streamwise (u′) and wall-normal (v′) velocity fluctuations: (1) Qm1, outerward interactions
with u′ > 0 and v′ > 0; (2) Qm2, ejections with u′ < 0 and v′ > 0; (3) Qm3, inward interactions with
u′ < 0 and v′ < 0; and (4) Qm4, sweeps with u′ > 0 and v′ < 0. The subscript “m” stands for the
momentum flux, and we also use the subscript “h” to represent the heat flux in the present study
herein. Among these four quadrants, it turns out that Qm2 and Qm4 contribute more to the mean MF
than other two quadrants within the near-wall region [1,2]. By conditional sampling and sorting the
signals of MF into four quadrants, Lu and Willmarth [7] further observed that the intense events
(|u′v′| > 4|u′v′|) only exist in Qm2 and Qm4, and only 45% of the total samples have a magnitude
larger than 0.5 |u′v′|, and they account for nearly 99% of the mean flux u′v′. All these observations
indicate that the MF in the near-wall region is highly intermittent.

The above-mentioned pioneer studies mainly focus on the Reynolds stress in the near-wall
region. With the development of computing power and experimental technology, more and more
works are dedicated to the bursting and the connected MF in the logarithmic and outer regions.
For example, Narasimha et al. [3] identified Reynolds-stress structures within the logarithmic layer
of the mean flow in the atmospheric boundary layer and evidenced that their length is comparable
to the distance to the wall. Flores and Jiménez [11] demonstrated that there exists a hierarchy of
bursting in the logarithmic region of the high-Reynolds-number channel flow, in conjunction with
quasiperiodic Qm2 and Qm4 events. Lozano-Durán et al. [12] also observed that Qm2 and Qm4 events
are exhibited as a side-by-side pair in the logarithmic region, and their geometrical characteristics
resemble the conjectured attached eddies of Townsend [13]. These studies underline the fact that
the MF in the logarithmic region is inextricably linked with the attached eddies.

According to the celebrated attached-eddy model (AEM) proposed by Townsend [13], the
logarithmic region of a turbulent boundary layer is occupied by an array of self-similar energy-
containing motions (or eddies) with their roots attached to the near-wall region. Townsend [13,14]
also pointed out that the motions at a wall-normal position located in the logarithmic region consist
of two components. One is the active component, which is responsible for the turbulent transfer
at this wall-normal position, and the other is the inactive component, which does not transfer
momentum. Deshpande et al. [15] showed that the inactive part consists of the self-similar attached
eddies as well as the very-large-scale motions (VLSMs), whereas the active part involves the eddies
that interact with the local v′. Seen in this regard, it is sensible to study these two components
separately when considering the statistical characteristics of the MF in the logarithmic region. Very
recently, Deshpande and Marusic [4] scrutinized these two components of MF in an experimental
database of incompressible turbulent boundary layers with friction Reynolds number ranging from
O(103) to O(104). They found that the active component is the dominant contributor to the mean
flux, which is in accordance with the AEM, whereas the contribution of the inactive component
is nonzero. They ascribed this deviation to the scale interactions and the effects of the VLSMs.
Considering the physical properties of the attached eddies and the existing inner-outer interactions,
the near-wall MF should also be decomposed into two parts, because it has been shown that the
motions populating the logarithmic and outer regions can exert footprints on the near-wall flow
[16–18]. Separating the near-wall MF into large-scale footprints and small-scale components, and
dissecting them separately, can further shed light on the statistical characteristics of the MF in the
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TABLE I. Parameter settings of the compressible DNS database. Here Mb denotes the bulk Mach number.
Reb, Reτ , and Re∗

τ denote the bulk Reynolds number, friction Reynolds number, and semilocal friction
Reynolds number, respectively. �x+ and �z+ denote the streamwise and spanwise grid resolutions in viscous
units, respectively. �y+

min and �y+
max denote the finest and the coarsest resolution in the wall-normal direction,

respectively. Tuτ /h indicates the total eddy turnover time used to accumulate statistics.

Case Mb Reb Reτ Re∗
τ �x+ �z+ �y+

min �y+
max Tuτ /h

Ma08Re3K 0.8 3000 192 168 8.9 4.5 0.43 4.5 39.5
Ma08Re8K 0.8 7667 436 382 10.8 6.9 0.44 5.4 49.4
Ma08Re17K 0.8 17 000 882 778 10.8 6.5 0.63 6.4 15.3
Ma15Re3K 1.5 3000 220 148 10.8 6.9 0.33 8.2 19.5
Ma15Re9K 1.5 9400 594 395 7.3 3.7 0.5 5.9 30.2
Ma15Re20K 1.5 20 020 1150 780 9.3 4.7 0.49 6.9 9.1
Ma30Re5K 3.0 4880 446 148 8.0 4.0 0.47 5.5 24.1

vicinity of the wall. This is one part of the present study, which is also a complement to the previous
studies.

For compressible wall turbulence, according to Ref. [19], the temperature fluctuation can be
envisioned as a wall-attached variable, similarly to the streamwise velocity fluctuation. This propo-
sition has been supported by some studies recently [5,20,21]. It suggests that the HF in compressible
flow can be dissected just like the MF in incompressible flow. If so, then a question may be raised,
that is, How similar and different are the MF and the HF in compressible wall turbulence? This
question has not been well clarified yet. In recent years, the database of the compressible turbulent
channel flows at various Mach numbers and Reynolds numbers has been built by the authors and
other research groups [5,22,23], which can serve as a building block for studying and comparing the
statistical characteristics of the MF and the HF in compressible wall turbulence. The analysis tools
developed in previous studies for incompressible flows can be employed. Concurrently, the Mach
number and Reynolds number effects on MF and HF can also be clarified. This is the motivation
of the present work. The findings of the present study may be helpful for the development of the
modeling approach in compressible wall turbulence [24,25].

II. DNS DATABASE

In the present study, we carry out three simulations of supersonic channel flows at a bulk Mach
number Mb = Ub/Cw = 1.5 (Ub is the bulk velocity and Cw is the speed of sound at wall temper-
ature) and Reb = ρbUbh/μw = 3000, 9400, and 20 020 (ρb denotes the bulk density, h the channel
half-height, and μw the dynamic viscosity at the wall). A series of direct numerical simulations
(DNS) at a bulk Mach number Mb = 0.8 and Reb = 3000, Reb = 7667, and Reb = 17 000 are also
conducted. Additionally, we also perform a DNS at a bulk Mach number Mb = 3.0 and Reb = 4880.
All these cases are performed in a computational domain of 4πh × 2πh × 2h in the streamwise (x),
spanwise (z), and wall-normal (y) directions, respectively. Details of the parameter settings of the
formed database are listed in Table I. The maximum number of grid points is in excess of one billion.
The validations of the solver are provided in our previous work [5,26], and a brief description of
the computational setups can also be found in these papers. One incompressible case Reτ = 934 by
Del Álamo et al. [27] is also employed for comparison. Details of the parameter settings are listed
in Table II.

The Reynolds averaged statistics (denoted as φ̄) are used in the present study. The corresponding
fluctuating components are represented as φ′. Hereafter, we use the superscript + to represent
the normalization with ρw, the friction velocity (denoted as uτ , uτ = √

τw/ρw, τw is the mean
wall-shear stress), the friction temperature (denoted as Tτ , Tτ = Qw/ρwcpuτ , where Qw and cp

are the mean heat flux on the wall and the specific heat at constant pressure, respectively), and

094602-3



CHENG CHENG, WEI SHYY, AND LIN FU

TABLE II. Parameter settings of the incompressible DNS database.

Case Reτ Re∗
τ Lx (h) Ly(h) Lz(h) �x+ �z+ �y+

min �y+
max Tuτ /h

Ma00Re18K 934 934 8π 2 3π 11.5 5.7 0.03 7.6 12

the viscous length scale (denoted as δν , δν = νw/uτ , νw = μw/ρw). We also use the superscript ∗
to represent the normalization with the semilocal wall units, i.e., u∗

τ = √
τw/ρ and δ∗

ν = ν(y)/u∗
τ .

Thus, the relationship between the semilocal friction Reynolds number and the friction Reynolds
number is Re∗

τ = Reτ

√
(ρc/ρ̄w )/(μc/μ̄w ). The subscript c refers to the quantities evaluated at

the channel center. It is noted that the cases of Ma08Re3K, Ma08Re8K, and Ma08Re17K share
similar Re∗

τ with the cases of Ma15Re3K, Ma15Re9K, and Ma15Re20K, respectively. The case
Ma30Re5K bears similar Re∗

τ with the cases of Ma15Re3K and Ma08Re3K. In the present study,
we mainly adopt the cases with Mb = 1.5 to investigate the momentum and heat flux events in
compressible wall turbulence, whereas the other cases (include the incompressible case, and the
cases with Mb = 0.8 and Mb = 3.0) primarily aid in elucidating the Mach number effects on the
statistics. Besides, previous studies [28–31] pointed out that the semilocal scalings, Re∗

τ and y∗, can
reasonably clarify the Reynolds number effects on the statistics involving the thermodynamic and
the velocity variables in compressible channel flows. Hence, we adopt them more frequently than
Reτ and y+ in the present study. Additionally, to account for the density variation in compressible
flows, the density-weighted streamwise velocity fluctuation (

√
ρu′, denoted as u′

d ), wall-normal
velocity fluctuation (

√
ρv′, denoted as v′

d ), and temperature fluctuation (
√

ρT ′, denoted as T ′
d ) are

employed to calculate the MF and the HF. We also have checked that there is a negligible difference
between the Reynolds and Favre averaged velocity fluctuations in the cases under scrutinizing.

III. METHODOLOGIES

A. Conditional sampling technique

The first analysis tool is the conditional sampling technique, which is rather mature in in-
vestigating the statistical characteristics of the MF in incompressible wall turbulence [1–4]. The
present study can be considered as its extension in compressible-flow research. We take the MF
in compressible flow as an example to show its procedures, and the processing of HF can be
constructed similarly.

(1) First, a test function δi(x, y, z) is introduced to distinguish which quadrant (Qm1–Qm4) an
instantaneous momentum flux u′

dv
′
d (x, y, z) belongs to. δi(t ) can be expressed as [4]

δi(x, y, z) ≡
{

1 (u′
d (x, y, z), v′

d (x, y, z)) is in quadrant Qmi of the u′
d –v′

d plane
0 otherwise , (1)

where i = 1, 2, 3, and 4. After this operation, the conditional momentum flux is

[u′
dv

′
d (x, y, z)] = δi(x, y, z)u′

dv
′
d (x, y, z). (2)

(2) Second, following previous works [2,3], a momentum flux event is identified when

|u′
dv

′
d (x, y, z)| > k f (u′

dv
′
d )rms(y), (3)

where k f is a positive threshold, and (u′
dv

′
d )rms denotes the root-mean-square value of u′

dv
′
d . Thus,

the fractional contribution (FC) to mean flux (u′
dv

′
d ) from the events identified by Eq. (3) can be

calculated by

FCm(k f ) = 1

Nt u′
dv

′
d

N (k f )∑
j=1

(u′
dv

′
d ) j, (4)
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where the subscript “m” represents the momentum flux, Nt denotes the total number of the samples
under counting, and N (k f ) denotes the total number of the events detected by Eq. (3) at a given k f

with (u′
dv

′
d ) j being the magnitude of the jth event. Moreover, the spatial duration (SD) of identified

events can also be defined as

SDm(k f ) = N (k f )

Nt
. (5)

It is not difficult to find that FCm(0) = 1 and SDm(0) = 1, as no event is ruled out by Eq. (3) when
k f = 0. It is noted that experimental studies regularly measure the time duration [3,4]. To leverage
the merits of the numerical simulation, we inspect the spatial duration instead.

(3) Finally, combining steps (1) and (2), the fractional contribution from the events residing in
quadrant Qmi can also be calculated as

FCmi(k f ) = 1

Nt u′
dv

′
d

Ni (k f )∑
j=1

[u′
dv

′
d ] j, (6)

where Ni(k f ) denotes the total number of the events which belong to quadrant Qmi and are detected
by Eq. (3) at a given k f . [u′

dv
′
d ] j is the jth event which meets these two conditions.

The conditional sampling technique described above can shed light on some statistical character-
istics of MF and HF events generally, such as their frequencies of occurrence, amplitude magnitudes,
and fractional contributions.

B. Scale measuring method

It can be envisioned that, in a wall-parallel (x-z) plane, the instantaneous events belonging to a
quadrant may be continuous in the streamwise direction. Thus, it is sensible to measure their spatial
length. We also take the MF in compressible flow as an example to elaborate the method employed
here, and the processing of HF can also be constructed similarly.

(1) The events identified by Eq. (3) can be further categorized as the quadrant they belong to,
as per the signs of u′

d and v′
d . Here the threshold k f is fixed at 0.25 to keep in line with previous

studies in incompressible wall turbulence [4]. We will also demonstrate its justification in the present
database in Sec. IV.

(2) The events marked in step (1), which are contiguous in the streamwise direction, are
connected into individual structures.

(3) Each structure identified in step (2) has a streamwise length scale lx, which can be treated as
the characteristic length scale of this structure.

C. Scale decomposition method

According to the AEM, the active component at yp in the logarithmic region is representative of
the attached eddies with their wall-normal heights equal to yp (interact with wall-normal velocity v′
at yp). On the other hand, the inactive part stems from those tall and large attached eddies with their
heights within the interval [yp, h] [15] (cannot interact with v′ at yp), which impose influences on the
streamwise and spanwise velocity components. Moreover, according to Ref. [19], the temperature
fluctuation in compressible wall turbulence can be envisioned as a wall-attached variable, similarly
to the streamwise velocity fluctuation. Thus, the MF and the HF in the logarithmic region can be
decomposed as [4]

u′
dv

′
d = u′

d,av
′
d + u′

d,iav
′
d , (7)

T ′
dv′

d = T ′
d,av

′
d + T ′

d,iav
′
d , (8)

where the subscripts “a” and “ia” represent the active and inactive components, respectively. Both
the second terms on the right-hand sides of Eq. (7) and Eq. (8) should be trivial within the AEM
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framework for incompressible wall turbulence. Whether it is true in compressible wall turbulence
remains to be checked.

In the present study, we resort to the spectral linear stochastic estimation (SLSE) to decompose
the temperature and velocity fields in the logarithmic region into the active and inactive components.
The DNS instantaneous fields at a given wall-normal height can be decomposed into Fourier
coefficients along the streamwise and spanwise directions by leveraging the homogeneity along
these two directions. The inactive component of a physical quantity ψ (ψ can be u′

d and T ′
d in the

present study) in the logarithmic region yp can also be estimated by

ψia(yi, yp) = F−1
x,z {Hia(λx, λz; yi, yp)Fx,z[ψ(yi )]}, (9)

where Fx,z and F−1
x,z denote the two-dimensional fast Fourier transform (2D FFT) and the inverse

2D FFT in the streamwise and spanwise directions, respectively. yi is a wall-normal location in the
near-wall region and set as y∗

i = 10 (i.e., y+
i = 14) in the present study. Prior studies have shown that

the wall coherence of ψ in the logarithmic region remains largely unchanged when 0 � y+
i � 15

[32]. Hia is a transfer kernel, which evaluates the correlation between ψ̂ (yi ) and ψ̂ (yp) at streamwise
length scale λx and spanwise length scale λz, and can be calculated as

Hia(λx, λz; yi, yp) = 〈ψ̂ (λx, λz; yp) ˘̂ψ (λx, λz; yi )〉
〈ψ̂ (λx, λz; yi )

˘̂ψ (λx, λz; yi )〉
, (10)

where 〈·〉 represents the ensemble averaging, ψ̂ is the Fourier coefficient of ψ , and ˘̂ψ is the complex
conjugate of ψ̂ . Consequently, ψa(yp) = ψ (yp) − ψia(yi, yp) is the active component.

On the other hand, due to the characteristics of the attached eddies, it is obvious that the inactive
component at yp would exert footprints on the near-wall flow at yi [17]. These large-scale footprints
ψL can be estimated by

ψL(yp, yi ) = F−1
x,z {HL(λx, λz; yp, yi )Fx,z[ψ (yp)]}, (11)

with

HL(λx, λz; yp, yi ) = 〈ψ̂ (λx, λz; yi )
˘̂ψ (λx, λz; yp)〉

〈ψ̂ (λx, λz; yp) ˘̂ψ (λx, λz; yp)〉
. (12)

In this respect, ψs(yi ) = ψ (yi ) − ψL(yp, yi ) is the remained small-scale component. Equation (11)
and Eq. (12) constitute a decomposition scheme for the near-wall flow. Thus, the near-wall MF and
HF can be decomposed according to

u′
dv

′
d = u′

d,sv
′
d + u′

d,Lv′
d , (13)

T ′
dv′

d = T ′
d,sv

′
d + T ′

d,Lv′
d , (14)

where u′
d,sv

′
d and T ′

d,sv
′
d denote the MF and the HF generated by the near-wall small-scale motions,

and u′
d,Lv′

d and T ′
d,Lv′

d are the counterparts contributed by the large-scale footprints. These terms
can be investigated separately. Similar methodologies are employed by the authors to investigate the
physical characteristics of the attached eddies in incompressible wall-bounded turbulence [18,33].

IV. RESULTS

A. Near-wall region

Figures 1(a) and 1(b) show the variations of the fractional contributions FC and the spatial
duration SD as functions of the threshold k f for the MF and the HF at y∗ = 10, respectively. The
variation tendencies of FCs for these two fluxes are not altered significantly as the increment of the
Reynolds number. Minor Reynolds number dependence can also be observed for SDs. That is, these
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FIG. 1. Variations of the fractional contribution (FC) to the mean flux and the spatial duration (SD) of
(a) MF, and (b) HF as functions of k f at y∗ = 10. The data are taken from the cases with Mb = 1.5. The vertical
dashed lines in the figures highlight k f = 0.25.

two basic properties of the momentum and heat transfers in the near-wall region are insensitive to
the Reynolds number, just like the observation in the near-wall region of the incompressible wall
turbulence [1]. Though as the increase of the Reynolds number, more and more u′

d and T ′
d motions

populating the logarithmic region would penetrate into the near-wall region, the locality of the v′
d

would diminish the Reynolds-number effects on the statistical characteristics of the momentum and
heat fluxes [34,35]. On the other hand, the magnitudes of the two fluxes are not large in most of the
physical space, and the extreme events are scarce. Taking MF as an example, when k f = 0.25, over
95% of the mean flux can be recovered by nearly 50% samples for all three cases. It also signifies
that k f = 0.25 is an optimal, Re-independent threshold for the MF and the HF in the near-wall
region.

MF and HF can be further divided into four quadrants, and their statistical characteristics can be
studied separately. Figures 2(a) and 2(b) display the FCmi and the FChi for i = 1 − 4 at y∗ = 10,
respectively. Their definitions are given by Eq. (6). It is evident that the sweeps (Qm4 and Qh4)
contribute more to the mean flux than ejections (Qm2 and Qh2), regardless of the Reynolds number.
This phenomenon can be ascribed to the blockage of the wall surface in the vicinity of the wall.

FIG. 2. Variations of the fractional contribution to the mean flux from the four quadrants of (a) MF and
(b) HF as functions of k f at y∗ = 10. The data are taken from the cases with Mb = 1.5.
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FIG. 3. Variations of the fractional contribution to the mean flux from the four quadrants of the large-
(black dashed lines) and small-scale (red solid lines) components of (a) MF and (b) HF as functions of k f at
y∗ = 10. The data are taken from the case Ma15Re20K.

Moreover, it can also be delineated by the celebrated hairpin vortex model. The dominated sweeps
are generated by the legs of the hairpins in the vicinity of the wall [36]. The variation of the Reynolds
number chiefly affects the fractional contribution from sweeps for both MF and HF. To be specific,
for MF, the increase of Reb leads to a larger contribution from Qm4 when k f � 1, whereas for
HF, a similar Reynolds number dependence can be observed for larger k f . It indicates that the
Reynolds number dependence of the intense sweeps is more conspicuous for HF than those of
MF in the near-wall region. In incompressible wall turbulence, it has been demonstrated that the
Reynolds number effects of the near-wall turbulence result from the influences exerted by the eddies
populating the logarithmic and the outer regions [18,37,38]. Thus, the decomposition schemes
Eq. (11) and Eq. (12) can be employed to further shed light on this effect. The MF and the HF
at y∗ = 10 can be decomposed into large- and small-scale components as per Eq. (13) and Eq. (14)
by setting y∗

i = 10 and y∗
p = 100 (the lower boundary of the logarithmic region [39]) in Eq. (11)

and Eq. (12). Then the small-scale components u′
d,sv

′
d and T ′

d,sv
′
d and the large-scale footprints

u′
d,Lv′

d and T ′
d,Lv′

d are treated as the input signals of the conditional sampling method described in
Sec. III A. The fractional contributions from these decomposed signals residing in four quadrants
are shown in Figs. 3(a) and 3(b) for MF and HF at y∗ = 10 for the case Ma15Re20K, respectively.
The reason we only use the case Ma15Re20K is due to its relatively higher Reynolds number than
other cases. It is noteworthy that the variation tendencies of the small-scale fluxes, u′

d,sv
′
d and T ′

d,sv
′
d ,

resemble those of the original signals displayed in Figs. 2(a) and 2(b) intuitively. Moreover, the
nontrivial contribution from each quadrant of the footprints u′

d,Lv′
d and T ′

d,Lv′
d is consistent with the

AEM, which hypothesizes that the attached eddies and the energy-containing motions populating
the logarithmic and outer regions would permeate into the near-wall region (i.e., the footprints) and
interact with the local v′

d [13]. On the other hand, the net contributions from the footprints u′
d,Lv′

d and
T ′

d,Lv′
d are trivial. For example, when k f = 0, the contributions from u′

d,Lv′
d in four quadrants nearly

cancel out each other. The increase of k f does not alter this situation, i.e., the absolute value of the
contributions from four quadrants are approximately equal. These observations highlight the fact
that the footprints originated from the motions populating the logarithmic and outer regions impart
limited influences on the magnitudes of the near-wall HF and MF. Another noteworthy observation
is the amplitude of each component in each quadrant. When k f > 1, the contributions from u′

d,Lv′
d

and T ′
d,Lv′

d in four quadrants are vanishing, and only those from sweeps and ejections associated
with u′

d,sv
′
d and T ′

d,sv
′
d are non-negligible. It underscores the fact that the intense momentum and heat

flux events in the near-wall region are generated by the local small-scale turbulence rather than the
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FIG. 4. [(a) and (b)] The instantaneous u′+
d,sv

′+
d (a) and u′+

d,Lv
′+
d (b) at y∗ = 10; [(c) and (d)] the instantaneous

T ′+
d,sv

′+
d (c) and T ′+

d,Lv
′+
d (d) at y∗ = 10. The data are taken from the case Ma15Re20K.

motions residing above the buffer layer. That is, to control the extreme events in the near-wall region,
attention should be paid to the small-scale flow. Figures 4(a) and 4(b) here show the instantaneous
u′+

d,sv
′+
d and u′+

d,Lv′+
d at y∗ = 10 in the case Ma15Re20K, respectively, and Fig. 4(c) and Fig. 4(d)

display the counterparts of HF, respectively. It is not difficult to observe that the intense momentum
and heat flux structures in the near-wall region are mainly contributed by the small-scale signals
rather than the footprints of the motions residing above the buffer layer. These visible results are
consistent with our analyses.

For the rest of this subsection, we measure the characteristic scale of each signal decomposed
above according to the methodology introduced in Sec. III B, and the occurrence frequency of each
l∗
x is exhibited in Fig. 5. Here k f is set as 0.25, which is an optimal and Re-invariant threshold as

FIG. 5. Occurrence frequency of each l∗
x for large- (a) and small-scale (b) components of MF and HF from

the four quadrants at y∗ = 10. The data are taken from the case Ma15Re20K.
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FIG. 6. Variations of the fractional contribution to the mean flux from the four quadrants of (a) MF and
(b) HF as functions of k f at y∗ = 3.9

√
Re∗

τ . The data are taken from the case Ma15Re20K.

reported by Fig. 1. As can be seen, the l∗
x of u′

d,Lv′
d and T ′

d,Lv′
d in four quadrants share similar

occurrence frequencies, whereas for u′
d,sv

′
d and T ′

d,sv
′
d , those are distinct. Sweeps and ejections

associated with u′
d,sv

′
d and T ′

d,sv
′
d tend to have higher frequencies at a given l∗

x than the events in
the other two quadrants. It shows once again that the fluxes generated by the large-scale footprints
are rather uniform in physical space, whereas those formed by the local near-wall turbulence are
asymmetric for four quadrants. This circumstance is reminiscent of the wall-shear fluctuations
generated by the near-wall flow and the attached eddies in incompressible wall-bounded turbulence
[18].

Here is a summary: The MF and the HF in the near-wall region of the compressible channel flows
are of many similarities. The fractional contribution and spatial duration of them are insensitive to
the Reynolds number, at least for the cases considered in this work. The sweeps (Qm4 and Qh4)
contribute most to their mean flux, regardless of the Reynolds number. Decomposing these two
fluxes into large- and small-scale components suggests that the former is the footprints of large-scale
eddies and is rather uniform in physical space, whereas the latter is uneven in space and includes
the strong transports of momentum and heat in the near-wall region. Last, we conjecture that the
Reynolds-number effects cannot influence the fractional contribution and spatial duration of MF
and HF remarkably. This is attributed to the fact that the Reynolds-number effects mainly exert
influences on u′

d and T ′
d , whereas the locality of v′

d would diminish the Reynolds-number effects on
the statistical characteristics of the MF and the HF. This hypothesis remains to be examined by new
DNS data at higher Reynolds numbers.

B. Logarithmic region

For the logarithmic region, we only show the results of the case Ma15Re20K due to its relatively
higher Reynolds number than other cases. It is observed that the variation tendencies of the fractional
contribution and the spatial duration in the logarithmic region agree tolerably well with those in
the near-wall region (see Fig. 1). These profiles are not shown here for brevity. It indicates some
similarities between these two regions as a whole and verifies the justification of the threshold
k f = 0.25 in the logarithmic region.

However, differences appear when MF and HF are further divided into four quadrants and
analyzed separately. Figures 6(a) and 6(b) show the FCmi and the FChi for i = 1–4 at y∗ = 3.9

√
Re∗

τ ,
namely the center of the logarithmic layer [40] (y ≈ 0.14h for Ma15Re20K), respectively. First, the
ejections (Qm2 and Qh2) can be observed to be dominant contributors to the mean flux, which is
different from the situation in the near-wall region (see Fig. 2). This observation is also in line with
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FIG. 7. Variations of the viscous scaled MF (a) and HF (b) as functions of y∗. MF and HF are decomposed
into active and inactive components in the logarithmic region indicated by the shaded regions in the figures.
The data are taken from the case Ma15Re20K.

the hairpin vortex model. In the logarithmic region, the hairpins are inclined at an angle to the wall
and would eject fluid upward between the lags [36,41]. Second, it is apparent that the ejections of
HF are stronger than those of MF. For example, at k f = 0, the ejections of MF and HF contribute
to nearly 70% and 80% to their mean flux, respectively. Third, the intensities of Qm1 and Qm3 are
approximately equal for all k f considered, whereas for Qh1 and Qh3 are not.

To further dissect the statistical characteristics of the MF and the HF in the logarithmic region,
MF and HF are decomposed into active and inactive parts according to Eq. (7) and Eq. (8), by
resorting to the scheme Eq. (9) and Eq. (10) with y∗

i = 10. The mean flux of each component is
exhibited in Fig. 7, and the mean fluxes of full data are also included for comparison. It can be
seen that the active component is the chief carrier of the MF and HF, which is consistent with the
predictions of the AEM [13,14]. However, the inactive parts, i.e., u′+

d,iav
′+
d and T ′+

d,iav
′+
d , still have

non-negligible contributions to the corresponding mean fluxes. Strictly speaking, this scenario is
not consistent with the AEM. Because for a pure attached-eddy occupied flow, the inactive part
should play a negligible role in the momentum or heat transfer at the corresponding location in
the logarithmic region. For the DNS data analyzed in the present study (Ma15Re20K), u′+

d,iav
′+
d

nearly contributes to 20% of u′+
d v′+

d , whereas the active component contributes to 80% of u′+
d v′+

d .
This scenario has also been reported in incompressible wall turbulence [4]. For the HF, a similar
observation can be made. T ′+

d,iav
′+
d nearly contributes to 18% of T ′+

d v′+
d in the logarithmic region.

All these indicate that the logarithmic region of wall-bounded turbulence is not fully occupied by
the attached eddies. Other eddies, such as the ones that are responsible for the energy dissipation,
as well as VLSMs, also influence the magnitudes of u′+

d,iav
′+
d and T ′+

d,iav
′+
d [4]. Figure 8(a) and

Fig. 8(b) show the instantaneous u′+
d,av

′+
d and u′+

d,iav
′+
d at y∗ = 3.9

√
Re∗

τ in the case Ma15Re20K,
respectively, and Fig. 8(c) and Fig. 8(d) display the counterparts of HF, respectively. As seen, the
contributions from the sweep and ejection structures in u′+

d,av
′+
d and T ′+

d,av
′+
d are prominent, whereas

the corresponding structures in inactive components are rather moderate. These observations are in
line with the quantitative analyses above.

The fractional contributions from the active and inactive components residing in different quad-
rants are shown in Figs. 9(a) and 9(b) for MF and HF at y∗ = 3.9

√
Re∗

τ for the case Ma15Re20K,
respectively. The active component resembles the full channel data shown in Fig. 6. This is under
expectation because this component is dominant in the momentum transfer according to the AEM.
It is particularly noteworthy that the inactive components in four quadrants are not that symmetric.
To be specific, the contributions from the second and fourth quadrants (sweeps and ejections) cannot
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FIG. 8. [(a) and (b)] The instantaneous u′+
d,av

′+
d (a) and u′+

d,iav
′+
d (b) at y∗ = 3.9

√
Re∗

τ ; [(c) and (d)] the

instantaneous T ′+
d,av

′+
d (c) and T ′+

d,iav
′+
d (d) at y∗ = 3.9

√
Re∗

τ . The data are taken from the case Ma15Re20K.

be canceled by those from the first and third quadrants when k f < 2. On the other hand, it is
noted that the footprints of these inactive motions in the near-wall region are rather symmetric
and uniform for the four quadrants (see black lines in Fig. 3). This is, the distributions of HF and
MF in four quadrants resulting from the inactive motions alter significantly when they permeate into
the near-wall region. The mechanisms behind this variation deserve further investigation.

Figures 10(a) and 10(b) show the occurrence frequency of each lx/h for each decomposed
signal in different quadrant. Due to the asymmetric behaviors of the inactive and active parts, the
occurrence frequency of each lx/h of them in each quadrant are not identical. Sweeps (Qm4 and Qh4)

FIG. 9. Variations of the fractional contribution to the mean flux from the four quadrants of the active
(red solid lines) and inactive components (black dashed lines) of (a) MF and (b) HF as functions of k f at
y∗ = 3.9

√
Re∗

τ . The data are taken from the case Ma15Re20K.
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FIG. 10. Occurrence frequency of each lx/h for inactive (a) and active (b) components of MF and HF from
the four quadrants at y∗ = 3.9

√
Re∗

τ . The data are taken from the case Ma15Re20K.

and ejections (Qm2 and Qh2) have higher frequencies at a given lx/h than the signals at other two
quadrants for both inactive and active components.

In summary, the ejections of HF are stronger than that of MF roughly. Both the inactive and
active components of MF and HF have nontrivial contributions to their mean flux. Only the latter
is deemed to be responsible for the momentum transfer by the celebrated AEM. Moreover, we also
show that these two components are not symmetric among the four quadrants. Considering the
footprints of the inactive part in the near-wall region are relatively uniform in four quadrants, this
transition awaits further investigations.

C. Outer region

At last, we are dedicated to the MF and the HF in the outer region at y/h = 0.5. Figures 11(a)
and 11(b) show the FCmi and the FChi for i = 1–4 for all cases, respectively. The ejections (Qm2 and
Qh2) are still the dominant contributors to the mean flux, just like the scenario in the logarithmic
region. However, the differences between MF and HF are more conspicuous in this wall-normal
position than those in the inner and logarithmic regions. A noteworthy difference is that the ejections

FIG. 11. Variations of the fractional contributions to the mean flux from the four quadrants of (a) MF and
(b) HF as functions of k f at y/h = 0.5. The data are taken from the cases with Mb = 1.5.
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FIG. 12. Occurrence frequency of each lx/h for MF and HF from the four quadrants at y/h = 0.5. The data
are taken from the case Ma15Re20K.

of HF (Qh2) are remarkably stronger than those of the MF (Qm2). Moreover, the intense sweeps
(k f > 1) are less for HF. By the way, the profiles of the case Ma15Re3K deviate from those of
the two other cases apparently (especially for sweeps and ejections), and it may result from the
low-Reynolds-number effects of this case. Figure 12 shows the occurrence frequency of each lx/h
for the MF and the HF in each quadrant for the case Ma15Re20K. Other cases display similar results
and not shown here for brevity. For MF and HF, the occurrence frequency of each lx/h for sweeps
and ejections is larger. Further observation shows that the occurrence frequency at a given lx/h for
sweeps and ejections of MF is longer than those of HF. In other words, the HF events in the outer
region are more sparse than the MF events.

V. DISCUSSION ON THE MACH NUMBER EFFECTS

In this section, we concentrate on the Mach number effects on the HF and the MF events. The
cases Ma08Re3K, Ma15Re3K, and Ma30Re5K are adopted to elucidate the Mach number effects
on the full near-wall fluxes (no decomposition). Our study above demonstrates that the Reynolds
number effects are minor in the vicinity of the wall. Thus, these low-Reynolds-number cases are
sufficient for pinpointing the Mach number effects. The cases Ma00Re18K, Ma08Re17K, and
Ma15Re20K are employed to show the Mach number effects on the logarithmic-region fluxes and
their near-wall footprints due to their relatively higher Reynolds numbers. The MF in the incom-
pressible case Ma00Re18K can be used for comparison. We acknowledge that the DNS data with
a higher Mach number (for example, Mb = 3.0) is needed for conducting a more comprehensive
study on this problem. However, the DNS of supersonic channel flows at both high Mach number
and Reynolds number demands huge computational costs. A more extensive investigation of the
Mach number effects on these aspects will be carried out when the database is available. Finally, the
cases with Re∗

τ > 180 aid in examining the Mach number effects on the fluxes in the outer region to
avoid the low-Reynolds-number effects shown in Fig. 11.

We first examine the low-Reynolds-number cases at y∗ = 10. We find that there is no remarkable
difference between the variation tendencies of the fractional contributions and spatial duration with
respect to k f (just like Fig. 1). Moreover, the quadrant analyses also exhibit minor differences among
these cases (just like Fig. 2). We can safely conclude that the Mach number has little effect on
general statistics of the MF and the HF events within the near-wall region. These results are not
shown here for brevity.
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FIG. 13. [(a) and (b)] Variations of the fractional contribution to the mean flux from the four quadrants
of the large-scale component of (a) MF and (b) HF as functions of k f at y∗ = 10; [(c) and (d)] variations of
the fractional contribution to the mean flux from the four quadrants of the small-scale component of (c) MF
and (d) HF as functions of k f at y∗ = 10. The data are taken from the case Ma00Re18K (red dashed lines),
Ma08Re17K (blue dashed lines), and Ma15Re20K (black dashed lines).

Then we pay attention to the footprints of the logarithmic-region fluxes on the near-wall region
y∗

i = 10 with y∗
p = 100. Figures 13(a) and 13(b) show the fractional contribution of each quadrant

for MF and HF, respectively. It can be found that the absolute value of FC of each quadrant decreases
as the enlargement of the Mach number for k f < 2. It implies that the compressibility lessens the
linkages between the near-wall velocity and temperature fields and the energy-containing motions
populating the logarithmic region slightly. Whether it holds at larger Mach numbers deserves further
investigation. Figure 14 compares the length scale of the footprints in each quadrant of these cases.
It is intriguing to find that the occurrence frequencies at a given l∗

x for the footprints are nearly
identical for different Mach numbers. This observation provides evidence for the proposition in
previous studies [42,43], which claimed that the statistical characteristics of the large-scale motions
in the near-wall region scale well in the inner unit. For the small-scale fluxes, u′

d,sv
′
d and T ′

d,sv
′
d ,

their fractional contribution of each quadrant are shown in Figs. 13(c) and 13(d). As can be seen,
the contribution from each quadrant is not changed noticeably.

For the logarithmic region, the MF and the HF are decomposed into active and inactive parts for
the cases Ma15Re20K and Ma08Re17K, and their contributions are compared in Fig. 15 along with
the corresponding mean fluxes. It can be seen that the enlargement of the Mach number does not
change the viscous scaled magnitudes of the MF and the HF at a fixed Re∗

τ (Re∗
τ ≈ 780). Though
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FIG. 14. Occurrence frequency of each l∗
x for the large-scale component of (a) MF and (b) HF at y∗ =

10. The data are taken from the case Ma00Re18K (red dashed lines), Ma08Re17K (blue dashed lines), and
Ma15Re20K (black dashed lines). Symbols as in Fig. 13.

their mean intensities are not altered significantly in the logarithmic region, the contribution from
the inactive component decreases under the enhancement of the compressibility, especially for MF.
The two components at y∗ = 3.9

√
Re∗

τ are studied separately for the corresponding four quadrants
in Fig. 16 along with the results of the incompressible case Ma00Re18K. It can be observed that the
alteration of the Mach number mainly affects the inactive weak events. To be specific, the absolute
value of FC of each quadrant belonging to the inactive component decreases as the enlargement
of the Mach number for k f < 2. We also notice that the intensities of the events residing in each
quadrant of the large-scale footprints in the near-wall region, namely the near-wall part of these
inactive motions, also decrease with the enlargement of the Mach number [see Figs. 13(a) and
13(b)]. All these may suggest that the increase of the Mach number weakens the intensities of the
momentum- and heat-flux events generated by the wall-attached motions as a whole. Whether this
conjecture is valid at higher Mach numbers remains to be studied. Further investigations reveal that
the impacts of the Mach number on HF in the logarithmic region are less than those of MF, which
is consistent with the result shown in Fig. 15. For the outer region, no negligible difference in the
statistical characteristics of MF and HF can be found for the cases with different Mach numbers at

FIG. 15. Variations of the viscous scaled MF (a) and HF (b) as functions of y∗ for the cases Ma15Re20K
(solid lines) and Ma08Re17K (dashed lines). MF and HF are decomposed into active and inactive components
in the logarithmic region indicated by the shaded regions in the figures.
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FIG. 16. [(a) and (b)] Variations of the fractional contribution to the mean flux from the four quadrants
of the active (a) MF and (b) HF as functions of k f at y∗ = 3.9

√
Re∗

τ ; [(c) and (d)] variations of the fractional
contribution to the mean flux from the four quadrants of the inactive (c) MF and (d) HF as functions of k f at
y∗ = 3.9

√
Re∗

τ . The data are taken from the case Ma00Re18K (red dashed lines), Ma08Re17K (blue dashed
lines), and Ma15Re20K (black dashed lines).

identical wall-normal positions (for instance, y/h = 0.5), and thus we do not report them here in
detail.

In summary, the Mach number effects can only be starkly observed in the footprints of the
logarithmic-region fluxes on the near-wall region and the proportions of the inactive and the active
components in the logarithmic region, whereas the MF and the HF in other wall-normal locations at
desperate Mach numbers exhibit negligible differences. Intrinsically, the increase in compressibility
diminishes the penetrability of the near-wall flow. It can be conjectured that the higher mean velocity
and temperature gradients of the supersonic case near the wall may preclude the permeation of the
wall-attached eddies. We will verify our proposition when the database at higher Mach numbers is
formed.

VI. CONCLUDING REMARKS

In the present study, we dissect the statistical characteristics of the momentum and heat fluxes
in compressible turbulent channel flows via quadrant analysis by appealing to the newly built DNS
database with different Mach and Reynolds numbers. To shed light on the scale interactions between
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the inner and outer layers, we adopt the spectral linear stochastic estimation to decompose the
signals at these locations. The conclusions are summarized below.

(a) In the near-wall region, the sweeps (Qm4 and Qh4) contribute most to their mean flux.
Decomposing these two fluxes into large- and small-scale components suggests that the former
is the footprints of large-scale eddies and rather uniform in physical space, whereas the latter is
uneven in space and includes the strong transports of momentum and heat in the near-wall region.

(b) In the logarithmic region, the ejections (Qm2 and Qh2) contribute most to their mean flux.
Both the inactive and active components of MF and HF are found to have contributions. The former
accounts for 18%–20% of the mean flux, which is deemed to be negligible according to the classical
attached-eddy model. We also show that these two components are not symmetric among the four
quadrants.

(c) In the outer region, the ejections still contribute most to their mean flux. The ejections of HF
are remarkably stronger than those of the MF, and the former is more sparse in the physical space.

(d) Reynolds number is shown to have a minor effect on the statistical characteristics of MF and
HF. The enlargement of the Mach number only appears to lessen the linkages between the inner
and outer region fluxes, adjust proportions of the inactive and active components in the logarithmic
region and rarely alter the overall properties of HF and MF. Comparatively speaking, the HF in the
compressible wall-bounded turbulence is more sensitive to the change of compressibility than the
MF.

By employing the SLSE developed in previous studies to extract the velocity signals from the
multiscale structures, the present work offers much insight into the MF and HF events in compress-
ible turbulence. Overall speaking, they share substantial common features, at least within the cases
under scrutinizing. This indicates that the Morkovin hypothesis is valid when the Mach number
is not sufficiently high (Mb < 5) [44] and that the thermodynamic fluctuations have insignificant
effects on the turbulence structures. On the other hand, the findings of the present study demonstrate
that the generation of the extreme events of the heat and momentum transfers in the near-wall
region should be ascribed to the near-wall small-scale flow rather than the influences exerted by the
large-scale motions populating the logarithmic and outer regions. This observation may be revealing
for the development of drag-reduction and heat-control techniques. Finally, we also want to point out
that the methodologies deployed in the present study can be extended to dissect the MF and the HF in
supersonic or hypersonic boundary layers. For example, the alteration of the wall thermal condition
is reported to modify the velocity and thermal streaks in the near-wall region of the compressible
turbulent flat-plate boundary layers [31,45]. Hence, it is intriguing to shed light on this effect on the
statistical characteristics of the MF and the HF by resorting to the current framework.

ACKNOWLEDGMENTS

L.F. acknowledges the fund from the Research Grants Council (RGC) of the Government
of Hong Kong Special Administrative Region (HKSAR) with RGC/ECS Project (Grant No.
26200222), the fund from CORE as a joint research center for ocean research between QNLM and
HKUST, and the fund from the Project of Hetao Shenzhen-Hong Kong Science and Technology
Innovation Cooperation Zone (Grant No. HZQB-KCZYB-2020083).

[1] W. Willmarth and S. Lu, Structure of the Reynolds stress near the wall, J. Fluid Mech. 55, 65 (1972).
[2] J. Wallace, H. Eckelmann, and R. Brodkey, The wall region in turbulent shear flow, J. Fluid Mech. 54, 39

(1972).
[3] R. Narasimha, S. Kumar, A. Prabhu, and S. Kailas, Turbulent flux events in a nearly neutral atmospheric

boundary layer, Philos. Trans. R. Soc. A 365, 841 (2007).

094602-18

https://doi.org/10.1017/S002211207200165X
https://doi.org/10.1017/S0022112072000515
https://doi.org/10.1098/rsta.2006.1949


MOMENTUM AND HEAT FLUX EVENTS IN COMPRESSIBLE …

[4] R. Deshpande and I. Marusic, Characterising momentum flux events in high Reynolds number turbulent
boundary layers, Fluids 6, 168 (2021).

[5] C. Cheng and L. Fu, Large-scale motions and self-similar structures in compressible turbulent channel
flows, Phys. Rev. Fluids 7, 114604 (2022).

[6] S. Kline, W. Reynolds, F. Schraub, and P. Runstadler, The structure of turbulent boundary layers, J. Fluid
Mech. 30, 741 (1967).

[7] S. Lu and W. Willmarth, Measurements of the structure of the Reynolds stress in a turbulent boundary
layer, J. Fluid Mech. 60, 481 (1973).

[8] R. Blackwelder and R. Kaplan, On the wall structure of the turbulent boundary layer, J. Fluid Mech. 76,
89 (1976).

[9] J. Kim, Turbulence structures associated with the bursting event, Phys. Fluids 28, 52 (1985).
[10] D. Bogard and W. Tiederman, Burst detection with single-point velocity measurements, J. Fluid Mech.

162, 389 (1986).
[11] O. Flores and J. Jiménez, Hierarchy of minimal flow units in the logarithmic layer, Phys. Fluids 22,

071704 (2010).
[12] A. Lozano-Durán, O. Flores, and J. Jiménez, The three-dimensional structure of momentum transfer in

turbulent channels, J. Fluid Mech. 694, 100 (2012).
[13] A. A. Townsend, The Structure of Turbulent Shear Flow, 2nd ed. (Cambridge University Press, Cambridge,

UK, 1976).
[14] A. Townsend, Equilibrium layers and wall turbulence, J. Fluid Mech. 11, 97 (1961).
[15] R. Deshpande, J. Monty, and I. Marusic, Active and inactive components of the streamwise velocity in

wall-bounded turbulence, J. Fluid Mech. 914, A5 (2021).
[16] R. Mathis, N. Hutchins, and I. Marusic, Large-scale amplitude modulation of the small-scale structures in

turbulent boundary layers, J. Fluid Mech. 628, 311 (2009).
[17] I. Marusic, R. Mathis, and N. Hutchins, Predictive model for wall-bounded turbulent flow, Science 329,

193 (2010).
[18] C. Cheng and L. Fu, Consistency between the attached eddy model and the inner outer interaction model:

A study of streamwise wall shear stress fluctuations in a turbulent channel flow, J. Fluid Mech. 942, R9
(2022).

[19] S. Pirozzoli and M. Bernardini, Turbulence in supersonic boundary layers at moderate Reynolds number,
J. Fluid Mech. 688, 120 (2011).

[20] X. Yuan, F. Tong, W. Li, J. Chen, and S. Dong, Wall-attached temperature structures in supersonic
turbulent boundary layers, Phys. Fluids 34, 115116 (2022).

[21] X. Chen, C. Cheng, L. Fu, and J. Gan, Linear response analysis of supersonic turbulent channel flows
with a large parameter space, J. Fluid Mech. 962, A7 (2023).

[22] D. Modesti and S. Pirozzoli, Reynolds and Mach number effects in compressible turbulent channel flow,
Int. J. Heat Fluid Flow 59, 33 (2016).

[23] J. Yao and F. Hussain, Turbulence statistics and coherent structures in compressible channel flow, Phys.
Rev. Fluids 5, 084603 (2020).

[24] L. Fu, M. Karp, S. Bose, P. Moin, and J. Urzay, Shock-induced heating and transition to turbulence in a
hypersonic boundary layer, J. Fluid Mech. 909, A8 (2021).

[25] L. Fu, S. Bose, and P. Moin, Prediction of aerothermal characteristics of a generic hypersonic inlet flow,
Theor. Comput. Fluid Dyn. 36, 345 (2022).

[26] C. Cheng and L. Fu, Linear-model-based study of the coupling between velocity and temperature fields
in compressible turbulent channel flows, J. Fluid Mech. 964, A15 (2023).

[27] J. C. Del Álamo, J. Jiménez, P. Zandonade, and R. Moser, Scaling of the energy spectra of turbulent
channels, J. Fluid Mech. 500, 135 (2004).

[28] G. Gerolymos and I. Vallet, Pressure, density, temperature and entropy fluctuations in compressible
turbulent plane channel flow, J. Fluid Mech. 757, 701 (2014).

[29] K. Griffin, L. Fu, and P. Moin, Velocity transformation for compressible wall-bounded turbulent flows
with and without heat transfer, Proc. Natl. Acad. Sci. USA 118, e2111144118 (2021).

094602-19

https://doi.org/10.3390/fluids6040168
https://doi.org/10.1103/PhysRevFluids.7.114604
https://doi.org/10.1017/S0022112067001740
https://doi.org/10.1017/S0022112073000315
https://doi.org/10.1017/S0022112076003145
https://doi.org/10.1063/1.865401
https://doi.org/10.1017/S0022112086002094
https://doi.org/10.1063/1.3464157
https://doi.org/10.1017/jfm.2011.524
https://doi.org/10.1017/S0022112061000883
https://doi.org/10.1017/jfm.2020.884
https://doi.org/10.1017/S0022112009006946
https://doi.org/10.1126/science.1188765
https://doi.org/10.1017/jfm.2022.423
https://doi.org/10.1017/jfm.2011.368
https://doi.org/10.1063/5.0121900
https://doi.org/10.1017/jfm.2023.244
https://doi.org/10.1016/j.ijheatfluidflow.2016.01.007
https://doi.org/10.1103/PhysRevFluids.5.084603
https://doi.org/10.1017/jfm.2020.935
https://doi.org/10.1007/s00162-021-00587-7
https://doi.org/10.1017/jfm.2023.356
https://doi.org/10.1017/S002211200300733X
https://doi.org/10.1017/jfm.2014.431
https://doi.org/10.1073/pnas.2111144118


CHENG CHENG, WEI SHYY, AND LIN FU

[30] T. Bai, K. Griffin, and L. Fu, Compressible velocity transformations for various noncanonical wall-
bounded turbulent flows, AIAA J. 60, 4325 (2022).

[31] J. Huang, L. Duan, and M. Choudhari, Direct numerical simulation of hypersonic turbulent boundary
layers: Effect of spatial evolution and Reynolds number, J. Fluid Mech. 937, A3 (2022).

[32] W. Baars, N. Hutchins, and I. Marusic, Self-similarity of wall-attached turbulence in boundary layers,
J. Fluid Mech. 823, R2 (2017).

[33] C. Cheng, W. Shyy, and L. Fu, Streamwise inclination angle of wall-attached eddies in turbulent channel
flows, J. Fluid Mech. 946, A49 (2022).

[34] A. E. Perry and M. S. Chong, On the mechanism of wall turbulence, J. Fluid Mech. 119, 173 (1982).
[35] Y. Hwang, Statistical structure of self-sustaining attached eddies in turbulent channel flow, J. Fluid Mech.

767, 254 (2015).
[36] R. Adrian, Hairpin vortex organization in wall turbulence, Phys. Fluids 19, 041301 (2007).
[37] I. Marusic, W. J. Baars, and N. Hutchins, Scaling of the streamwise turbulence intensity in the context of

inner-outer interactions in wall turbulence, Phys. Rev. Fluids 2, 100502 (2017).
[38] C. Cheng and L. Fu, A scale-based study of the Reynolds number scaling for the near-wall streamwise

turbulence intensity in wall turbulence, Int. J. Heat Fluid Flow 101, 109136 (2023).
[39] L. Wang, R. Hu, and X. Zheng, A scaling improved inner–outer decomposition of near-wall turbulent

motions, Phys. Fluids 33, 045120 (2021).
[40] R. Mathis, N. Hutchins, and I. Marusic, A predictive inner–outer model for streamwise turbulence

statistics in wall-bounded flows, J. Fluid Mech. 681, 537 (2011).
[41] B. Ganapathisubramani, E. Longmire, and I. Marusic, Characteristics of vortex packets in turbulent

boundary layers, J. Fluid Mech. 478, 35 (2003).
[42] Y. Hwang, Mesolayer of attached eddies in turbulent channel flow, Phys. Rev. Fluids 1, 064401 (2016).
[43] C. Cheng, W. Li, A. Lozano-Durán, and H. Liu, On the structure of streamwise wall-shear stress

fluctuations in turbulent channel flows, J. Fluid Mech. 903, A29 (2020).
[44] M. V. Morkovin, Effects of compressibility on turbulent flows, Mécanique de la Turbulence (CNRS, Paris,

1962), pp. 367–380.
[45] R. Hirai, R. Pecnik, and S. Kawai, Effects of the semi-local Reynolds number in scaling turbulent statistics

for wall heated/cooled supersonic turbulent boundary layers, Phys. Rev. Fluids 6, 124603 (2021).

094602-20

https://doi.org/10.2514/1.J061554
https://doi.org/10.1017/jfm.2022.80
https://doi.org/10.1017/jfm.2017.357
https://doi.org/10.1017/jfm.2022.657
https://doi.org/10.1017/S0022112082001311
https://doi.org/10.1017/jfm.2015.24
https://doi.org/10.1063/1.2717527
https://doi.org/10.1103/PhysRevFluids.2.100502
https://doi.org/10.1016/j.ijheatfluidflow.2023.109136
https://doi.org/10.1063/5.0046502
https://doi.org/10.1017/jfm.2011.216
https://doi.org/10.1017/S0022112002003270
https://doi.org/10.1103/PhysRevFluids.1.064401
https://doi.org/10.1017/jfm.2020.639
https://doi.org/10.1103/PhysRevFluids.6.124603

