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Dynamics of magnetoelastic robots in water-saturated granular beds
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We investigate the dynamics of a magnetoelastic robot with a dipolar magnetic head
and a slender elastic body as it performs undulatory strokes and burrows through water-
saturated granular beds. The robot is actuated by an oscillating magnetic field and moves
forward when the stroke amplitude increases above a critical threshold. By visualizing the
medium, we show that the undulating body fluidizes the bed, resulting in the appearance
of a dynamic burrow, which rapidly closes in behind the moving robot as the medium
loses energy. We investigate the applicability of Lighthill’s elongated body theory of fish
locomotion, and estimate the contribution of thrust generated by the undulating body
and the drag incorporating the granular volume fraction-dependent effective viscosity of
the medium. The projected speeds are found to be consistent with the measured speeds
over a range of frequencies and amplitudes above the onset of forward motion. However,
systematic deviations are found to grow with increasing driving, pointing to a need for
further sophisticated modeling of the medium-structure interactions.
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I. INTRODUCTION

The principles of locomotion in water-saturated loose sediments are important for understand-
ing organisms that inhabit the bottoms of ponds, lakes, and oceans [1]. A great variety of fish,
crustaceans, and echinoderms, among other organisms, live and burrow into the sandy beds under
water to prey or to escape currents. Among the various body strokes observed in organisms moving
in Newtonian and non-Newtonian fluids [2–7], undulatory strokes have been found to be effective
in loosely consolidated granular medium at shallow depths [8–14]. Indeed, undulatory motion is
used by sperm, eels, and nematodes to move through Newtonian and non-Newtonian media such
as mucus and mud [15–17]. These observations have been used to design robots which mimic fish
swimming in water [18,19] and snakes and earthworms burrowing in loose sand [20–22].

In the loose granular beds of interest, the grains themselves are athermal, and rapidly come to
rest unless actively agitated [23]. Thus, granular sediments immersed in a fluid show a yield-stress
and shear-thinning behavior [24,25], which is quite different from the limits of Newtonian fluids
and dry granular beds where most studies on locomotion have been carried out. The fluidization
of the medium by the moving intruder modifies the packing and rheology of the medium around
the body [26]. While moving with a constant velocity, the drag of an intruder scales linearly with
overburden pressure due to the weight of the granular medium above [25,27]. However, the drag
does not increase as rapidly when the intruder speed increases and thus fluidization increases [28],
or when wake interactions become more important [29]. These issues are compounded in bodies
that use rapid undulatory strokes in sediments immersed in a fluid. Because the motion of the body
and the medium are intimately intertwined, having a complementary view of both the structure and
the medium is important in gaining a full understanding of the dynamics.

Here, we construct biomimetic magnetoelastic robots to investigate locomotion in granular
sediments immersed in water. We perform experiments to study the form and dynamics of an
undulating robot with a magnet head and elastic body in a fluid-saturated granular media driven
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FIG. 1. (a) Image of the magnetoelastic robot with a magnet head and elastic body. (b) Schematic of the
side view of the system showing the robot placed at the bottom of the container with sediment bed. hb is the
sediment bed height. (c) A schematic of the experimental system shows Helmholtz coils, light source, camera,
and robot in the container. (d) The magnetic field �B(t ) results in a torque �M(t ) = �μ × �B(t ) which oscillates
periodically. (e) The tracked body shapes of the robot moving in water (hb = 0 cm), and in a sediment bed
(hb = 1 cm) at various frequencies. These representative tracked body shapes clearly illustrate that the robot
travels greater distances when swimming in water as opposed to the granular hydrogel medium in the cases of
6 and 12 Hz. Furthermore, these tracks demonstrate the relative stability of the robot’s direction of motion. The
snapshots are plotted in 10 ms time intervals over the time denoted in the color bar.

by an oscillating magnetic field. In contrast with previous studies of locomotion in granular beds
which are in the quasistatic frictional regime, we focus here on the inertial hydrodynamic regime
where the medium is highly fluidized as a consequence of the burrowing. Exploiting refractive
index matching of the grains, we measure the shape and speed of the robot while it moves through
the medium. Further, we visualize the resulting flow of the medium using fluorescence techniques
to gain a deeper understanding of the hydrodynamic interactions experienced by the moving robot.
We find that the body strokes strongly fluidize the medium, resulting in a suspension with a granular
volume fraction dependent viscosity. We then discuss the observed robot locomotion speeds in terms
of Lighthill’s elongated body theory [30] of fish locomotion.

II. EXPERIMENTAL METHODS

An image of the magnetoelastic robot used in our experiments is shown in Fig. 1(a), a schematic
of the experimental cell with robot can be seen in Fig. 1(b), where the robot is placed at the
bottom of the cell, and a schematic of the experimental system can be found in Fig. 1(c). The
robot is constructed by attaching a small cylindrical neodymium magnet of mass mm = 77 mg,
diameter 3 mm, and height 2 mm, to the end of an elastic polyvinylsilioxane rod with density
ρr = 980 kg m−3, diameter d = 1.63 mm, and Young’s modulus E = 0.35 MPa. The diameter of
the elastic body near the head is increased to approximately 2d in order to attach the magnet firmly,
resulting in a total robot mass m = 0.164 g and length L = 32 mm. The granular medium used in our
investigations consists of hydrogel beads with diameter dg ranging between 0.5 mm and 2 mm, and
density ρg = 1004 kg m−3 while immersed in water with density ρw = 997 kg m−3 at 23 ◦C. This
granular medium is chosen because it is essentially refractive index matched with water, enabling
us to fully visualize the robot in situ. The resulting sediment bed is known to be described by the
Herschel–Bulkley stress-strain model under steady driving conditions [25,31], with a yield stress
which increases linearly with depth in the sediment.

We study the dynamics of the robot as a function of increasing bed height hb = 1, 2, and 3 cm,
and contrast with swimming dynamics in water, i.e., when hb = 0 cm. The container is placed at
the center of a Helmholtz coil. An alternating current is passed through the coil which results in
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a magnetic field B(t ) = Bo cos(2π f t ), where Bo is the amplitude of the sinusoidal magnetic field,
f is its oscillation frequency, and t is time. The field is observed to be spatially uniform within
2.2%, where measurements are made. The magnet has a magnetic moment μ = 2.1 × 10−3 A m2

that results in a torque �M(t ) = �μ × �B, where �B = B(t )ŷ, which causes the magnetic head of the
robot to rotate as illustrated in Fig. 1(d). This applied torque leads the elastic body to rotate and
bend depending on its elasticity and on the drag exerted by the medium.

The robot is placed in a transparent acrylic container with the granular bed, and water is filled
well above the bed surface to avoid any capillary effects [Fig. 1(b)]. Because the magnetic head has
a higher density compared with the medium, the robot sinks to the bottom of the bed, and stays in
apparent contact with the solid substrate even while it moves. The top view of the robot’s motion
can be seen in Movie S1 in the Supplemental Material [32] and an example video in Movie S4 [32]
shows the robot’s motion from a side view. The refractive index of the grains is approximately the
same as water, enabling us to image the robot in real time as the robot moves inside the medium
with backlighting generated with a LED array. We use a Phantom model VEO-E 310L camera with
a pixel resolution of 1024 × 512 at 50 or 100 frames per second depending on the applied frequency
and speed of the robot to image the robot dynamics (see Movie S1 in the Supplemental Material
[32]). We observe that the elastic body undulates in the horizontal plane, perpendicular to the torque
acting on the magnetic head with the same frequency as the oscillating magnetic field. We track
the robot position and shape in each frame with algorithms using the image processing toolbox in
MATLAB [12] to further analyze its dynamics.

III. OBSERVED STROKES AND SPEEDS

Figure 1(e) shows representative forms of the robot as it moves in water and in the sediment
bed at various driving frequencies. While the body oscillates with large amplitudes, the robot is not
observed to move forward at the lowest frequency. At higher frequencies, the robot is observed to
move forward with increasing speed, while the body stroke amplitude decreases. The stroke shapes
can be observed to be periodic, and the direction of motion is quite stable even though it is not
actively controlled. The plotted overlapping body shapes illustrates that the robot moves forward
qualitatively faster in water than in the granular medium. Figure 2 illustrates the superimposed body
strokes observed in the comoving reference of the robot center of mass. The snapshots are plotted
both in water and in sediment at 10 ms time intervals over a single period of body oscillation at
the three different frequencies. The distinct shapes of the body strokes can be seen in this figure.
Comparing the robot forms and displacements in the water and sediments, we note that they are
systematically lower in the sediments, indicating that the medium exerts higher drag under otherwise
similar applied driving conditions.

We plot the transverse oscillation amplitude of the body at the tail Ar as a function of applied
magnetic field and frequency in Figs. 3(a) and 3(b), respectively, and the bending amplitude of the
body Ab corresponding to the mean square deviation from a straight line fit to the body in Figs. 3(c)
and 3(d). Ab demonstrates how body strokes transition from rigid body rotation to an anguilliform
pattern as a function of f and B, as also depicted in Fig. 2. As may be expected, we observe that
Ar and Ab both increase with B, as greater torque is applied to the head by increasing the magnetic
field. On the other hand, Ar is observed to decrease with increasing f , while Ab increases, reaches
a peak, and then decreases with increasing f . These trends are consistent with the fact that drag
acting on a body increases with its speed. Nonetheless, the change in strokes may be characterized
as evolutionary as the robot burrows in the sediment bed versus swimming in water.

We obtain the mean speed Ur of the robot by measuring the time required to travel a distance
of at least 5 cm, or by the measuring the distance moved over 5 to 10 seconds in cases where
the robot moves very little. The error bars correspond to mean square deviations from means
obtained over five trials. Figures 3(e) and 3(f) show plots of Ur as a function of magnetic field
B and frequency f , respectively. As B is increased, we observe that the robot moves forward with
increasing speeds above Bo ≈ 0.5 mT, corresponding to a sufficiently large Ar . The speeds in the
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FIG. 2. Superimposed snapshots of tracked body shapes of the robot moving in water (hb = 0 cm), and in
a sediment bed (hb = 1 cm) at various frequencies. These snapshots are plotted at 10 ms time intervals over a
single cycle of body oscillation in the comoving reference of the robot center of mass. These snapshots portray
the evolving body shapes during motion and demonstrate the transition from rigid body motion to anguilliform
motion as a function of frequency.

sediments are systematically lower compared with the speeds in water. Similarly, with increasing
oscillation frequency we observe that the robot moves forward only above a critical frequency
f > 1 Hz with increasing speed. Again, the speeds can be observed to be lower in the sediments
and decrease systematically with the increase in hb. However, Ur can be observed to increase and
then decrease with frequency, with the peak occurring at lower frequencies with increasing hb. Thus,
a complex response can occur depending on the applied driving conditions and interaction of the
robot body with the medium.

IV. MEDIUM FLUIDIZATION

To understand the effect of the moving robot on the medium, we visualize the medium in the
horizontal plane in which the robot moves. For these studies, the hydrogel beads are prepared by
adding a small amount of dye (Rhodamine 6G) to the water in which they are hydrated. The dye
stays in the beads after being placed in the clear water. Thus, the beads fluoresce when illuminated
with a 532 nm green laser sheet, and appear bright in contrast with the water in the interstitial space.
Figures 4(a) and 4(b) show snapshots while the robot is burrowing in sediments with hb = 1 cm
and hb = 3 cm, respectively. In order to illustrate the fluidization and flow of the medium, time-
averaged images are also shown in Figs. 4(c) and 4(d). The corresponding movies can be found in
the Supplemental Material (S2 and S3) [32]. The medium can be noted to be highly fluidized near
the body, and the robot appears to move through a dilute suspension in the central portion of its
oscillation cycle in the case of the shallower bed. A burrow forms as the robot sweeps the granular
material side to side to an extent depending on hb. Clearly, with increasing overburden pressure in
deeper beds, the medium fills back in more rapidly, leading the burrow to be less pronounced.

Figure 4(e) shows the average volume fraction of the granular medium φ in the plane adjacent
to the moving robot and in the plane 5 mm above the robot’s position. These values are obtained
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FIG. 3. The tail oscillation amplitude Ar of the magnetoelastic robot in water and in sediments as a function
of field strength (a) and frequency (b), with the corresponding deformation amplitude Ab (c), (d), and speed Ur

of the robot (e), (f). The frequency is f = 5 Hz when the field B is varied, and the field is Bo = 4 mT when the
frequency f is varied.

by counting the number of grains in a given cross sectional area [dashed line box in Fig. 4(a)] and
comparing the value obtained for a well settled granular bed, φo, which is known to correspond to
φ = 0.6 in the case of these nearly spherical granular hydrogels [25]. We observe that φ is well
below φo behind the robot especially in the case of shallow sediment depths.

Thus, the picture which emerges from the visualization of the granular medium is that significant
variations of packing fraction occur due to fluidization of the grains because of the undulatory
strokes performed by the robot. The resulting lowering of the volume fraction of the granular phase
means that the effective medium encountered by the oscillating body is different along its length,
and varies within the oscillation phase. In the following, we treat these differences by considering
the drag encountered by the head separately from the rest of the body.

V. FORCE ANALYSIS

The robot moves when the thrust Tr generated by the undulating filament body exceeds the drag
exerted by the medium and the substrate, i.e.,

Tr � Dh + Db + Ds, (1)
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FIG. 4. (a), (b) Horizontal cross sections of the sediment medium in the plane of the undulating robot
visualized by illuminating the fluorescent grains with a laser sheet for (a) hb = 1 cm and (b) hb = 3 cm ( f =
6 Hz, Bo = 4 mT). (c), (d) Images corresponding to an exposure over three periods shows the flow around the
robot. (c) A large region behind the robot is observed to be highly fluidized (hb = 1 cm). (d) The fluidized
region is more localized around the robot moving in a deeper bed (hb = 3 cm). (e) The volume fraction φ is
measured in the region denoted by the dashed line box [shown in (a)] in a plane adjacent to the robot and in
a plane 5 mm above the plane of the robot. The volume fraction is normalized by the volume fraction of the
unfluidized sedimented bed φo = 0.6.

where Dh is the drag acting on the head due to the medium, Db is the drag on the body, and Ds

is the drag due to the friction from substrate. To evaluate these terms, we have to examine the
hydrodynamic regime.

We evaluate the Reynolds number Re = ρUsLs/ηm, where ρ is the density of the medium, ηm

is the viscosity of the medium, Us the velocity over the length scale Ls, to determine the relevant
hydrodynamic regime. In the case of water, ρ ≈ 1000 kg/m3 and ηw ≈ 1.0 mPa s at 23 ◦C. Then,
over the scale of the robot’s head, Ls = 2d and Us = Ur , and for considering the lateral motion of
the body Us = 2πAr f . Figure 5(a) shows a plot of Re over the range of f in the case of water. Re
is much greater in the case of the body compared with the head, and in both cases Re � 1, thus the
robot is in the inertia dominated regime in water.
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FIG. 5. The Reynolds number corresponding to the robot’s body and head in water (a) and sediments with
hb = 1 cm (b), hb = 2 cm (c), hb = 3 cm (d).

In evaluating Re in the case of the sediments, it is clear from Figs. 4(a) and 4(b) that the body
encounters a granular medium which is well fluidized. Because of the nonuniform spatial and
temporal nature of the suspension, it becomes difficult to evaluate ηm. Nonetheless, given that Ar

and Ur are only about a factor of 2 lower in the sediments, one may anticipate that the hydrodynamic
regime that is important to propulsion may also be inertial in the case of the sediments. We proceed
with this assumption to evaluate the components needed to achieve locomotion and to check for
self-consistency at the end.

According to Lighthill’s theory of anguilliform swimming in the inertial regime, the thrust
calculated at the tail position is given by [18,30]

Tr = 1
2ρS[〈(∂t y)2〉] − U 2

r [〈(∂xy)2〉]tail, (2)

where ρ is the fluid density and S = πd2/4 the body cross section. If the body undulations are
described by

y(x, t ) = Ar cos[2π ( f t − x/λ)], (3)

where Ar is the stroke amplitude and λ is the wavelength. After substituting, and since vφ = λ f , we
have

Tr = π2 f 2ρSA2
r

[
1 −

(
Ur

vφ

)2
]
. (4)

Besides the oscillation frequency, amplitude, and swimming speed, we note that the phase velocity
of the traveling wave along the body plays an important role in determining the swimming speed
[30,33].

Figure 6(a) illustrates the traveling wave, where we determine the velocity of the traveling wave
vφ by measuring the distance between the antinodes over a given time interval. While the shape
is not described by a purely sinusoidal form, we have found that this method gives a reasonable
description of the overall shape while estimating using vφ/ f . The plot of measured phase velocity
vφ versus frequency f is shown in Fig. 6(b), and plot of measured vφ versus field B is shown in
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FIG. 6. (a) Curtain plot of robot shapes to illustrate the measurement of the phase velocity vφ and
swimming velocity Ur . The snapshots are plotted in 10 ms time intervals. The measured vφ are observed to
be overall similar within the experimental measurement errors for varying frequency f (b) and varying B (c).
The measured values of vφ are compared with the Euler-Bernoulli beam theory [dashed line, Eq. (5)].

Fig. 6(c). According to the Euler-Bernoulli beam theory [34], the phase velocity of a small amplitude
sinusoidal wave traveling in an undamped beam is given by

vφ =
(

EI

ρA

)1/4√
2π f , (5)

where, E is Young’s modulus, ρ is the density of the robot material, A is the cross section of the
robot body, f is the frequency of the oscillation, and I is moment of inertia. In comparing with
the data shown in Fig. 6(b), we observe that, while the estimated speed is of the right order of
magnitude, it is systematically higher by a factor of about 2 than the measured speed. Further, we
observe from Fig. 6(c) that measured vφ increases with applied B, which results in higher Ar . We
ascribe these differences to the fact that the undulatory form of the robot cannot be described by
a simple sinusoidal form, and that the medium also induces damping. Thus, we use the measured
vφ , rather than Eq. (5), to evaluate thrust. Figure 7(a) shows a plot Tr as a function of f using the
measured values of Ar , Ur , and vφ in water. Thrust can be noted to increase somewhat linearly with
increasing f , even as Ar decreases.

Now, the drag due to the head is

Dh = 1
2CDρwShU

2
r , (6)

where CD is the drag coefficient of the head and Sh is the cross sectional area of the head. The drag
due to the body alone is

Db = 1
2ρCDS′U 2

r , (7)

where CD is the drag coefficient of the body and S′ = 2Ard [18]. Given Re is of O(102) in our
system, we assume a simplified form CD ≈ 24/Re + 0.35 [35] to minimize the number of fitting
parameters, and plot Dh and Db in the case of water in Fig. 7(a).

Now, considering the frictional interaction between the robot and the substrate, and because the
density of polyvinylsilioxane is essentially the same as water and the sediments, we have

Ds = μkWb, (8)

where μk is the coefficient of kinetic friction of the polyvinylsilioxane head sliding on the acrylic
substrate, Wb = (mm − Vmρw )g with mm = 77 mg is the mass of the magnet, g is gravitational ac-
celeration, and Vm is the volume of the magnet. We have Vmρw = 14 mg. Thus, Wb = 6.2 × 10−4 N.
From the observation of Ur versus B, we find that the robot moves forward when Ar > 2.5 mm,
and thus infer that μk ≈ 0.005. When we estimate sliding friction by tilting the substrate, we find
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FIG. 7. The estimated thrust and drag components for the robot moving in water (a) and in sediments with
various hb: hb = 1 cm sediment (b), 2 cm sediment (c), and 3 cm sediment (d).

μk ≈ 0.35 ± 0.05, which is two orders of magnitude larger. Thus, it appears that the robot’s head
rolls from side to side as it advances forward. Plotting Ds, the substrate drag, in Fig. 7(a), we note
that it is much smaller than the other drag components except for f < 2 Hz, and can account for the
finite frequency at which forward motion occurs.

To gauge how well Eq. (1) works, we use it to calculate Ur , rather than evaluating each component
separately. We plot these estimated Ur along with the measured speeds in Fig. 8(a). We observe
that it captures observed trends reasonably well including the finite frequency at which swimming
occurs, until about f ≈ 10 Hz. It appears that the increasing thrust is overestimated with increasing
f , leading to the discrepancy.

In the case of the sediments, Tr and Ds can be evaluated, and are plotted in Figs. 7(b)–7(d) for the
three sediment heights. However, we cannot evaluate Dh and Db without knowledge of Re, which is
needed to estimate CD. Now, Re depends on the effective viscosity of the medium experienced by
the robot, which depends on the volume fraction φ according to the empirical Krieger-Dougherty
relation [36],

ηm = ηw

(
1 − φ

φc

)−2.5φc

, (9)

where φc = 0.63, the volume fraction at which viscosity of the sediment medium diverges. While
we can obtain φ in regions behind the robot, it is difficult to estimate φ right near the robot body.
Thus, we use it as a fitting parameter, and use a single parameter fit to obtain Ur using Eq. (1) as a
function of f in the comparison with measured data in Figs. 8(b)–8(d).

For self-consistency, we plot the implied Re in Figs. 5(b)–5(d) for the three sediment beds. We
note that Re are much lower than in the case of water. Nonetheless, we note that Re � 1 in the
case of the body, and thus adopting Lighthill’s model for evaluating thrust using Eq. (4) may be still
reasonable. We also plot the resulting head and body drag values Dh and Db in Figs. 7(b)–7(d) using
these lower Re, which result in higher Cd . We note that head drag is systematically higher compared
to body drag. And at least till f ≈ 10 Hz it increases in accord with increasing Tr , but then falls,
giving rise to the overall overestimate of Ur in the sediments when f increases above 10 Hz. These
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FIG. 8. Comparison of the measured speeds with the model in water (a) and sediment beds (b)–(d). Good
agreement is observed at lower f with systematic deviations above f = 10 Hz. The volume fraction φ is used
as a fitting parameter to evaluate the effective viscosity using Eq. (9), and was found to be φ = 0.53 (b), 0.54
(c), and 0.56 (d) in the cases of hb = 1, 2, and 3 cm, respectively.

deviations are clearly not captured by our simplified modeling of the forces due to the medium on
the robot.

VI. CONCLUSIONS

We constructed magnetoelastic robots with elastic bodies and demonstrated that they can move
in water-saturated sediment beds with transverse undulation of the body actuated by an oscillating
magnetic field. In our study, the applied oscillating field frequency, magnetic field strength, and
sediment depth are control variables. A transition from nearly rigid to anguilliform body motion is
observed because of subtle balance of thrust, drag, and elastic forces. Following intuition, the stroke
amplitudes increase with applied field and decrease with applied frequency due to the medium
drag. By contrast, the robot speed shows a more nuanced behavior. While the speed decreases with
increasing sediment depth, as may be expected due to increasing drag, the speed increases initially
with frequency, and then decreases after reaching a peak. The peaks depend on the sediment depth.
Such a trend can arise due to the different contributions of increasing frequency and decreasing
amplitude on locomotion speeds. We measured the Reynolds number by utilizing the speed of the
robot and by body and tail amplitude measurements. This analysis demonstrates that the robot
performs swimming in the inertial hydrodynamic regime. We also computed the thrust and drag
coefficients and forces to assess their impact at the specified oscillation frequency for varying
sediment heights. Given the body speeds and the highly fluidized nature of the medium, we focus
on locomotion strategies which are based on inertial hydrodynamics.

We find that the overall trends in the robot speed, at least in terms of the order of magnitude, are
generally consistent with Lighthill’s theory of elongated body swimming, over a range of driving
frequencies. This theory can be used to understand the important force components while swimming
and burrowing in sediment medium over a range of applied field strengths and frequencies. However,
there are systematic deviations in the measured speeds in water as well as in sediments that are not
captured by the model with increasing driving frequency. It is possible that these deviations arise
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due to the flow geometry in the medium in our system, whereby the flow is confined close to the
robot. Thus, further elemental modeling efforts are needed to fully capture the robot forms and
speeds observed in our study.
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