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Vortex core radius in baroclinic turbulence:
Implications for scaling predictions
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We revisit the vortex gas scaling theory for heat transport by baroclinic turbulence
based on the empirical observation that the vortex core radius departs from the Rossby
deformation radius for very low bottom drag coefficient. We derive a scaling prediction for
the vortex core radius. For linear bottom drag this scaling dependence for the vortex core
radius does not affect the vortex gas predictions for the eddy diffusivity and mixing length,
which remain identical to those in Gallet and Ferrari [Proc. Natl. Acad. Sci. USA 117, 4491
(2020)]. By contrast, for quadratic drag the scaling dependence of the core radius induces
new scaling laws for the eddy diffusivity and mixing length when the quadratic-drag coef-
ficient becomes asymptotically low. We validate the modified scaling predictions through
numerical simulations of the two-layer model with very low quadratic-drag coefficient.
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I. INTRODUCTION

The large-scale oceanic currents and atmospheric jets are in thermal wind balance with merid-
ional buoyancy gradients. This configuration is subject to the baroclinic instability and rapidly
evolves into a turbulent flow that enhances buoyancy transport in the meridional direction. The
simplest model for such baroclinic turbulence is the two-layer quasigeostrophic model (2LQG), put
forward by Phillips in 1954 [1]. The model has been extensively described in the literature [2–14]
and we only recall its main characteristics. Two immiscible layers of fluid sit on top of one another,
with the lighter fluid in the upper layer. Considering (potential) temperature as the single stratifying
agent for simplicity, we assume that the upper-layer fluid has a uniform temperature that is higher
than the uniform temperature of the lower-layer fluid. We restrict our attention to layers that have
equal depths in the rest state [2]. The system is subject to rapid global rotation along the vertical
direction, and fluid motion within the two shallow layers is governed by quasigeostrophic (QG)
dynamics [15–17]. We consider a base state where the velocity in the upper layer is Uex, while the
velocity in the lower layer is −Uex. We denote with a subscript 1 (respectively, 2) quantities in the
upper (respectively, lower) layer. The departure horizontal velocity in each layer is u1,2(x, y, t ) =
−∇ × [ψ1,2(x, y, t )ez]. The flow evolution within each layer is governed by the conservation of
potential vorticity q1;2 within each layer. However, an insightful change of variables consists in
introducing the barotropic streamfunction ψ = (ψ1 + ψ2)/2, which represents the streamfunction
of the vertically averaged flow, and the baroclinic streamfunction τ = (ψ1 − ψ2)/2 which, despite
having dimension of a streamfunction, will be referred to as the “temperature” variable. Indeed,
as discussed, e.g., in Ref. [13], the total baroclinic streamfunction (base state plus perturbation)
−Uy + τ (x, y, t ) is a direct proxy for the vertically averaged temperature of the fluid column located
at position (x, y).
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We include two kinds of dissipative processes: hyperdiffusion with a hyperdiffusivity ν to damp
small-scale potential enstrophy in both layers, together with a bottom drag term in the lower layer to
damp the kinetic energy produced by baroclinic instability. The governing equations for ψ (x, y, t )
and τ (x, y, t ) finally read

∂t (∇2ψ ) + J (ψ,∇2ψ ) + J (τ,∇2τ ) + U∂x(∇2τ ) = −ν∇10ψ + drag/2, (1)

∂t [∇2τ − λ−2τ ] + J (ψ,∇2τ − λ−2τ ) + J (τ,∇2ψ ) + U∂x[∇2ψ + λ−2ψ]

= −ν∇8[∇2τ − λ−2τ ] − drag/2, (2)

where J ( f , g) = ∂x( f )∂y(g) − ∂y( f )∂x(g), λ denotes the Rossby deformation radius, and “drag”
denotes the drag term included in the lower-layer potential vorticity equation:

drag =
{−2κ∇2ψ2 for linear drag
−μ[∂x(|∇ψ2|∂xψ2) + ∂y(|∇ψ2|∂yψ2)] for quadratic drag,

(3)

where κ and μ denote the linear and quadratic-drag coefficients, respectively.
We are interested in the solutions to Eqs. (1) and (2) inside a domain (x, y) ∈ [0, L]2 with periodic

boundary conditions in the horizontal directions, in the regime where L is sufficiently large and ν is
sufficiently small for the transport properties of the flow to be independent of these two parameters.
Sufficiently small ν ensures that the energy dissipation is due to friction in the lower layer, the
small-scale hyperdiffusive damping operator having a negligible contribution to the energy power
integral. Large enough domain size L ensures that the flow selects its own large scale through a
balance between inverse energy transfers and frictional dissipation, the latter emergent scale being
much smaller than L. In other words, a large enough domain prevents any condensation of the
energy into a single coherent vortex dipole [18,19]. From a practical point of view and anticipating
the results below, independence of the transport properties with respect to the domain size L arises
when the latter is greater than approximately six times the mixing-length estimate �2 (the typical
intervortex distance of the flow; see below).

We wish to characterize the transport properties of the flow as functions of the weak bottom drag
coefficient κ or μ. Denoting a time and horizontal area average as 〈·〉, the key quantity of interest is
the eddy-induced diffusivity D = 〈τ∂xψ〉/U , where 〈τ∂xψ〉 denotes the meridional heat flux, and U
is minus the meridional background temperature gradient (i.e., the background gradient of the total
baroclinic streamfunction; see above). Nondimensionalizing time and space using the background
flow velocity U and the Rossby deformation radius λ, we seek the dependence of the dimensionless
diffusivity D∗ = D/(Uλ) on the dimensionless friction coefficient κ∗ = κλ/U or μ∗ = μλ.

Following Phillips, various authors have investigated these transport properties with or without
the inclusion of a planetary vorticity gradient β. The traditional approach consists in invoking
standard Kolmogorov cascade arguments [2–5,11,14,20]. However, for low drag coefficient it was
recently realized by Thompson and Young (Ref. [9]; TY in the following) that the flow consists in a
dilute gas of intense vortices that is maybe better described in physical space than in spectral space.
Gallet and Ferrari further built on this empirical observation to derive a quantitative theory for the
diffusivity and mixing length, coined the vortex gas scaling theory (Ref. [12]; GF in the following).
The vortex gas theory leads to scaling predictions that agree better with the numerical data than
cascadelike predictions [5]. The vortex gas predictions have been subsequently extended to the β

plane [13], and they have been shown to carry over to a fully three-dimensional Eady system with
linear bottom drag [21].

As discussed in Ref. [20] and as can be seen in GF, while the vortex gas predictions are in
excellent agreement with the numerical data for linear bottom drag, the agreement is slightly less
satisfactory for quadratic bottom drag. More importantly, the agreement does not seem to improve
as the quadratic bottom drag coefficient is further reduced, which questions the validity of the theory
for asymptotically weak quadratic bottom drag. In this article we refine the vortex gas theory in a
way that better captures this very low quadratic-drag regime.
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FIG. 1. In the vortex gas theory, the barotropic flow is described as a gas of idealized vortices of circulation
±
, with identical core radius rcore. The temperature field retains large values in the intervortex region, whereas
the barotropic vorticity vanishes outside the vortex cores in this idealized picture. The typical magnitude of the
core vorticity and temperature are denoted as ζcore and τcore, respectively. The typical intervortex distance is �iv ,
and the vortex cores wander around with a typical velocity V ∼ 
/�iv as a result of mutual induction.

II. KEEPING AN ARBITRARY VORTEX CORE RADIUS IN THE VORTEX GAS THEORY

We briefly recall the scaling arguments of the vortex gas theory. The barotropic vorticity field
is represented schematically as a dilute ensemble of vortices with circulation ±
 (see Fig. 1). The
typical intervortex distance is denoted as �iv , and the various vortex cores move as a result of mutual
induction with a typical velocity V ∼ 
/�iv . While GF readily assume that the vortex core radius is
of order λ, in the present section we retain an arbitrary vortex core radius rcore, which we write in
dimensionless form as r∗ = rcore/λ. The typical barotropic vorticity and temperature within a vortex
core are denoted as ζcore and τcore, where ζ = �ψ is the barotropic vorticity.

The vortex gas theory describes the dilute regime where �iv � rcore. In line with the schematic
in Fig. 1, the barotropic vorticity is assumed to be nonzero inside the vortex cores only. By contrast,
the theory assumes that the temperature field has significant fluctuations between the vortices. GF
thus characterize transport by the vortex gas based on the strongly idealized situation of a single
self-advecting vortex dipole. The dipole consists of two vortices spinning in opposite directions with
circulations ±
. The vortices are separated by a distance �iv , and the dipole translates at constant
speed 
/�iv as a result of mutual induction. Together with such translating motion, the dipole
induces and advects intervortex temperature fluctuations. Through simulations of this idealized
process, GF obtained the following scaling relation for the associated transport:

D ∼ �ivV, (4)

which does not involve rcore. The theory is complemented by two energetic arguments. The first
energetic argument is referred to as a “slantwise” free-fall argument in GF; consider the motion
of a fluid column in the intervortex region, described in a similar fashion to the kinetic theory of
gases. The column is initially at rest and it travels freely over a mean free path comparable to
the intervortex distance �iv , converting potential energy into kinetic energy [22]. Equating the initial
potential energy with the final kinetic energy leads to the scaling relation V/U ∼ �iv/λ, which using
(4) can be recast as

D∗ ∼ (�iv/λ)2. (5)

The second energetic argument is based on the energy power integral of the system. That is, time
averaging the energy evolution equation shows that the averaged power released by baroclinic
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instability equals the averaged dissipated power. Because we focus on very low hyperdiffusivity,
energy dissipation is due almost entirely to bottom friction and the power integral is approximated
by

DU 2

λ2
=

{
κ〈u2〉 for linear drag
μ

2
〈|u|3〉 for quadratic drag.

(6)

The left-hand side corresponds to the rate of release of potential energy by baroclinic instability. On
the right-hand side is the frictional dissipation rate of kinetic energy. Strictly speaking, because the
drag force acts in the lower layer, the lower-layer velocity u2 should appear on the right-hand side
of (6). However, because the low drag flows are predominantly barotropic, we have replaced the
lower-layer velocity u2 by the barotropic velocity u = −∇ × (ψez ). The moments of the barotropic
velocity field appearing in (6) are estimated using the idealized picture of an isolated vortex located
at the center of a disk of radius �iv . Because the vortex is isolated, one obtains the moments
of velocity field by averaging some power of the vortex velocity field over the disk of radius
�iv . Outside the vortex core the azimuthal velocity of the vortex is ±
/(2πr), with r the radius
coordinate from the center of the vortex. Spatial averaging over the disk of radius �iv then leads to

〈u2〉 ∼ 1

�2
iv

∫ �iv

rcore


2

r
dr ∼ V 2 log

(
�iv

rcore

)
, (7)

〈|u|3〉 ∼ 1

�2
iv

∫ �iv

rcore


3

r2
dr ∼ V 3 �iv

rcore
. (8)

The scaling predictions are obtained by combining relations (4)–(6), where the right-hand side of
(6) is estimated using (7) or (8). This leads to an expression for the dimensionless diffusivity D∗ in
terms of the dimensionless core radius r∗ and friction coefficient κ∗ or μ∗:

D∗ ∼ r2
∗ exp

( C
κ∗

)
for linear drag, (9)

D∗ ∼ r∗
μ∗

for quadratic drag, (10)

where C is a constant coefficient.

A. The assumption of GF: r∗ ∼ 1

GF assume that in the strongly turbulent regime the vortex cores retain the typical scale λ at
which baroclinic instability generates flow structures in the linear regime. This assumption leads to
rcore ∼ λ, that is, r∗ ∼ 1. Substitution into (9) and (10) leads to the scaling predictions put forward
in GF:

D∗ ∼ exp

( C
κ∗

)
for linear drag, (11)

D∗ ∼ 1

μ∗
for quadratic drag. (12)

B. Immunity of the linear-drag predictions to the core-radius dependence

The goal of the present study is to revisit the assumption rcore ∼ λ. Indeed, the literature on
vortex gas dynamics indicates that the core radius can become much greater than λ as the inverse
energy transfers proceed. As a matter of fact, TY report that the vortex core radius is greater than λ.
Phenomenological models based on vortex gases with merger events also lead to a vortex core radius
that is greater than the scale at which energy is input, or the typical core radius of the initial condition
in freely decaying situations [23,24]. The vortex core radius increases as the inverse energy transfers
proceed, and r∗ thus increases with �iv/λ, or equivalently with D∗ ∼ (�iv/λ)2. In Sec. II D we
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introduce scaling arguments that lead to r∗ ∼ Dα
∗ with α = 1/4. Keeping the general power-law

ansatz r∗ ∼ Dα
∗ for now, one can check that the GF scaling predictions for linear bottom drag are

immune to the vortex core-radius correction. Indeed, substitution of r∗ ∼ Dα
∗ into (9) leads to an

expression identical to (11) where the coefficient C is replaced by C̃ = C/(1 − 2α). Because C is an
adjustable coefficient of the theory, so is C̃ and the scaling predictions are exactly identical to those in
GF. This robustness of the linear-drag predictions with respect to the vortex core-radius dependence
explains the excellent agreement between the numerical data and the linear-drag prediction in GF,
despite the rather crude assumption r∗ ∼ 1 made by GF.

C. Impact of the core-radius dependence on the quadratic-drag scaling predictions

In contrast with the linear-drag case, the quadratic-drag predictions are strongly impacted by the
vortex core-radius scaling exponent. Substitution of the power-law ansatz r∗ ∼ Dα

∗ into (10) leads
to the scaling prediction:

D∗ ∼ μ1/(α−1)
∗ . (13)

For α = 0 the prediction above reduces to the GF prediction (12). However, for α �= 0 the power-law
exponents depart from the GF values and explicitly depend on α. In the following we derive a
prediction for the exponent α based on scaling arguments.

D. A scaling prediction for the vortex core radius: α = 1/4

To determine the vortex core radius, we first estimate the core vorticity ζcore. Neglecting the
dissipative effects, we invoke the material conservation of the total potential vorticity within each
layer, q1 + Uy/λ2 in layer 1 and q2 − Uy/λ2 in layer 2. With a mean free path of order �iv in the
meridional direction, the fluctuations of q1;2 are estimated as q1;2 ∼ U�iv/λ

2. The temperature field
τ has a typical scale �iv in the intervortex region and rcore inside the vortex cores. In the limit �iv � λ

and r∗ � 1 of interest here, these scales are much greater than λ. We conclude that the term �τ can
be neglected in the expressions of q1;2, which reduce to

q1 = �ψ1 + ψ2 − ψ1

2λ2
= �(ψ + τ ) − τ

λ2
	 ζ − τ

λ2
, (14)

q2 = �ψ2 + ψ1 − ψ2

2λ2
= �(ψ − τ ) + τ

λ2
	 ζ + τ

λ2
. (15)

The total QGPV being a material invariant within each layer, q1 and q2 retain the same order of
magnitude U�iv/λ

2 outside and inside the vortex cores (consider, for instance, a fluid particle of
layer 1 that lies outside a vortex core at some initial time and inside a vortex core at some subsequent
time, conserving its potential vorticity). Within a vortex core, the approximate expressions (14) for
q1 and (15) for q2 yield, respectively,

ζcore − τcore/λ
2 ∼ U�iv/λ

2, (16)

ζcore + τcore/λ
2 ∼ U�iv/λ

2. (17)

Summing these two estimates finally leads to ζcore ∼ U�iv/λ
2. We recast this expression for ζcore into

an expression for the vortex core radius rcore by expressing the vortex circulation as 
 ∼ ζcorer2
core

with 
 ∼ �ivV ∼ U�2
iv/λ. Substituting the estimate for ζcore finally leads to

r∗ ∼ D1/4
∗ , (18)

that is, α = 1/4. As discussed in Secs. II B and II C this nonzero value for α does not affect the
scaling predictions for linear drag, but it does modify the scaling exponent of D∗ in the case of
quadratic drag, which following (13) becomes

D∗ ∼ μ−4/3
∗ . (19)
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FIG. 2. Proxies (rn)n∈{2,4,6,8,10} for the vortex core radius, as functions of the dimensionless diffusivity D∗.
All the proxies with n > 2 are in excellent agreement with the scaling prediction (18), as illustrated by the
compensated plots on the right-hand side.

III. NUMERICAL ASSESSMENT OF THE MODIFIED SCALING PREDICTIONS

To investigate the validity of the new scaling prediction (19) we have performed numerical sim-
ulations of the system over an extended range of quadratic drag μ∗ ∈ [10−4, 1]. The hyperviscosity
coefficient is set at ν/(Uλ7) = 10−13, which allows us to reach the very low drag regime while
remaining close enough to the ν-independent regime (we have estimated that the values of D∗
reported here are typically 25% lower than their ν → 0 limit). Additionally we make sure that
the domain is large enough for D∗ to be close enough to its asymptotic value for an infinite domain
(we have estimated that the values reported here are within 10% of their L → ∞ asymptotic limit).

A. Core-radius dependence

With the goal of testing the scaling prediction for the vortex core radius, we first extract the
various moments of the barotropic vorticity field, ζn = 〈ζ n〉1/n. Based on the idealized vortex gas
picture of Fig. 1, where ζ = ζcore within the vortex cores and ζ = 0 outside, these moments are
estimated as

ζn ∼
(

ζ n
core

r2
core

�2
iv

)1/n

∼ ζcorer2/n
∗ D−1/n

∗ ∼ U

λ
r2[(1/n)−1]
∗ D1−(1/n)

∗ , (20)

where we have used (5) for the second equality and D ∼ �ivV ∼ 
 ∼ ζcorer2
core to express ζcore in

terms of D∗ and r∗ and obtain the last equality. From the estimate (20) we define a proxy rn for the
dimensionless vortex core radius r∗ associated with the nth moment of the barotropic vorticity:

rn =
(

λζn

U

)n/[2(1−n)]

D1/2
∗ . (21)

To investigate the scaling behavior of the typical vortex core radius rcore in the numerical simula-
tions, we show in Fig. 2 the proxies rn for n ranging from 2 to 10. The proxies are plotted as functions
of D∗ to investigate the validity of the scaling prediction (18). We observe that the proxies for n > 2
are in excellent agreement with this scaling prediction, with r2 displaying a slightly weaker scaling
exponent. This may be an indication that the scaling theory provides a good description of the
strongest vortices that populate the barotropic flow. In other words, the idealized identical vortices
in Fig. 1 should be thought of as the strongest vortices of the barotropic flow. The sea of weaker
vortices that coexists with these strong isolated vortices only affects the low-order moment ζ2, and
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FIG. 3. Diffusivity D∗ as a function of the quadratic-drag coefficient μ∗. The data points are in reasonable
agreement with the GF prediction (12) for moderately low drag. For asymptotically low drag they switch to the
scaling behavior (19), as illustrated by the compensated plots on the right-hand side.

thus r2. By contrast, higher-order moments are predominantly sensitive to the strong vortices and
display good agreement with the vortex gas scaling prediction.

B. Diffusivity

Having validated the scaling exponent α = 1/4 for the vortex core-radius dependence, we plot in
Fig. 3 the eddy-induced diffusivity D∗ as a function of the quadratic-drag coefficient μ∗ in the very
low drag regime. We also provide plots of D∗ compensated by the GF prediction (12) and by the new
prediction (19) obtained by including the scaling dependence of the vortex core radius. While the
data agree reasonably with the GF prediction for moderately low drag, say μ∗ ∈ [3 × 10−3, 0.3],
they depart from it for an even lower drag coefficient. In the very low drag asymptotic regime,
which begins around μ∗ � 3 × 10−3, the numerical values of D∗ are in excellent agreement with
the modified scaling prediction (19), with a best-fit exponent D∗ ∼ μ−1.303

∗ . One can check that this
range of μ∗ is also where the vortex core-radius scaling prediction is accurately satisfied (see Fig. 2).

C. Intervortex distance and mixing length

The present theory also provides a modified scaling prediction for the dependence of the
intervortex distance on quadratic drag. Combining (5) with (19) leads to

�iv

λ
∼ μ−2/3

∗ . (22)

As for the core radius, various proxies can be defined for the intervortex distance, this time
based on the various moments τn = 〈|τ |n〉1/n of the temperature field τ . Following TY, GF used
a dimensionless mixing length �2 = τ2/(Uλ) as a proxy for the intervortex distance (�2 is denoted
as �∗ in GF). This is arguably the simplest characteristic length associated with the fluctuating
temperature field. In Fig. 4 we show that the scaling dependence of �2 with μ∗ is indeed reasonably
well captured by the scaling prediction (22), which in the very low drag regime constitutes an
improvement as compared to the GF prediction �iv/λ ∼ μ

−1/2
∗ . That being said, the scaling exponent

of �2 with μ∗ is slightly shallower than −2/3 over the last decade in μ∗, with a best-fit exponent of
the order of −0.56. The agreement remains very satisfactory and may improve as one reaches even
lower values of the drag coefficient. However, as discussed above, the idealized vortex gas picture
seems to describe predominantly the strongest vortices within the barotropic flow. This leads one
to define the alternate proxy �∞ = τ∞/(Uλ), which may be more directly related to the typical
intervortex distance �iv than �2. Indeed, τ∞ = limn→∞ τn is the infinite norm (the time average of
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FIG. 4. The two proxies �2 and �∞ for the intervortex distance as functions of the quadratic-drag coefficient
μ∗. The agreement with the scaling prediction (22) is very good in the asymptotically low drag regime, as
illustrated by the compensated plots on the right-hand side.

the maximum over x and y of the absolute value) of the temperature field τ . It thus senses the
core temperature of the strongest vortex inside the domain, providing a proxy for the typical core
vorticity τcore of the vortex gas. Subtracting the two estimates (16) and (17) then readily leads to
τcore/λ

2 ∼ U�iv/λ
2, which using τcore ∼ τ∞ can be recast as

�∞ ∼ �iv

λ
. (23)

That is, we expect the proxy �∞ to faithfully obey the scaling prediction for the dimensionless
intervortex distance �iv/λ. In Fig. 4, we validate this prediction by plotting �∞ as a function of μ∗.
The data points show very good agreement with the prediction (22), with a best-fit exponent −0.69
over the last decade in μ∗.

IV. CONCLUSION

We have derived a scaling prediction for the typical radius of the vortex cores arising in equili-
brated low drag baroclinic turbulence. For linear bottom drag the vortex gas scaling prediction for
the eddy-induced diffusivity is immune to this core-radius dependence and remains identical to the
prediction in GF. By contrast, for quadratic bottom drag the scaling predictions are modified when
including the dependence of the vortex core radius. We have validated the new scaling predictions
through numerical simulations of the 2LQG model with very low quadratic drag.

From a physical point of view it is very satisfactory that the theory captures the very low
drag strongly turbulent asymptotic regime for both linear and quadratic bottom drag, with pos-
sible relevance to exoplanetary oceans and atmospheres. In the context of the parametrization of
mesoscale turbulence in the Earth’s ocean, dissipation on the ocean floor is sometimes modeled as
a linear friction force, but more often as quadratic drag. The drag coefficient is believed to be only
moderately small, however, and mesoscale ocean turbulence appears as a moderately dilute vortex
gas [7,8,25] for which the predictions in GF are likely sufficient.
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