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Forced two-dimensional turbulence lives on the balance between the energy input and
two dissipative mechanisms, viscosity and linear friction, resulting in a double cascade
of energy and enstrophy. While it is known that the energy cascade is governed by the
Reynolds number Reα = urms/(αLf ), it has been more convenient to report Re = urmsLf/ν

(where urms is the fluctuating velocity, Lf the forcing scale, α the friction coefficient,
and ν the kinematic viscosity). Therefore, it is unclear for which range of parameters
the various hallmarks of fully developed turbulence will emerge. Here we use multiple
laboratory setups in which a quasi-two-dimensional flow is generated in electromagnetic
layers of fluids, over a wide range of Re and Reα . The friction coefficient measured during
turbulence decay is correctly estimated by a linear shear assumption, allowing us to readily
estimate Reα . We consider several observables characterizing the turbulence development:
the fraction of energy input converted to fluctuating energy, the correlation scale of the flow,
the velocity structure functions, the probability distribution of the velocity fluctuations and
velocity differences, the single-particle diffusivity, and the separation time between particle
pairs. All descriptors collapse on master curves against Reα , providing a criterion for fully
developed turbulence for this class of flows. Moreover, dedicated experiments in which the
local Re and Reα are spatially decoupled show that only the latter is correlated with the
growth of turbulent energy. Finally, a scaling relation is proposed that relates the amount
of energy going to the large scales to the forcing scale-to-layer thickness ratio.

DOI: 10.1103/PhysRevFluids.8.094601

I. INTRODUCTION

In the last decades, the interest in two-dimensional (2D) turbulence has grown far beyond scien-
tific curiosity in fundamental dynamics, and it has been fueled by its relevance to geophysical flows
in the atmosphere and the ocean [1–3]. Indeed, while strictly 2D turbulent flows are not physically
realizable, they share basic similarities with high-aspect-ratio systems in which confinement in
one direction inhibits vortex stretching. The resulting phenomenology famously differ from classic
three-dimensional (3D) turbulence, notably in that a double cascade ensues, with energy flowing to
the large scales and enstrophy flowing to the small ones (see [4–6]). These and other signature
features of 2D turbulence have thus been investigated experimentally in quasi-two-dimensional
(Q2D) laboratory apparatuses, especially in thin electromagnetic layers (EMLs) of conductive fluids
and in gravity-driven soap films [6,7]. Recently, it has also been shown that 2D turbulence behavior
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is exhibited by a liquid subject to Faraday waves induced by vertical oscillation of the container
[8,9]. With the important constraint that the motion in the third direction be kept negligibly small
[10,11], these setups allow investigating the Q2D flow by tracking suspended tracers both in the
Eulerian frame [via particle image velocimetry (PIV)] and in the Lagrangian frame [via particle
tracking velocimetry (PTV)]. An immediate experimental advantage is that, unlike in 3D flows,
the fluid motion can be fully captured by planar imaging, without the complexities and costs
associated with volumetric velocimetry [12]. We stress that the EML system can never be fully
2D, in particular due to the no-slip boundary condition at the bottom surface. However, multiple
recent studies have demonstrated that the Q2D flow assumption is reasonably well approximated
in such systems. Tithof et al. [11] evaluated out-of-plane motions and vertical velocity profiles for
various flow configurations, and found that the Q2D assumption was tenable in particular for the
single-layer and immiscible double-layer configurations. Moreover, Martell et al. [13] measured
the misalignment between the velocity vectors from tracers in between and above both layers of an
immiscible double-layer system, and found that the local alignment was satisfied within 6% even
for a relatively thick 6-mm layer.

While the early and seminal contributions on 2D turbulence were concerned with the flow
evolution during its natural decay [14], recent studies have more often focused on steady-state
systems. Those are usually modeled via a large-scale friction that balances the external forcing,
for which the governing 2D Navier-Stokes equation reads

∂t u + u · ∇u = − 1

ρ
∇P + ν∇2u − αu + f . (1)

Here u and P are the velocity and pressure fields, ν is the kinematic viscosity, α is a coefficient
of linear frictional damping (also known as Rayleigh friction) that arises due to the viscous
dissipation along the depth of the fluid as a result of the no-slip boundary condition at the bottom
solid boundary, and f is the forcing term acting at a scale Lf . This form underlines a further
important difference with respect to 3D turbulence, i.e., the role of dissipation at the boundaries
[6,15]: the input energy rate εI from the forcing is balanced not solely by the viscous dissipation
εν , but also by the frictional dissipation εα , εI = εν + εα . While εν acts predominantly at the
Kolmogorov scale Lν ≡ (εν/ην )1/2 (where ην is the viscous enstrophy dissipation), εα is associated
with the scale Lα ≡ (εα/ηα )1/2 (where ηα is the frictional enstrophy dissipation). The latter is
related to the characteristic root-mean-square velocity, Lα ∼ urms/α, and provides a large-scale
cutoff to the inverse cascade of energy. This duality implies the need for defining two Reynolds
numbers. On the one hand, Re ≡ urmsLf/ν quantifies the extent of the range Lν � L � Lf ,
where the direct cascade of enstrophy takes place [6]: Re ∼(Lf/Lν )2. On the other hand, the
outer-scale Reynolds number Reα ≡ urms/(αLf ) quantifies the extent of the range Lf � L � Lα ,
associated with the inverse cascade of energy: Reα ∼ Lα/Lf . This association of the Reynolds
number to the ratio of scales bounding the inertial range is common to various types of turbulence;
e.g., it is analogous to what was recently proposed in [16] for 3D turbulence in which vortex
stretching was artificially removed. We also remark that, alternatively to (1), several numerical
studies utilize hypofriction, which concentrates the frictional dissipation at large scales. Such
strategy can influence the extent of the inertial range over which the inverse energy cascade is
observed [17].

Beyond these definitions, it is not straightforward to determine which parameter governs which
process: while Reα is directly related to the energy cascade range, it is the limit Re → ∞ that
warrants εν/εα → 0, which in turn guarantees that all energy flows to the large scales [6]. As such,
there are no established criteria to determine the portion of the input energy that is dissipated by
frictional dissipation versus viscous dissipation. In general, it is acknowledged that Reα is the main
parameter to characterize the inverse cascade range. Still, in the literature Re is by far the most (and
often the only) reported nondimensional parameter. With no ambition of being exhaustive, Table I
lists the wide range of Re in several past experiments investigating 2D turbulence in EML systems
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TABLE I. The ranges of Re in several previous studies exploring 2D turbulence in
EML systems. SL, MDL, and IDL stand for a single fluid layer, two miscible layers,
and two immiscible layers, respectively.

Reference Fluid configuration Lf (mm) Re

[18] SL 8 600–2400
[19] MDL 15 100
[20] MDL 50 500
[21] SL 50 1500–2750
[22] IDL 18 500
[31] IDL 9 11–80
[23] SL 25.4 185
[24] MDL 25.4 300
[25] MDL 25.4 200
[11] MDL 25.4 50–740
Present paper SL, IDL 19; 35 39–2025

(as we do in the present paper). The practice of using Re to describe the strength of the forcing is
partly rooted in analogy with 3D turbulence (where there is little doubt that Re characterizes the
transition to and the intensity of turbulence), and partly in the immediate availability of the fluid
viscosity compared to the geometry-dependent friction coefficient. However, there is no agreement
on the Re value (or range of values) for which 2D turbulence emerges and/or reaches a fully
developed state. In part, this is due to the inherent challenge of defining such a multifaceted
phenomenon as turbulence [26]. One may identify its onset with the development of space-time
disorder [27], but even far beyond this point Q2D flows often maintain the fingerprint of the forcing
structure, e.g., the array of magnets in EML systems. Indeed, flows in this regime, usually observed
for Re < 200, are rather qualified as “nonperiodic,” “chaotic,” or “weakly turbulent” [28–30]. Xia
et al. [31] summed up the state of the matter, affirming that “there is no well accepted parameter
to quantify the degree of turbulence development in 2D, and it is not clear whether the Reynolds
number [Re] is a meaningful measure of it.” They considered a wide range of laboratory Q2D flows
(EML and Faraday-wave systems) in the range Re = 11–188, and proposed that 2D turbulence
development be quantified by a Lagrangian dispersion parameter; this appeared to reach the critical
value for Re > 60. Tithof et al. [11] considered multiple EML arrangements (a single fluid layer,
two miscible layers, and two immiscible layers) and reported nonperiodic flow for Re > 200; yet,
the emergence of a broad range of scales became apparent only for Re > 500. On the other hand, it
has been hypothesized that friction may play a more central role than viscous dissipation. Sommeria
[32] and Michel et al. [33] studied Q2D flows over a very wide range of Rh, a friction Reynolds
number equivalent to Reα , using single layers of liquid metals. In both studies Rh was taken as the
dominant control parameter based on order-of-magnitude considerations. However, the effect of Re
was not investigated, and the fluid layer thickness was such that significant 3D effects could not be
excluded.

In the present paper, we use two EML apparatuses and different fluid layer configurations to visit
a wide range of Re and Reα , from the regular or periodic regime to fully developed turbulence.
We use PIV and PTV to measure the flow in the Eulerian and Lagrangian frames, quantifying
observables classically used to characterize hallmark features of turbulence. The objective is to
determine whether, in such systems, the emergence and development of the various aspects of 2D
turbulence are consistently associated with a specific range of Re or Reα . The paper is organized as
follows: in Sec. II we present the experimental setup and the imaging methodology; in Sec. III we
report the results in terms of Eulerian and Lagrangian quantities; in Sec. IV we discuss the results
and draw the main conclusions.
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FIG. 1. (a) A schematic of our experimental apparatus. Its lateral dimension H = 200 mm for a smaller
device and 300 mm for a larger device, and H = N × Lf , where N is the number of magnet spacings between
the copper electrodes and Lf is the distance between the neighboring magnet centers. N = 10 for a smaller
device and N = 8 for a larger device. Lf = 19 mm for a smaller device and 35 mm for a larger device. Note
that H ≈ N × Lf . (b) Underneath the flow tray, N × N magnets separated by Lf on centers are installed in a
checkerboard array with alternating direction of polarity.

II. EXPERIMENTAL METHODS

We utilize an EML system with magnets of alternating polarity in a checkerboard pattern as
described in Fig. 1. We employ two similar setups of different dimensions. The first device features
a tray of 200 × 200 mm2 lying above a square array of 10 × 10 cylindrical neodymium-iron-boron
(NdFeB) grade N52 magnets. The magnets are 12.7 mm in diameter and 3.18 mm in thickness,
the magnetic field near their surface is 0.21 T, and their centers are separated by Lf = 19 mm. The
second device consists of a 320 × 320 mm2 tray above an 8 × 8 array of N52 magnets. These are
30 mm in diameter and 10 mm in thickness, the magnetic field near their surface is 0.26 T, and they
are spaced by Lf = 35 mm. In both devices, copper electrodes are installed at opposite sides of the
tray to apply dc current through a conductive fluid layer, introducing the Lorentz force driving the
flow. During each experiment, we measure a temperature increase due to Joule heating smaller than
1 K, thus the variation in the fluid kinematic viscosity is negligible.

Using both setups, we combine single- and double-layer arrangements and different fluid layer
thicknesses, realizing five different configurations to visit ranges of Re and Reα , as listed in Table II.
As a conductive fluid (subscript “c”), we use a 10% CuSO4 aqueous solution (by mass) with a den-
sity ρc = 1080 kg/m3 and a kinematic viscosity indistinguishable from pure water, νc = 1 mm2/s.
In the immiscible double-layer configurations, FC-770 (3M) is used for the nonconductive layer
fluid (subscript “NC”). Its density (ρNC = 1790 kg/m3) is higher compared to the conductive fluid,
while the kinematic viscosity (νNC = 0.79 mm2/s) is smaller. Therefore, it serves as a lubricating
bottom layer, reducing the friction experienced by the driven fluid and allowing for higher Reα

compared to the single-layer counterpart at comparable Re. Indeed, assuming for simplicity a linear
shear, the friction coefficient can be estimated as α = π2νc/(2h2) for the single-layer setup and
α = (ρNC/ρc)[νNC/(hchNC)] for the double-layer setup, where h is the fluid layer thickness [6]. The
accuracy of this relation in the considered EML systems will be verified in the next section.
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TABLE II. List of the reported experiments.

Configuration Description Fluid(s) α (s−1) Re Reα

SL1 (�) h = 5 mm, Lf = 19 mm CuSO4 (aq) 0.1974 39–371 0.54–5.21
SL2 ( ) h = 5 mm, Lf = 35 mm CuSO4 (aq) 0.1640 156–2025 0.78–10.08
SL3 ( ) h = 10 mm, Lf = 35 mm CuSO4 (aq) 0.0410 127–1573 2.53–31.36
IDL1 ( ) h = 5 + 5 mm, Lf = 35 mm FC-770, CuSO4 (aq) 0.0524 157–858 2.45–13.37
IDL2 ( ) h = 5 + 3 mm, Lf = 35 mm FC-770, CuSO4 (aq) 0.0874 207–1609 1.93–15.02

The fluid is seeded by green fluorescent tracers, illuminated by a blue LED, and imaged
by a FLIR Grasshopper3 camera. To prevent the particles from depositing and sticking on the
bottom tray, in the single-layer configuration we use microspheres with density ρp = 1000 kg/m3

(Cospheric UVPMS-BG-1.00), so that ρp < ρc. In the double-layer configuration we have ρp =
1100 kg/m3 (Cospheric UVPMS-BG1.10), so that ρc < ρp < ρNC and the tracers stay at the in-
terface between both fluids. The particle diameter dp ranges from 75 to 90 µm, ensuring faithful
tracing of the flow. The field of view (FOV) is 140 × 140 mm2 (800 × 800 pixels) for the smaller
device, and 245 × 245 mm2 (1024 × 1024 pixels) for the larger one. Both FOVs span the central
part excluding the peripheral magnets, thus imaging a region where boundary effects are small.
Images are acquired at frequencies ranging between 20 and 62.5 Hz depending on the setup and
flow regime, typically ensuring a particle displacement around 5 pixels. For each investigated case,
we typically track about 5000 particles per frame during a recording time of 100 s.

Eulerian velocity fields are obtained by PIV using an open-source software (PIVlab, [34]) with
a final interrogation window of 16 pixels. Lagrangian trajectories are obtained with a standard PTV
algorithm based on Crocker and Grier [35]. In each run, the PIV and PTV data are derived from
the same image sequence. While it is generally more natural to extract Eulerian quantities from the
former and Lagrangian ones from the latter, all the observables we present can be calculated from
either data set and are found to agree well with each other (see Appendix A). To assess the degree to
which the 2D flow condition is approximated, we quantify the out-of-plane motion by calculating
the normalized divergence from the Eulerian fields [10,11] and find it to be typically smaller than
0.05.

The measurements quantitatively confirm the theoretical relations between the forcing parame-
ters and the Reynolds number Re. This is measured by calculating

urms = 〈u(x, t ) · u(x, t )〉1/2
x,t , (2)

where the subscripts to the angle brackets denote averaging in both space x and time t . Definition
of the Lorentz force (3) and dimensional arguments (4) [36,37] predict Re ∼ J1/2, where J is the
current density:

fb = |J × B|
ρ

=
I

Hh B

ρ
=

I
V/H B

ρ
=

I
V/(NLf ) B

ρ
= NLf IB

ρV
, (3)

fb ∼ u2
rms

Lf
, (4)

Re = urmsLf

ν
≈

⎡
⎣L2

f

ν

(
NB

ρLf

)1/2
⎤
⎦J1/2, (5)

where fb is the Lorentz force per unit mass, I is the applied dc current, H is the lateral size of the
tray, B is the magnetic field strength (the overbar indicating depth average), N is the number of
magnets spaced between both electrodes, and V is the test fluid volume. Figure 2(a) shows that not
only the scaling relations but also the estimated prefactor in (5) apply well to our experiments. For
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FIG. 2. (a) Re determined from root-mean-squared velocity as a function of current density J . Lines
indicate predictions by (5). (b) Range of Re and Reα in this paper. We study 58 cases from five different
configurations. See Table II for explanation of the symbols.

consistency, the same symbols and color codes listed in Table II are used to make a comparison
among results from different configurations.

Both Reynolds numbers can be written explicitly as a function of the forcing parameters:

Re = L3/2
f χ1/2

ν
, (6)

Reα = χ1/2

L1/2
f α

, (7)

where χ = NBJ/ρ (with units of acceleration) is proportional to the forcing amplitude, as defined
for example in [38].

Figure 2(b) displays the 58 investigated cases in the Re-Reα plane. Since the frictional damping
is geometry dependent, so is the ratio between viscous and frictional Reynolds numbers: Reα/Re =
(2/π2)(h/Lf )2 in the single-layer configuration, and Reα/Re = (ρc/ρNC)(νc/νNC)(hchNC/L2

f ) in the
double-layer configuration. Accordingly, using the different setups we can effectively decouple Reα

and Re, which allows us to evaluate their respective effects on the flow behavior.

III. RESULTS

This linear-shear assumption is possibly simplistic in 2D turbulence. Thus, we conduct spin-
down experiments in both the single-layer and the double-layer configurations to determine whether
Reα based on this scenario agrees with the measured value. Following Fang and Ouellette [25], we
realize steady-state flows at varying Reynolds numbers and remove forcing afterward by turning off
the applied current to measure decay of the flows as a function of time. Fang and Ouellette [25]
demonstrated multiple (exponentially) decaying stages in 2D turbulent flows, and also suggested
that the second decay stage be interpreted as a regime of pure 2D turbulence, where energy
is transported from smaller to larger scales and eventually damped by the large-scale frictional
dissipation. Figure 3(a) displays our flow decays over three stages. We fit the data in the second
regime to 〈Ek (t )〉/〈Ek (0)〉 = 〈u2(t )〉/〈u2(0)〉 ∼ exp(−2αt ), to extract α and Reα . Figure 3(b) shows
Reα estimated based on the theory of linear shear (Reα,theory) and the experimentally determined Reα

are indeed in reasonable agreement, with errors mostly lying within 15%. While small bias errors
can occur for the different flow configurations, in Appendix B it is shown that using the measured
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FIG. 3. (a) An example of spin-down experiment. The decaying kinetic energy is normalized by its
steady-state value averaged over 10 s, and the time is normalized by Lf/urms,0, the characteristic eddy turnover
time of the forcing. The red dashed, blue dash-dotted, and magenta dotted lines are exponential fits of three
decaying regimes, with corresponding α = [11.6(Lf/urms,0 )]−1, [38.1(Lf/urms,0 )]−1, and [59.1(Lf/urms,0 )]−1,
respectively. The second decay regime (blue dash-dotted) is taken to calculate α that gives Reα,measurement =
urms,0/(αLf ) = 38.1. (b) Comparison between Reα based on a linear friction damping (Reα,theory) and from the
spin-down experiments (Reα,measured). A black dashed line indicates equivalence.

friction coefficient versus the theoretical estimate leads to the same quantitative results. Therefore,
we simply present Reα,theory as Reα in Table II and below.

A. Eulerian properties

We first consider the visual evidence of the transition to turbulence. In each considered config-
uration, a steady checkerboard array of counter-rotating vortices is observed at low forcing, giving
way to an irregular flow field as Re is increased, as expected. This is illustrated in Figs. 4(a)–4(d) for
the SL2 configuration. However, the transition happens at different Re for different configurations.
Figures 4(e)–4(g) display instantaneous fields of velocity u and vorticity (ω = ∇ × u) of three
different configurations, with similar Re ≈ 245 and increasing Reα . SL2 [Fig. 4(e)] displays a
regular vortex array, although Re is well beyond the range in which several previous studies reported
chaotic or even fully developed turbulence [29–31]; SL1 and IDL1 show a chaotic vortical structure.
Temporal sequences (not shown) confirm that, at this Re, SL2 is at steady state while the other
configurations evolve in time, with larger temporal fluctuations for larger Reα .

These considerations are made quantitative by characterizing the temporal fluctuations of the
velocity field. Applying Reynolds decomposition, we define

〈Etotal〉 = 〈u2(x, t )〉x,t , (8)

〈Emean〉 = 〈〈u(x, t )〉2
t 〉x, (9)

ufluc(x, t ) = u(x, t ) − 〈u(x, t )〉t , (10)

〈Efluc〉 = 〈
u2

fluc(x, t )
〉
x,t . (11)

Following Liao et al. [39], we investigate the partition of the total energy in mean and fluctuating
energy, 〈Etotal〉 = 〈Emean〉 + 〈Efluc〉. Figure 5 quantifies the fraction of the input energy that is
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FIG. 4. Eulerian velocity fields and normalized vorticity maps from SL2 experiment at different Reynolds
numbers, at (a) Re = 241, (b) Re = 361, (c) Re = 588, and (d) Re = 974. In each case, the colormap indicates
[−2ωrms 2ωrms], from blue to red. Instantaneous Eulerian velocity fields and normalized vorticity maps with
Re ≈ 245 and increasing Reα from three different configurations, (e) SL2, Re = 241, Reα = 1.20, (f) SL1,
Re = 247, Reα = 3.46, and (g) IDL1, Re = 248, Reα = 3.86.

transformed into temporal fluctuations, 〈Efluc〉/〈Etotal〉, plotted as a function of both Re and Reα . The
ratio grows for increasing Reynolds number, as expected. It appears to plateau above approximately
0.8, although we cannot conclusively determine whether an asymptote has been reached. Clearly,
while the range of Re for which the plateau is reached is wide (Re ≈ 300–600), the curve collapse
is much better as a function of Reα . Here and in the following, an exponential best fit to the latter
is shown as a solid black curve (reported in Appendix A). A friction Reynolds number larger than
Reα ≈ 5 appears necessary to reach the fully developed state, i.e., a state such that further increase in

FIG. 5. Turbulence intensity defined as the normalized temporal fluctuation of the velocity, as a function
of (a) Re and (b) Reα . A black solid line indicates an exponential best fit. See Table II for explanation of the
symbols.
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FIG. 6. An example of the Eulerian VACF (black) and the Eulerian length scale (LE, red) at Re = 763 and
Reα = 3.80. The mean of the furthest maximum (dashed) and minimum (dash-dotted) of oscillation is taken
as LE. (b) The normalized Eulerian length scales as a function of Re. The example of (a) is indicated with an
arrow. (c) The same quantity as a function of Reα . A solid black curve indicates an exponential best fit. See
Table II for explanation of the symbols.

Reα does not cause major changes in the observable, and an asymptotic behavior is reached around
Reα ≈ 10. We will see how this approximate level holds also for the development of other signature
features of 2D turbulence.

With the flow becoming turbulent, the scales over which the velocity is spatially correlated also
evolve. We define the Eulerian integral scale LE using the velocity autocorrelation function (VACF)
between two points x0 and x0 + L, separated by a distance |L| = L:

�E(L) = 〈u(x0, t ) · u(x0 + L, t )〉x0,L,t

〈u(x0, t ) · u(x0, t )〉x0,t
. (12)

It is conventional to define LE = ∫ ∞
0 �E(L)dL, with the integration extending in practice to sepa-

rations beyond which the integral varies marginally. In the present case, the regularly alternating
vortices are reflected in oscillations of �E(L) and LE(L) even for the largest separations allowed
by the FOV [Fig. 6(a)]. Thus, we take LE to be the average between the furthest maximum and
minimum exhibited by LE(L), with alternative definitions not affecting the conclusions. In Figs. 6(b)
and 6(c) we display LE/Lf as a function of Re and Reα . The ratio grows with increasing forcing: i.e.,
for the same geometric forcing scale, the correlation length scale increases with stronger forcing.
This is consistent with the picture of the inverse energy cascade causing the merging of vortices
into larger structures [4]. Meanwhile, Gallet and Young [40] demonstrated that the two-dimensional
turbulence with an n × n array of alternating body forces results in the local vortex structure with
typical size of n−1 × domain size, comparable to Lf in our system, at high Re. It implies that Lf

will still remain an asymptote for the size of the vortex structure, which can account for a plateau
reached at LE/Lf ≈ 0.4. It is similar to values reported in Faraday-wave-driven turbulence [8,41],
and again the data collapse is much tighter when the data are plotted against Reα .

A fundamental emergent behavior of 2D turbulence is the inverse energy cascade. This is
characterized here by means of the third-order longitudinal structure function which can be written
as SL

3 (r) = 〈δuL(r)3〉, where δuL(r) is the longitudinal velocity difference between two points
separated by a distance of r. In the case of 2D turbulence, SL

3 (r) = 1
8ζνr3 in the range Lν � r � Lf

and SL
3 (r) = 3

2εαr in the range Lf � r � Lα are expected [42], where ζν is the enstrophy dissipation
rate by viscosity and εα is the energy dissipation rate due to large-scale drag, as illustrated in
Fig. 7(a). A positive linear SL

3 (r) in the range Lf � r � Lα was reported in Q2D flows of a soap
film [43] and EML flows [44–47] as an indication of the inverse energy cascade.

Figure 7(b) shows the normalized third-order longitudinal structure function, SL
3 (r)/u3

rms, for
varying Reynolds numbers from SL2 configuration. It clearly demonstrates its transition to the
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FIG. 7. (a) The third-order longitudinal structure function with two scaling ranges (adapted from [42] with
permission). 〈δu3

L〉 ∝ r3 in the smooth enstrophy cascade regime and ∝ r in the inverse energy cascade regime
are expected for the 2D turbulence, where ζν is the enstrophy dissipation rate by viscosity, εα is the energy
dissipation rate due to large-scale drag, lν is the viscous length scale, lin is the scale of forcing, and lα is
the length scale of frictional damping. (b) Normalized third-order longitudinal structure function (〈δu3

L〉/u3
rms)

at varying Reynolds numbers from SL2 configuration. A black dashed line indicates the cubic trend, while
a black dash-dotted line indicates the linear trend. The normalized large-scale frictional energy dissipation
[1.5εα/(u3

rms/Lf )] is calculated by the slope in the range r/Lf = [1.2 1.6], as a function of (c) Re and (d) Reα .
Again, a solid black curve indicates an exponential best fit. See Table II for explanation of the symbols.

positive linear SL
3 (r) for sufficiently high Re. We estimate the normalized energy dissipation rate

due to large-scale drag, 3
2εα/(u3

rmsLf ) from the slope of SL
3 (r)/u3

rms in the range of r/Lf = [1.2 1.6],
and plot it as a function of Re and Reα in Figs. 7(c) and 7(d). Again, it is clear that Reα provides a
closer data collapse than Re, and suggests a level above which the inverse energy cascade ensues.

A final hallmark feature of 2D turbulence we extract from the Eulerian fields is the absence of
intermittency: both velocity fluctuations and velocity differences in the inertial range are expected to
closely follow Gaussian distributions [48–50]. Figure 8(a) shows two probability density functions
(PDFs) of ufluc for two sample cases. The large-Re case approximates well a Gaussian distribution,
while the small-Re case shows long exponential tails. The latter are the reflection of the regular
vortex pattern (featuring marked minima and maxima of velocity at the core and periphery of vor-
tices, respectively); this is distorted and ultimately destroyed with increasing forcing. Figures 8(b)
and 8(c) show the kurtosis of PDF(ufluc); Fig. 8(d) instead shows PDF[δuL(Lf )], where δuL(L) is
the longitudinal velocity difference at separation L, displaying an increasingly Gaussian behavior
for L approaching and exceeding Lf . Figures 8(e) and 8(f) display the kurtosis of PDF[δuL(Lf )],
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FIG. 8. (a) PDF of the fluctuation component of the Eulerian velocity. Re = 241, Reα = 1.20 (blue) and
Re = 2025, Reα = 10.08 (red) cases are included for comparison. (b), (c) Kurtosis of the PDF as a function
of (b) Re and (c) Reα . (d) An example of PDFs of the longitudinal velocity difference at different separations
at Re = 2012, Reα = 10.01. (e), (f) Kurtosis of the PDF as a function of (e) Re and (f) Reα . See Table II for
explanation of the symbols.

with larger separations exhibiting analogous trends. The kurtosis of both classes of distributions is
asymptotic to the Gaussian value of 3 with increasing forcing, again with Reα capturing the universal
trend much better than Re.

B. Lagrangian properties

The signatures of 2D turbulence can be recognized as well in Lagrangian quantities. Visual
evidence of the emergence of turbulent behavior in tracer path lines is provided in Figs. 9(a)–9(c),
which present 200 randomly selected trajectories at increasing Re for the SL2 configuration. For
the same example cases, Fig. 9(d) illustrates the Lagrangian VACF between an initial time t0 and a
generic time t :

�L(t ) = 〈ui(t0) · ui(t0 + t )〉i,t0

〈ui(t0) · ui(t0)〉i,t0

, (13)

where 〈·〉i indicates ensemble averaging over all tracers i. The function oscillates regularly for
relatively small Re, signaling the ordered and periodic behavior, while, for increasing forcing,
it ultimately decays to negligible small values, as the tracers escape coherent vortices, move
chaotically, and forget their previous state.
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FIG. 9. Examples of Lagrangian trajectories. We draw 200 random trajectories with a minimum length of
2ω−1

rms in each case at (a) Re = 241, (b) Re = 456, and (c) Re = 1455. (d) Corresponding temporal Lagrangian
VACFs are included accordingly.

To quantify the rate of Lagrangian dispersion, we consider the displacement r of the ith tracer
from an initial position at time t0, r(t ) = |xi(t0 + t ) − xi(t0)|. We then evaluate the turbulence
diffusivity K from the slope of the mean-squared displacement (MSD):

〈r2(t )〉 = 〈|xi(t0 + t ) − xi(t0)|2〉i,t0 , (14)

K = 1

2

d〈r2(t )〉
dt

, (15)

where the temporal derivative in (15) is calculated in the diffusive regime [26]. Figure 10(a)
displays MSD as a function of time for various Re, illustrating the transition from the ballistic
[〈r2(t )〉 ∼ t2] to the diffusive regime [〈r2(t )〉 ∼ t]. Figures 10(b) and 10(c) show the normalized
turbulence diffusivity plotted against both Re and Reα . The trend reflects the dramatic increase of
the tracers’ ability to disperse as the flow becomes chaotic and turbulent, before reaching a plateau
at K/(urmsLf ) ≈ 0.7. Also for this Lagrangian observable, the friction Reynolds number is much
more conducive to defining a general master curve, compared to its viscous counterpart. Again, the
approximate value Reα ≈ 5 appears as an appropriate level to predict the full development of the
turbulent behavior, and the observable fully plateaus at Reα ≈ 10.

Turbulent dispersion is also commonly characterized by pair statistics, typically via the square
separation between the ith and jth particles, [R(t ) − R0]2 = [|xi(t0 + t ) − x j (t0 + t )| − |xi(t0) −
x j (t0)|]2, where R0 is the initial separation at time t0. Indeed, one of the first experimental
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FIG. 10. Comparison of single particle dispersion rate under different flow conditions. (a) Normalized
MSDs from SL2 configuration. A dash-dotted and dashed line indicate the initial ballistic scaling (∼t2) and the
terminal diffusive scaling (∼t) when K/(urmsLf ) = 1, respectively. Dispersion rates of particles from different
flow geometries are quantified by the normalized turbulent diffusivities, K/(urmsLf ), and they are plotted as a
function of (b) Re and (c) Reα . A solid line indicates an exponentially asymptotic fitted line. See Table II for
explanation of the symbols.

observations of the regime [R(t ) − R0]2 ∼ t3 in the inertial range (famously predicted by Richard-
son [51]) was obtained in Q2D turbulence [52]. To facilitate the characterization of long pair
trajectories over a broad range of separations, we advect imaginary tracers by interpolating the
Eulerian velocity via a fourth-order Runge-Kutta scheme [22,53]. Moreover, to minimize cross-
scale contamination that can affect finite-time statistics, rather than pair separations we consider
the exit time texit required for a pair to reach a separation βR0 [54]. We choose β = 1.1, and
verify that the exact value of the constant does not influence the conclusions. This finite-space
descriptor has reduced contributions from different dispersion regimes, since all considered particle
pairs have narrowly distributed separations, R0 < R < βR0. In 2D turbulence the pair separation
in the dissipative range (R0 � Lf ) grows exponentially [54–56], leading to a constant texit , while it
grows more rapidly in the inertial range (R0 > Lf ), leading to texit ∼ R2/3

0 , as approximately verified
by Rivera and Ecke [22].

FIG. 11. (a) Normalized mean exit time (texitωrms) at varying Reynolds numbers from SL2 configuration.
A dashed line indicates a power-law exponent of 2/3 often expected for R0/Lf > 1 in turbulent flows.
(b), (c) The scaling exponent of the exit time with the initial separation R0, texit ∼ Rγ

0 , calculated in the range
R0/Lf = [0.9 2.0], as a function of (b) Re and (c) Reα . A solid line is an exponential best fit. See Table II for
explanation of the symbols.
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Figure 11(a) displays texit as a function of initial separations for a range of Reynolds numbers in
the SL2 configuration, with texit normalized by the root-mean-square vorticity, ωrms. The exit time
is approximately constant for R0 < Lf , while for larger separations the trend grows steeper. In this
range, for weak forcing texit is closer to a linear relation with the initial separation, which would
correspond to a ballistic pair-separation scaling [R(t ) − R0]2 ∼ t2; for stronger forcing the scaling
texit ∼ R2/3

0 is approached for pair separations. This picture is confirmed in Figs. 11(b) and 11(c),
where we plot the best-fit power-law exponent of texit in the range 0.9Lf < R0 < 2.0Lf for different
configurations. The range of R0 is limited due to the difficulty of tracking pairs within the FOV at
increasingly large separations and longer times, but it still allows us to discern clearly the trend:
while pair dispersion is quasiballistic for the nonturbulent cases, the texit ∼ R2/3

0 regime (denoted
by the dashed line) is approached with increasing Reynolds number. Once again, Reα describes
the behavior remarkably well across different configurations, with relatively small changes beyond
Reα ≈ 5.

IV. DISCUSSION

The previous section has confirmed that Reα has a primary role in determining the emergence
and development of turbulent fluctuations in EML Q2D. This is consistent with the notion that
hallmark turbulent processes, such as the growth of the fluctuating energy, the energy cascade,
and turbulent dispersion, acquire their self-similar character over the inertial range Lf � L � Lα ,
whose extent is quantified by Reα . Two clarifications are in order. First, the present analysis does
not address the hydrodynamic instabilities that lead to periodic, nonperiodic, or chaotic motion
[57], but rather considers observables commonly used to identify and characterize turbulent flows.
Therefore, we make no claim on whether Re or Reα is the most appropriate parameter for the
characterization of those instabilities. Second, we have focused on essential but specific aspects of
2D turbulence, in particular those primarily associated to the energetic scales. If one focuses on
small-scale processes such as vorticity gradient stretching, which takes place over the enstrophy
cascade range, Lν � L � Lf [58,59], the conclusions may change.

We have presented and compared results from separate experiments, in each of which (local)
Re and Reα are always positively correlated. To further corroborate our findings, we apply a
simple modification to the EML system which causes Re and Reα to vary spatially in opposite
directions: we create a wedge-shaped double-layer configuration with varying depth by placing a
spacer under one side of the flow tray as illustrated in Fig. 12(a). The bottom lubrication layer
has linearly increasing thickness along the x direction from 2 to 8 mm, while the top conductive
layer thickness remains constant at 2 mm. On the one hand, considering mass balance across the
yz plane, ux(x)Ayz(x) = ux(x)[Hh(x)] = const, one can expect ux(x) to be inversely proportional to
h(x) which is linearly increasing with x. Consequently, Re is greater at the thinner layer (smaller
x) and smaller at the thicker layer (greater x). On the other hand, Reα ∝ urms/α ∝ urmsh2, so Reα

is expected to decrease with increasing x. Figure 12(b) shows that Re and Reα exhibit the exactly
opposite behaviors over x as intended, and Fig. 12(c) evidently indicates that turbulent flow appears
in the high Reα or low Re zone rather than the high Re or low Reα zone. Figures 12(c) and 12(d)
map joint PDFs of the local turbulent intensity versus Re and Reα in each grid position, respectively.
While the local turbulence intensity is correlated with Re either weakly or even negatively, it appears
positively correlated with local Reα . Moreover, the joint PDF peaks in Fig. 12(d) agree well with the
asymptotic relation (black dashed) that we already observed in Fig. 5(b), which undoubtedly proves
that Reα rather than Re should play a key role in emergence of the EML Q2D turbulent flows.

The primary role of Reα over Re is also consistent with the fact that, in Q2D flows moving over
a boundary, the bottom friction (expressed over the entire domain footprint) naturally dominates
over viscous dissipation (expressed mostly in the high-strain filaments within the fluid layer). From
the very definition of Re and Reα , the ratio of Rayleigh friction forces over viscous forces scales
as Re/Reα , which for a single-layer setup is approximately (π2/2)(Lf/h)2. The requirement of a
relatively thin layer to reach the Q2D condition (e.g., Lf/h > 3 in our experiments) implies that this
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FIG. 12. Results from a tilted tray experiment. (a) By placing a spacer under the tray, the bottom layer
(FC-770) thickness increases linearly over x from 2 to 8 mm, while the top layer [CuSO4(aq)] thickness is
maintained at 2 mm. Note that it is not drawn to scale but exaggerates the fluid depth variations as a visual aid.
(b) y-averaged Re (blue dashed) and Reα (red) as a function of x position. (c) A snapshot of Eulerian velocity
and vorticity maps. (d), (e) A joint PDF of turbulence intensity vs (d) Re and (e) Reα . A black dashed line is
the exponential best fit taken from Fig. 5(b).
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FIG. 13. (a) The root-mean-squared vorticity vs the root-mean-squared velocity. A dashed line indicates
ωrms = 4urms/Lf . (b) The fraction of energy dissipation by friction as a function of an effective aspect
ratio (Lf/hm), where hm = h for a single-layer and (hchNC)1/2 for a double-layer setup. The lines represent
predictions based on ωrms = 4urms/Lf . The black dashed line represents a single-layer configuration, while
the red dash-dotted line corresponds to an immiscible double-layer configuration with a density ratio of 1.66,
which matches our choice of fluids. See Table II for explanation of the symbols.

ratio be at least O(10), which is indeed the case in the current paper where the ratio lies between 60
and 240. Similar considerations apply to double-layer setups for practically usable pairs of fluids.
The above indicates that input forcing and friction damping will dominate over viscous dissipation
in the energy balance. The quantitative fraction of the energy transfer rate associated with each
dissipative process is not known a priori. However, the 2D turbulence scaling εν ≈ νω2

rms, εα ≈
αu2

rms, and ωrms ∼ urms/Lf [6,26] suggest that such fraction may be reliably estimated. Here we
posit that the flow in the Q2D EML system can be described, in first approximation, as an ensemble
of solid-body vortices of diameter Lf and tangential velocity urms along the perimeter. The vorticity
associated to each vortex is then ω = 4urms/Lf . Figure 13(a), plotting ωrms versus urms/Lf for all
the considered cases, demonstrates that not only the scaling but also the geometric prefactor hold
remarkably well across the entire range of our data sets, and (perhaps surprisingly) even for the fully
turbulent cases. This leads to

εα

εν

≈ αu2
rms

νω2
rms

≈ αL2

16ν
(16)

or, for a single-layer configuration,

εα

εν

≈ π2

32

(
Lf

h

)2

, (17)

and for a double-layer configuration, introducing hm = (hchNC)1/2,

εα

εν

≈ 1

16

(
ρNC

ρc

)(
Lf

hm

)2

. (18)

These relations suggest that the fraction of energy dissipation by friction depends on an (effec-
tive) aspect ratio of the Q2D geometry. With the quantitative estimate of the prefactor we see that,
if we take for example Lf/h ≈ 3 as the minimum requirement for a single-layer Q2D geometry,
such a ratio ≈2.78 at least. Thus, the fraction of energy input dissipated by viscosity, εν/(εν + εα ),
is only about 1/4 at most. Again, similar considerations apply to double-layer systems. We stress
that this quantitative estimate is made possible by the quantitative agreement in Fig. 13(a), which
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FIG. 14. Normalized exponential fitting functions vs Reα . See Appendix C for each function.

demonstrates the validity of the prefactor 4 in the vorticity scaling. The relation can be inverted, to
determine the aspect ratio needed to reach a prescribed fraction of frictional dissipation as shown in
Fig. 13(b).

Based on the results above, Fig. 14 summarizes asymptotic behaviors of the tested variables
as Reα increases. The chosen exponential fit is of the type a + b exp(−Reα/c), where c naturally
characterizes the exponential approach to the asymptote. Note that c ≈ 5 for the slowest converging
quantity (LE). Here, each exponential best-fit function listed in Appendix C is further normalized
such that it starts from zero at Reα = 0 and asymptotically approaches 1 as Reα → ∞, for fair
comparison among different observables. Other forms of the trend line, such as power laws, do not
provide equally good fit to the data, as shown in Appendix D. At Reα ≈ 5, all attain over 80%
of the plateau value except for LE which achieves about 60% of the asymptotic limit. The slower
evolution of LE could be attributed to the local vortex structures with typical size of Lf surviving
even at high flow rate limit [40]. At Reα ≈ 10, more than 95% of the limit is attained by six of
seven observables, while even the slowest evolving LE reaches 85% of the plateau. Based on the
trend, for the considered class of flows, at least Re ≈ 5 is found to be a necessary condition for
the full development of two-dimensional turbulence, though the asymptotic behavior is approached
only above Re ≈ 10. We remark that these do not constitute critical thresholds, as the observables
are found to smoothly and exponentially approach the asymptotic values.

V. CONCLUSIONS

We have used two setups and five Q2D EML configurations to experimentally investigate the
emergence and development of 2D turbulence in 58 different experiments, over a wide range of Re
and Reα . The main conclusions of this paper can be summarized as follows.

(1) All considered turbulence quantities (Eulerian and Lagrangian, single-point and two-point
statistics) collapse on master curves against Reα spanning over two decades and across different
flow configurations (single-layer, miscible and immiscible double-layer).

(2) The friction coefficient α can be estimated with reasonable accuracy via a simple linear shear
assumption, allowing us to readily evaluate Reα . On the other hand, for the type of systems we
considered (the most common in laboratory studies of 2D turbulence) even Re = 1000 may not be
sufficient to reach fully developed turbulence. In fact, there is no direct connection between Re and
the growth of the turbulent kinetic energy in this class of flows, as shown by dedicated experiments
that decouple both Reynolds numbers. Therefore, in studies focused on the inverse energy cascade
subrange, it is crucial to measure (or estimate) and report Reα .

094601-17



SHIN, COLETTI, AND CONLIN

(3) Not all quantities approach the fully developed or asymptotic state of turbulence equally
fast, the kurtosis being the fastest to approach a Gaussian behavior, with the Eulerian integral scale
being the slowest to reach an asymptotic state. This indicates that multiple observables should be
considered to establish whether the fully developed turbulence state has been reached.

(4) The approach to the asymptotic values of the various quantities is well described by an
exponential curve, which does not suggest a sharp transition over a critical threshold. Based on
the observations, we propose Reα ≈ 5 as a necessary condition for fully developed turbulence in
this class of laboratory flows, while the asymptotic state is approximately reached for Reα ≈ 10.
Further studies are warranted to clarify whether such levels can be applied to other laboratory Q2D
flow or to computational setups.

(5) For the considered EML systems, the scaling of the rms vorticity indicates that the velocity
field can be rationalized as a superposition of solid-body vortices of diameter Lf and azimuthal
velocity urms. This leads to a simple expression for the fraction of the energy input transported to
the larger scales. This fraction is at least 3/4 for typical EML systems in which Lf/h > 3.

We remark that the condition Reα ≈ Lα/Lf ≈ 5 still warrants only a limited scale separation,
which is likely to inhibit the inverse energy cascade [59]. Indeed our results do indicate that larger
values do produce some evolution of the observables in the range Reα ≈ 5–10. However, those
changes are marginal compared to the dramatic transformations undergone by the flow in the range
Reα ≈ 0.5–5.

The importance of Reα in determining the emergence and development of the turbulence does not
imply Re has a negligible role in defining the flow properties. On one side, Re sets the extent of the
enstrophy cascade subrange. On the other hand, the fraction of the energy input transported to the
larger versus the smaller scales is set by the ratio Reα/Re. Therefore, the full definition of the system
requires specifying both parameters. In fact, some of the scatter when plotting the observables versus
Reα may depend on Re effects which are not accounted for by the simple functional dependence.

While the present conclusions are based on Q2D flow in EML systems, their applicability to
other 2D turbulence setups is supported by the different configurations investigated, the wide range
of Eulerian and Lagrangian observables considered, and the generality of the physical arguments.
Further studies, however, are warranted to extend these quantitative findings to other realizations
of 2D turbulence. Moreover, while we have only considered observables associated to the velocity
field, it will be important to verify whether the proposed level for Reα also applies to turbulent scalar
fluxes, which also obey inertial-range scaling [60].

APPENDIX A

In all experiments, both PIV and PTV analyses were conducted using the same image sequence.
The Eulerian observables obtained from each analysis exhibit strong quantitative agreement. As
an illustrative example, we present the Eulerian VACF in Fig. 15. Notably, the results are nearly
identical, with the only distinction being that the PIV-derived data possess a lower spatial resolution
due to the limitations imposed by the PIV grid size.

APPENDIX B

We conducted a spin-down experiment to estimate the friction coefficient by observing the
decay of mean kinetic energy (Fig. 3). Prior to discontinuing the forcing, we ensured that the
flow had attained a steady state, enabling us to calculate the turbulence intensity for each case.
Figure 16 presents the turbulence intensity as a function of Reα determined from the spin-down
experiment. Notably, the exponential best fit obtained from Fig. 5(b) based on the theoretically
derived Reα still accurately depicts the transition even when using the measured Reα . Therefore,
we believe that our utilization of Reα based on a rather simplistic linear friction damping is well
founded.
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FIG. 15. Comparison of the Eulerian VACF derived from PTV and PIV analyses applied to the same image
sequence acquired from the SL2 configuration at Re = 673. The Eulerian VACF demonstrates nearly identical
behavior irrespective of whether it is obtained from PTV or PIV.

APPENDIX C

We provide exponential best-fit functions imposed on data plotted against Reα , in Figs. 5(b), 6(c),
7(d), 8(c), 8(f), 10(c), and 11(c), respectively:

〈Efluc〉/〈Etotal〉 = 0.853 − 1.13 exp(−Reα/3.18), (C1)

LE/Lf = 0.407 − 0.219 exp(−Reα/5.33), (C2)

3
2εα/

(
u3

rms/L f
) = 0.176 − 0.331 exp(−Reα/2.40), (C3)

Kurt[uf ] = 3.03 + 13.0 exp(−Reα/0.791), (C4)

Kurt[δuL(Lf )] = 2.99 + 41.3 exp(−Reα/0.468), (C5)

K/(urmsLf ) = 0.793 − 0.572 exp(−Reα/3.26), (C6)

γ = 0.647 + 0.298 exp(−Reα/3.14). (C7)

We have proposed exponential fitting functions to describe the asymptotic transitions of the
tested observables and the development of 2D turbulence, which are provided in Appendix C. We
attempted various forms of trend line fits, including power laws of the form a + b|Reα − c|n, where
c represents a critical onset of development. However, these fits appeared to be inferior to the best
exponential fits we present as seen in Fig. 17.

FIG. 16. The steady-state turbulence intensity prior to each spin-down experimental condition as a function
of the measured Reα . Each data point was obtained at the steady state prior to the spin-down experiment
corresponding to Fig. 3(b). A black solid line taken from Fig. 5(b) is added for comparison.
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FIG. 17. Comparison between the best exponential fit (black solid line) and a power-law fit (red dash-dotted
line) for (a) the turbulence intensity and (b) the Eulerian integral scale. The exponential fit is provided in
Appendix C. The power-law fit follows the form a + b|Reα − c|n. See Table II for explanation of the symbols.
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