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Dynamical systems with extreme events are difficult to capture with data-driven mod-
eling due to the relative scarcity of data within extreme events compared to the typical
dynamics of the system and the strong dependence of the long-time occurrence of extreme
events on short-time conditions. A recently developed technique [D. Floryan and M. D.
Graham, Nat. Mach. Intell. 4, 1113 (2022)], here denoted as Charts and Atlases for Non-
linear Data-Driven Dynamics on Manifolds, or CANDyMan, overcomes these difficulties
by decomposing the time series into separate charts based on data similarity, learning dy-
namical models on each chart via individual time-mapping neural networks, then stitching
the charts together to create a single atlas to yield a global dynamical model. We apply
CANDyMan to a nine-dimensional model of turbulent shear flow between infinite parallel
free-slip walls under a sinusoidal body force [J. Moehlis, H. Faisst, and B. Eckhardt,
New J. Phys. 6, 56 (2004)], which undergoes extreme events in the form of intermittent
quasi-laminarization and long-time full laminarization. The multichart model created by
the CANDyMan technique is compared with both a standard data-driven model (i.e., the
“single-chart” limit of the CANDyMan method) and a Koopman-based model created
through extended dynamic mode decomposition-dictionary learning. We demonstrate that
the CANDyMan method allows the trained dynamical models to more accurately forecast
the evolution of the model coefficients than both a single-chart model and a Koopman
model, reducing the error in the predictions as the model evolves forward in time. The
technique exhibits more accurate predictions of extreme events than either a single-chart
model or Koopman model, capturing the frequency of quasi-laminarization events and
predicting the time until full laminarization more accurately than a single neural network.

DOI: 10.1103/PhysRevFluids.8.094401

I. INTRODUCTION

Real-world dynamical systems often produce unusual behaviors in the form of extreme events.
These extreme events are characterized by a dissimilarity to the typical dynamics of the system,
usually greater in scope or scale, that occur relatively infrequently compared to the typical dy-
namics. Common examples include rogue waves in the ocean [1], extreme weather patterns such
as hurricanes and tornadoes [2,3], and intermittency in turbulent flows [4]. While extreme events
are a consequence of the same dynamical system that governs the nonextreme state, they are often
difficult to forecast using data-driven modeling. The relative scarcity of data within extreme events
both limits the overall observations of the extreme events on which to train the model and reduces
the relative influence of extreme event behavior on data-driven model training. Thus, creating a
data-driven model that can accurately capture extreme events remains an active challenge.
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Recent studies proposed various techniques for analyzing and forecasting the occurrence of
extreme events. Guth and Sapsis [5] developed a probabilistic framework for the use of indicator
observables as predictors of the extreme events. Ragone and Bouchet [6] supplemented climate
model simulations with a rare-event algorithm to examine and more accurately capture the in-
creasing frequency of extreme heatwaves in Europe. Blanchard et al. [7] built a machine learning
framework to correct a biased climate model to produce better forecasts of extreme events. Mendez
and Farazmand [8] applied probabilistic models toward predicting indirect spreading of wildfires by
wind to improve forecasts of new wildfire locations. Gomé et al. [9] applied a rare-event algorithm
to analyze the transition between states in turbulent pressure-driven flow and more efficiently predict
passage time between states. While these studies improved predictions of extreme events, they
primarily corrected and supplemented the forecasts of existing models; we will instead aim to
develop an improved model.

One attractive test case of a dynamical system with extreme events is the nine-dimensional model
for turbulent flow developed by Moehlist, Faisst, and Eckhardt (MFE) [10]. The MFE model, an
extension of a model by Waleffe [11], governs the evolution of nine amplitudes of combinations of
spatial Fourier modes describing an incompressible turbulent shear flow between infinite parallel
free-slip walls under a sinusoidal body force. These nine modes provide a minimal description of
the mechanisms for self-sustenance in turbulence, allowing the resulting flow field to display real-
istic turbulent dynamics. In particular, the model displays features consistent with turbulence in the
transition region, namely, long periods of turbulent behavior with infrequent quasi-laminarization
events (also called quiescent [12] or hibernating [13] intervals) and ultimately full laminarization
[12–14]. These quasi- and complete relaminarizations will be the extreme events considered in the
present work, in which we use time series from the MFE model as “data” with which to develop a
data-driven model.

In recent years, several attempts were made to reproduce the dynamics of the MFE model
(and other flow systems) through data-driven techniques based on neural networks (NNs). Neural
networks are a powerful data-driven modeling technique that were shown to accurately recreate
the dynamics of systems such as the viscous Burgers equation [15], the Kuramoto-Sivashinksy
equation [16,17], and Kolmogorov flow [18]. Srinivasan et al. [19] developed both feedforward
neural networks (FNNs) and long short-term memory (LSTM) networks to recreate the MFE model
as discrete-time maps. While the FNNs were unable to reproduce the model, LSTMs were able
to accurately reconstruct long-time behaviors of the full-field velocity statistics. This problem was
revisited by Eivazi et al. [20], where the reconstruction via a LSTM network was compared to
predictions generated via a Koopman-operator-inspired framework with nonlinear forcing. In their
approach, the observables incorporated time-delay embeddings, and they imposed a nonlinear forc-
ing [21,22]. Their work demonstrated that this framework could reproduce short-time and long-time
statistics as well or better than the LSTM networks. (We further discuss the Koopman operator
approach to dynamics below, for the moment simply noting that the original Koopman operator
formalism is linear and Markovian, neither of which property is exhibited by the methodology of
the authors of [20].) Pandey et al. [23] introduced the use of reservoir computing in the form of
an echo-state network (ESN) to reproduce the MFE model as a discrete-time map, and provided
comparisons to both a FNN and a LSTM network. The LSTM network and the ESN were shown
to perform similarly, with both adequately capturing the full-field velocity statistics, while again
the FNN was shown to perform appreciably worse. Racca and Magri [24] specifically examined the
ability of an ESN to forecast the occurrence of an extreme event within a future time window. They
determined that their data-driven model could accurately forecast extreme event episodes far into the
future without incorrectly predicting false quasi-laminarization events. Pershin et al. [25] assessed
the ability of an ESN to forecast time until full laminarization. They showed that their model could
adequately reproduce the lifetime distribution of the MFE data, correctly predicting the probability
of an arbitrary MFE time series remaining in the turbulent state some time in the future. These
studies only successfully modeled the MFE equations through the use of non-Markovian models,
which forecasted the future state through input of the current and past states. As the MFE model
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is itself Markovian, we will instead endeavor to model the MFE data with a Markovian dynamical
system.

Specifically, we will use a recently developed method that will be denoted here as Charts and
Atlases for Nonlinear Data-Driven Dynamics on Manifolds (CANDyMan) [26,27]. CANDyMan
operates by decomposing the data distribution in state space into separate regions called charts
with a clustering algorithm, learning local dynamical models in each chart using FNNs, then
stitching together the charts to create a single atlas containing the global dynamical model. This
approach is quite distinct from cluster-based network modeling [28], where clustering is used to
construct Markov chains modeling transitions between cluster centroids. Here we are constructing
deterministic dynamical systems. This technique was previously applied to dimension reduction
problems, accurately learning reduced-order dynamical models whose dimension is equal to the
intrinsic dimensionality of the system [26]. The use of multiple charts allows low-dimensional
manifolds embedded in high-dimensional space to be broken down into locally low-dimensional
structures, capturing the dynamics of a system with the minimal number of dimensions, in a way
that single chart methods cannot. Here, we do not perform dimension reduction, but rather utilize the
clustering of data to break down the dynamical system into separate regions representing extreme
and nonextreme states. By learning the dynamics in the extreme region separately and independently
from the nonextreme regions, CANDyMan inherently overcomes the imbalance of extreme versus
nonextreme information and thus the limited influence of extreme events in data-driven model
training.

Here, we will use CANDyMan to reconstruct the dynamics of the MFE model. A data set
containing time series of the MFE amplitudes will be decomposed using k-means clustering into
atlases containing between one and five charts. We will train deep neural networks to reconstruct
the time evolution of the MFE amplitudes within each of the charts, then stitch them together to
create five global models. To assess the accuracy of the models, we will first consider their ability
to reconstruct the turbulent flow field. Next, we will analyze their performance in reproducing
short-time and long-time statistics, and we will compare our framework with a Koopman framework
in which the observable evolves under linear dynamics. Finally, we will assess the extreme event
forecasting of the data-driven models by determining the statistical accuracy of forecasting extreme
event occurrences and comparing the predicted laminarization lifetime distribution to the true data.

II. FORMULATION

The MFE model is a severely truncated Fourier-Galerkin approximation to the Navier-Stokes
equations (NSE) for incompressible flow between two free-slip walls and driven by a spatially
sinusoidal body force. The flow is composed of nine combinations of spatial Fourier modes
ui(x), describing the basic profile, streaks, and vortices, as well as interactions between them.
The velocity field at position x and time t is given by a superposition of the nine modes as
u(x, t ) = ∑9

i=1 ai(t )ui(x). The mode amplitudes ai(t ) satisfy a system of nine ordinary differential
equations (ODEs), generated through Galerkin projection, whose explicit form is given in Moehlis
et al. [10]. Our study considers a domain of size Lx × Ly × Lz, with infinite, parallel walls at
y = −Ly/2 and y = Ly/2 and periodic boundaries x = 0, x = Lx, z = 0, and z = Lz; x, y, and z are
the streamwise, wall-normal, and spanwise coordinates, respectively. The domain size of Lx = 4π ,
Ly = 2, Lz = 2π was used, with a channel Reynolds number of 400; these parameters produce
turbulent behavior of suitable length for data-driven model development [19].

As training data, we generated 100 unique time series from a fourth-order Runge-Kutta inte-
gration of the MFE equation, with a time step of 0.5. Each time series encompasses the transient
turbulent state, consisting of turbulent intervals interspersed with quasi-laminarization events, with
terminal laminarization occurring at long times. We will often characterize the flow using the total
kinetic energy (KE), given by KE = 1

2

∑9
i=1 a2

i . Therefore, the turbulent state is low energy while
the laminar is high energy. Every time series collapses to the known laminar fixed point ai = δi1.
To generate the time series, initial conditions of eight of the amplitudes are given as follows:
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FIG. 1. Evolution of three amplitudes, a1, a6, a9 and corresponding kinetic energy from one time series of
the MFE data set.

(a1, a2, a3, a5, a6, a7, a8, a9) = (1, 0.07066,−0.07076, 0, 0, 0, 0, 0). The initial value of a4 is arbi-
trarily generated in the range [−0.1, 0.1]. These initial conditions were previously demonstrated to
generate chaotic dynamical data with quasi-laminarization events [19]. We will report all results in
units t̃ = t/τL, where τL is the Lyapunov time for the system; in the original nondimensionalization
τL ≈ 61 [24]. The first 1000 time steps of each time series are discarded to eliminate the dependence
on initial conditions. Each time series is evolved until the laminar state is reached, taking a varying
number of time steps depending on the initial conditions; the resulting training data set consist
of approximately two million snapshots of MFE amplitudes and have a mean lifetime of 164τL .
Amplitudes and KE from a randomly chosen time series are shown in Fig. 1.

In this study, we examine the behavior of multichart models with between two and five charts,
as well as a standard approach with one global model—the “one-chart” limit of CANDyMan. Here,
the one chart refers to a global state-space representation by a single dynamical model, whereas
in the multichart models the separate charts create independent local representations of the state
space which are then combined to form a single global model. The dynamical system data are first
clustered into k charts via k-means clustering, which partitions a data set into k clusters, minimizing
the within-cluster variance [29,30]. Other clustering techniques, such as k nearest neighbors [31]
or single-linkage clustering [32], could be used, provided the clustering technique produces charts
that encompass contiguous regions of the state space. Furthermore, machine learning techniques
involving clustering have recently appeared, including chart autoencoders [33], where clustering
of the data is learned simultaneously with local dimension reduction, and mixture models of
variational autoencoders [34], where clustering is performed with mixture models. We selected
k-means clustering for this study due to its simplicity for implementation and its previous success in
modeling dynamical systems with the CANDyMan method [26]. The clusters are then augmented
so that they overlap by locating the kNN nearest neighbors to each data point in a cluster by Euclidean
distance and adding these to the original cluster. This creates overlap regions between neighboring
clusters, providing transition regions in which the dynamics are described in multiple charts and
allowing for the movement into and out of the region to be handled by the separate local models.

Then, in each augmented chart, we generated discrete-time models of the form a( j)(t + τ ) =
F ( j)(a( j)(t ); θ ( j) ), where a( j)(t ) ∈ R9 is the representation of the state in chart j, the discrete
time step is τ = 0.5, and F ( j) is the corresponding discrete-time map, which takes the form of
a FNN. The quantities θ ( j) are the neural network weights for F ( j), which are learned from the
data using a standard stochastic gradient descent method and trained to minimize the loss function
L( j) = 〈||a( j)(t ) − ã( j)(t )||2〉, where 〈·〉 is the average over the training data. To ensure that the
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comparison between different numbers of charts was standardized, each global model contains the
same number of total neurons NT = 1800; a system of k charts would then use NN = NT /k neurons
in each local model, each containing four fully connected hidden layers of NN/6, NN/3, NN/3,
and NN/6 of the total number of local neurons, respectively. Increasing the total number of neurons
beyond NT = 1800 was not found to significantly impact the performance of the data-driven models.
Each neural network was trained using a learning-rate scheduler with an initial learning rate of 0.01,
decaying at a rate of 0.9 every 2000 steps. Each model was then trained for 100 epochs, which was
found to accurately reproduce the training data while avoiding overfitting. The computational cost
of training global models containing multiple local models is no greater than that of training a single
global model, as the total trainable parameters, total amount of training data, and training procedure
is held constant between the different models; additionally, the multichart models could potentially
be trained in less real time by training models in each chart in parallel.

Finally, we briefly describe the methodology used for the Koopman predictions. For a Markovian
autonomous deterministic dynamical system with state a(t ), the Koopman operator Kτ describes
the evolution of an arbitrary observable G(a) from time t to time t + τ : G[a(t + τ )] = Kτ G[a(t )]
[35,36]. The Koopman operator is linear and time independent, so evolution of the observables of
the state can be expressed as a sum (or integral, if Kτ has a continuous spectrum) of “Koopman
modes” with complex-exponential time dependence. The tradeoff for gaining linearity is that Kτ

is also infinite-dimensional, requiring for implementation some finite-dimensional truncation of
the space of observables. Here we use the “extended dynamic mode decomposition-dictionary
learning” (EDMD-DL) approach [37]. Given a vector of observables �[a(t )], now there is an
approximate matrix-valued Koopman operator K such that the evolution of observables is approx-
imated by �[a(t + τ )] = K�[a(t )]. The EDMD-DL approach aims to simultaneously learn the
operator K and the best set of observables �[a(t )], represented as neural networks, to accurately
approximate the evolution of the system. The key idea behind finding K is to determine the
linear operator which best maps between corresponding pairs of observables (in a least-squares
sense). Given a matrix of observables whose columns are the vector of observables at differ-
ent times, ψ(t ) = { �[a(t1)] �[a(t2)] · · · } and its corresponding matrix at t + τ , ψ(t + τ ) =
{ �[a(t1 + τ )] �[a(t2 + τ )] · · · }, the approximate matrix-valued Koopman operator is defined as
K = ψ(t + τ )ψ(t )+, where the + superscript denotes the pseudo (Moore-Penrose) inverse. Our
method relies on automatic differentiation to find K and the set of observables simultaneously. In
this study, we create a set of observables of 100 elements in addition to the state. We select three
hidden layers with 100 neurons, each hidden layer is followed by an activation function with ELU.
We thoroughly vary the numbers of observables and the neural network architecture finding no
difference in the short- and long-time tracking of the results [38].

III. RESULTS AND DISCUSSION

A. Distribution of data into clusters

Insight into the number of charts necessary for properly reconstructing the MFE data can be
gained by observing the clustering of the training data set. Figure 2 shows how one trajectory from
the data set is partitioned when we use different numbers of charts, in terms of Figs. 2(a) to 2(e)
the time series of KE and Figs. 2(f) to 2(j) state-space projections onto amplitudes a1, a6, a9. With
two charts, the data partitions into one cluster covering the low-energy (turbulent) nonextreme states
and the second containing the high-energy extreme (quasi-laminar, laminarizing) states. When three
charts were used, the clusters are further segmented, with one covering the low-energy turbulent
state, the second primarily consisting of the transition into quasi-laminarization and laminarization
events, and the third consisting mainly of the high-energy components of these events. Clustering
into four charts breaks down the low-energy region into two separate clusters that remain relatively
distinct. When the data are clustered into five charts, the distinction between the charts in the
low-energy turbulent regime decreases and the charts containing the turbulent states are described
by increasingly similar centroids.
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FIG. 2. Clustering of a randomly selected trajectory of (a)–(e) kinetic energy and (f)–(k) the projection of
the clustering of the first, sixth, and ninth MFE amplitude for one to five charts, color coded by cluster.

B. Trajectory predictions and time-averaged statistics

The performance of the data-driven models is evaluated on their ability to reconstruct the
evolution of the MFE model amplitudes. Two test data sets were generated for comparison between
the MFE dynamics and the single- and multichart data-driven models, each with separate and
unique initial conditions from the training data. For trajectory predictions, 1000 trajectories of MFE
amplitudes were generated from arbitrary initial conditions and time-integrated for 10 Lyapunov
times, with the same initial conditions separately evolved forward using the generated data-driven
models for the same length of time; this will henceforth be denoted as data set A. The purpose of
this data set is to determine the short-time precision of the predictions generated by the single- and
multichart models, regardless of any observed or predicted laminarization. With this data set, we will
evaluate the similarity of trajectories produced by both the MFE model and the data-driven models
from identical initial conditions. For time-averaged statistics, 100 trajectories of MFE amplitudes
were generated from random initial conditions and time-integrated for 100 Lyapunov times or until
a laminarization event occurred, with the initial conditions separately evolved forward using the
generated data-driven models and the same ending criteria; this will henceforth be denoted as data
set B. The purpose of this data set is to assess the accuracy of the predicted long-time turbulent state
statistics, and as such removes any observed or predicted laminarization. With this data set, we will
evaluate the ability of the data-driven models to produce trajectories whose dynamics reside on the
same manifold as those produced by the MFE model. As with the creation of the training data, the
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first 1000 time steps of each time series following initialization were discarded for both test data
sets.

The data-driven models are first evaluated on their ability to reconstruct the velocity statistics
of the turbulent regime, the essential function of the MFE model. Using data set B, we project
the amplitudes on to the spatial Fourier modes of the MFE model and compare the accuracy of the
predicted velocity statistics in the turbulent state to the exact solution. The mean streamwise velocity
and Reynolds shear stress were calculated for each data set, as shown in Fig. 3. The mean streamwise
velocity and Reynolds shear stress profiles are practically identical to those created by the turbulent
portion of the training data. As the figure shows, the single-chart model and the Koopman operator
capture well the form of the velocity statistics, but fail to accurately capture the exact values. The
three-chart model creates much better predictions, quantitatively capturing the flow profile.

Now we turn to the prediction of trajectories. To quantify the performance of the trajectory
predictions, we analyze the data-driven models’ ability to accurately forecast the evolution of MFE
amplitudes. Using data set A, the error in the predictions E (t ) is then calculated for each time
series, averaged, and normalized, such that E (t ) = ||a(t )−ã(t )||2

D . Here, D is the average L2-norm
between randomly chosen time instants in the turbulent state. Figure 4 shows E (t ) for the single-
and multichart models and for the Koopman model as a function of time. All FNN models create
accurate predictions for ∼0.5τL, with the error remaining close to 0, while the error in the predictions
by the Koopman model increases rapidly even at short times. The rapid growth in error is caused by
a small number of predictions that evolve rapidly away from the true solution whose large deviations
from the true values dominate the error calculation. The error in the predictions of the single-chart
model also grows much more rapidly than the multichart models, indicating that the forecasting
ability is much stronger in the multichart models. Furthermore, the performance of the multichart
models improves as the number of charts increases from two to three, plateaus from three and
four, and diminishes from four to five. This indicates that the three charts are sufficient to improve
reconstruction via the CANDyMan technique, while further increases in the number of charts can, in
fact, impair performance. Possible reasons for this are discussed below. As such, for the remainder
of the paper, we will focus our comparison between the single- and three-chart models.

C. Prediction of extreme events

Now we examine the ability of the data-driven model to correctly capture the structure of the
extreme events. An extreme event can be identified by a growth in the first MFE amplitude, which
represents the mean shear, with a corresponding decrease in the remaining eight amplitudes, which
capture the turbulent fluctuations. In Fig. 5(a), we show the joint probability density function (jPDF)
of a1 and a3 for the reconstruction of the ensemble of trajectories from data set B, which is similar
in distribution to that created by the turbulent portion of the training data. The extreme events
can be seen as the long tail extending to the right toward the laminar state a1 = 1, a3 = 0. The
prediction of the single-chart model, shown in Fig. 5(b) fails to accurately capture the structure of
the extreme events, with the tail almost entirely absent. By contrast, the three-chart model, shown
in Fig. 5(c), captures the structure of the extreme events well, accurately reproducing the shape
of the joint probability density function. The Koopman model, shown in Fig. 5(d), entirely fails
to accurately capture the structure of the joint probability density function. The accuracy of the
reconstruction of the jPDFs is quantified by calculating the relative mean squared error (MSE) of
the reconstructed jPDF, which is defined as the MSE between the jPDF of test data set and the
reconstruction normalized by the MSE between two jPDFs produced by the MFE model from two
sets of unique initial conditions. The relative MSE of the reconstruction by the three-chart model is
only 1.5, indicating excellent reconstruction of the jPDF. The relative MSEs of the reconstructions
by the single-chart model and the Koopman operator, however, are much larger at 24.5 and 463.6,
respectively, reflecting the much poorer reconstructions.

We now examine the ability of the single- and multichart models to forecast an extreme event,
defined by the kinetic energy of the time series increasing to KE > 0.1. To analyze the ability to
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FIG. 3. (a) Mean streamwise velocity and (b) Reynolds shear stress of the full field of the test and training
data and of the reconstruction of the MFE model by the single- and three-chart model and by the Koopman
model, with (c), (d) the difference between the true values and the predicted values.

094401-8



PREDICTING EXTREME EVENTS IN A DATA-DRIVEN …

FIG. 4. Ensemble-averaged short-time error tracking of the reconstruction of the MFE model by the single-
and multichart models, as well as the reconstruction by the Koopman model.

predict quasi-laminarization events, each time series in data set A, which contains 90 extreme events,
is segmented into time windows of duration 0.5τL and analyzed for the presence of an extreme
event (i.e., KE exceeding 0.1 in the window), where the window at t̃ refers to the time between t̃
and t̃ + 0.5τL. The exact solution and data-driven models are then compared to determine if each
predict whether an extreme event occurred. If an extreme event occurred in both the exact solution
and the model predictions, this is labeled as a true positive (T P). If the exact solution exhibited an

FIG. 5. (a) Joint probability density function (jPDF) of a1 and a3; (b)–(d) predictions of the MFE model
by the single- and three-chart models and by the Koopman model, respectively, with the mean squared error
(MSE) of the reconstruction, normalized by the MSE between two jPDFs produced by the MFE model with
unique initial conditions, inset. Note the logarithmic scale.
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FIG. 6. F-score of extreme event forecasting of the MFE model by the single- and three-chart models and
by the Koopman model, with comparison to prior study by Racca and Magri [24].

extreme event, but the data-driven model failed to forecast one, this is labeled as a false negative
(FN). If the model predicted an extreme event when the exact solution showed none, it is identified
as a false positive (FP) [24]. The total number of each identification type in each window was
tabulated and the F-score, F , was calculated in each window, where F = (1 + FP+FN

2T P )−1.
Figure 6 shows the F-score as a function of prediction time for the single- and multichart models,

as well as a comparison to results from Racca and Magri [24] using an echo-state network; this study
did not perform quantitative trajectory comparisons, and as such a similar comparison can not be
made for Fig. 4. Both the single- and multichart models produce more accurate forecasts of extreme
event occurrences than the Koopman model, with the F-score of the Koopman model falling below
0.5 at all time windows. The multichart model outperforms the single-chart model, more accurately
forecasting extreme events at all prediction times. Our multichart model performs similarly to the
(non-Markovian) echo-state network developed by Racca and Magri [24] at short times, while the
accuracy falls below that of the ESN at longer prediction times.

Finally, we determine the ability of the data-driven models to forecast the lifetime of the turbu-
lence before permanent laminarization. At long times, all time series generated by the MFE model at
the given parameters collapse to the laminar fixed point; the lifetime of each time series is dependent
on the initial condition, with the probability of remaining in the turbulent state approaching zero at
long times. At Re � 320, the probability that a given time series remains in the turbulent state for
a duration t , known as the survival function S(t ), takes the form [10,25] S(t ; Re) = exp[ t−t0

τS (Re) ],
where t0 is the time delay caused by the approach to the attractor and 1/τS (Re) is the Re-dependent
decay rate. At Re � 320, the distribution, particularly at long lifetimes, is known to deviate from an
exponential decay, requiring increased time to laminarize.

Here, we define a laminarization event as a high-energy state (KE > 0.1) for which the kinetic
energy over 1 τL levels off. The survival function S(t ) is shown in Fig. 7 for the test data set and
the one- and three-chart models. The test data set consists of 100 time series of varying lengths and
has a mean lifetime of 169 τL, within 3% of the mean lifetime of the training data set (164 τL );
this will henceforth be denoted as data set C. The one-chart model and Koopman model produce
poor predictions of the lifetime distribution, vastly underestimating the lifetimes of the turbulent
state, with mean lifetimes of 19τL and 30τL, respectively. The three-chart model produces a much
more accurate representation of the lifetime distribution. The predicted distribution closely matches
the exact solution for t̃ up to about 150, while overestimating the lifetimes at longer times, and
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FIG. 7. Lifetime distribution of test and training data and the reconstruction from the MFE model by the
single- and three-chart models and by the Koopman model.

predicts an average lifetime of 200 τL, overestimating the true result by less than 20%. It should be
emphasized that we are measuring time here in units of Lyapunov time, so the inaccuracy of S(t ) in
the three-chart model only arises at extremely long times.

IV. CONCLUSION

In this paper, we applied the CANDyMan [26] technique towards data-driven modeling of a
dynamical system with extreme events: the MFE model [10] for turbulent shear flow. We showed
that clustering data sets and training multiple local data-driven models allows unique features of
distinct data regimes (e.g., extreme events) to be separately and more accurately captured by a
multichart global model than in a conventional data-driven model. Thus, multichart models were
able to more accurately reproduce the evolution of this system, reducing forecasting error and
improving reconstruction of the structure and frequency of extreme events. Importantly, multichart
models dramatically improved predictions of extreme event occurrences compared to the single-
chart models used previously. While we were not able to fully match the predictive capabilities
of the non-Markvovian echo state networks in this regard, our Markovian models more accurately
complied with the true nature of the underlying system being modeled. Finally, we demonstrated
the ability of multichart models to reconstruct the lifetime distribution of turbulent states, accurately
predicting the distribution of survival times hundreds of Lyapunov times in the future.

In all cases, we showed that our model outperforms a Koopman approach (EDMD-DL) in which
all the observables are evolved linearly, in terms of short- and long-time tracking of the dynamics.
While the approach captures key time-averaged quantities such as the mean velocity profile and
Reynolds shear stress, its predictions of dynamics are less robust. The performance of the Koopman
approach appears consistent with other studies (e.g., [22]), where nonlinear modifications seem to
be required to effectively model systems with chaotic dynamics.

An open question in the use of multichart models generated through the CANDyMan technique
concerns the number of charts necessary for adequately capturing a dynamical system with extreme
events. In this study, we observed that multichart data-driven models, specifically a three-chart
model, can forecast one such system more accurately than a single-chart model. Given the clustering
of the training data into three charts, shown in Fig. 2, the desired number of charts should be
sufficient to separate the extreme from the nonextreme states with a transition region between them.
This suggests that a dynamical system with one extreme state, such as the MFE model, would
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require at least three charts for optimal forecasting, whereas a dynamical system with multiple
types of extreme events, such as weather systems, would necessitate more. We have, however
also observed that the improvement in predictive capabilities decreases above a certain number
of charts, suggesting that the advantage gained through multichart models is limited and does that
not increase indefinitely with additional charts. In fact, the performance of our data-driven models
decrease above three charts, suggesting that an unnecessarily large number of charts may hinder
forecasting. Observing the clustering shown in Fig. 2, it can be seen that, between three and five
clusters, the additional clustering does not further segment the extreme and nonextreme states, but
rather separates only the nonextreme state into additional regions. Further clustering of the data
reduces the total data used to train any individual local data-driven model, potentially decreasing the
performance of the local model. In this case, the additional local models describe similar regions of
data already well described by a single local model, and as such the decreased training data worsens
the individual local models and thereby the global multichart model. Accordingly, the optimal
number of charts used to train a dynamical system with extreme events should allow clustering
to separate out distinct features, while not further segmenting already distinct regions. Further work
is necessary to systematically understand how to best choose the number of charts for a given data
set.

Now that we have seen that CANDyMan improved the performance of data-driven models
forecasting a low-dimensional dynamical system with extreme events, future investigations should
determine its applicability to higher-dimensional systems. As has been previously shown, the use
of a charting technique such as CANDyMan allows improved dimension reduction through the
use of autoencoder neural networks, capturing the intrinsic dimensionality of dynamical systems
[26]. For high-dimensional dynamical systems with intermittency, such as turbulent fluid flows, the
application of CANDyMan could not only aid in improved dimension reduction, but also produce
more accurate forecasting than conventional single-chart techniques.

A repository containing the PYTHON code used to generate the training data and data-driven
models through the CANDyMan technique can be found at [38].
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