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Impingement of a circular liquid jet on a moving wall
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The impingement of a liquid jet onto a moving wall can lead to deposition in which
fluid spreads into a steady, U-shaped lamella. Experiments are conducted by impinging a
jet from a nozzle onto a rotating disk to produce jet Reynolds numbers 15 � Re j � 6000
and wall-to-jet velocity ratios 0.04 � uw/v j � 14 under conditions where the effects of
surface tension and gravity are relatively minor. Although experiments were conducted
over a broad range of Re j , the steady, U-shaped lamella only forms for 15 � Re j � 400;
at higher Re j the jet splashes. High-speed video is used to measure the geometry of
the impinging jet. The experiments are complemented with numerical simulations, which
reveal the anatomy of the lamella: The jet is diverted sideways by pressure gradients over
an impact zone that has a radius of order the jet diameter. Viscous stresses play little role in
the diversion of incoming fluid but act outside the impact region to turn the flow towards the
direction of motion of the wall. A fraction of the viscously redirected fluid is thereby taken
back underneath the jet, cushioning its impact. Eventually, the fluid enters a downstream
region of almost uniform depth wherein all the fluid is conveyed with the wall. A simple
model is proposed to rationalize the U shape of the lamella, fixing that footprint by arguing
that this arises where the radially symmetric, viscously modified outflow from the jet
matches the wall velocity. The simple model predicts the dimensions of the lamella (the
length of the upstream heel and the width of the downstream lamella) and that the shape
takes a universal form when scaled by one of these distances. These predictions agree well
with the experiments and simulations, except when the heel becomes excessively small.

DOI: 10.1103/PhysRevFluids.8.094101

I. INTRODUCTION

The impingement of a circular liquid jet on a stationary surface has been studied extensively:
Schach [1] presented a theoretical analysis of the potential flow problem for inviscid jet impinge-
ment, with later developments presented by Refs. [2–4]. Subsequent work [5–10] considered the
impact of viscosity, gravity, and surface tension within the framework of boundary-layer theory,
predicting the position where a hydraulic jump forms due to a downstream obstruction.

The axisymmetry of circular liquid jet impingement can be broken in several ways. For example,
Kate et al. [11] studied the impact of a jet impinging at an angle to the substrate, and Wilson and
coworkers have explored the action of gravity on the impingement of a horizontal jet onto a vertical
wall [12,13]. Here we consider how the circular symmetry is broken when a liquid jet impinges onto
a moving wall, continuing on from a previous study exploring the corresponding planar (i.e., two-
dimensional) problem [14,15]. Such problems are of interest to a variety of industrial applications,
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ranging from surface coating, cooling, and cleaning [16–20] to the deposition of liquid friction
modifiers in the railroad industry [21,22].

At very low Reynolds numbers, viscous stresses bend the jet before it makes contact with the
wall, and instabilities analogous to elastic buckling lead to a variety of patterns that have been
referred to as a “fluid mechanical sewing-machine” [23,24]. At much higher Reynolds numbers, the
jet remains largely unaffected by viscosity, with impact pressures diverting the incoming fluid into
a spreading sheet. In this situation, one expects two possible outcomes: splash or the deposition of
a thin film (a lamella) onto the moving surface. Moreover, once viscosity exerts its effect on any
lamella, the recirculation of fluid back towards the jet forms a downstream obstruction (relative
to the jet motion away from the impingement location) that sets the scene for the appearance of
hydraulic jumps. Previous experiments have indeed observed these different possible outcomes
[25–31].

Much of the previous work has focused on the transition from deposition to splashing, catego-
rizing the impact of the speed and properties of the incoming liquid jet, the speed and roughness
of the wall, and the ambient air pressure [25,27–29]. Our focus here is rather on the deposition
regime under conditions where surface tension and gravity are less significant, for which previous
experiments have indicated that the fluid spreads into a distinctive U-shaped lamella reminiscent of
the Rankine half-body in potential flow [30,31]. In this setting, and given the jet diameter and speed,
d and v j , the wall speed, uw, and the fluid density and viscosity, ρ and μ, the two key dimensionless
parameters that control the problem are the jet Reynolds number Re j = ρv jd/μ and the velocity
ratio uw/v j .

We use a combination of laboratory experiments and numerical simulations to explore the regime
of steady deposition. Our first goal is to establish a regime diagram on the (Re j, uw/v j ) plane that
identifies where jet impingement onto a moving surface creates a steady U-shaped lamella. We
further focus on situations in which viscous stresses are sufficiently strong and wall speeds are
sufficiently high that turbulence and hydraulic jumps are mostly avoided. The U-shaped lamella
then adopts a relatively simple structure that we characterize in detail. In particular, we observe that
the lamella downstream of the jet is relatively flat and the U shape has a scale that varies with Re j

and uw/v j but otherwise takes a nearly universal form (somewhat like the Rankine half-body).
In Sec. II A, we describe the experimental approach. The numerical method is summarized in

Sec. II B. We report the observed phenomenology of the jet impact and the regime diagram in
Sec. III. A simple model that captures the U shape of the lamella is formulated in Sec. IV. We
compare the model predictions and the results from the experiments and simulations in Sec. V. We
close with brief conclusions, open questions, and suggestions for future work in Sec. VI.

II. METHODOLOGY

A. Experimental approach

1. Apparatus

As sketched in Fig. 1, the experiment consists of a disk spun on a horizontal axis. The jet
impinges from a nozzle attached to an accumulator, and high-speed cameras image the flow. The
different experimental components are controlled via LabVIEW. All experiments are conducted at
an atmospheric air pressure of 101 ± 1.5 kPa.

The rotational speed of the disk is set using the variable frequency drive (VFD) on an electric
motor. The VFD motor can drive the disk at an angular velocity � ranging from 50 to 2000 rpm,
giving a local surface speed of 0.94 to 63 m/s at the impingement point, which lies at a radius of
R = 30 cm from the center of the disk.

For each experiment, the accumulator is first charged with test liquid and then pressurized to a set
value by means of a compressed air cylinder and regulator. A solenoid valve is then opened to allow
the liquid through the nozzle. To avoid any initial transients, the jet is initially redirected away from
the disk by means of a deflector; 1.5 s after the solenoid valve is opened, the deflector is retracted
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FIG. 1. Sketch of the experimental arrangement and an image from a typical experiment taken through the
transparent polycarbonate disk.

(taking less that 4 ms to unblock the jet, as judged from the high-speed photography) and the jet is
allowed to impinge on the spinning disk. Simultaneously, high-speed cameras (using a frame rate
of 1000 Hz) record the impingement process and a WIKA type A-10 pressure transducer upstream
of the nozzle records the back pressure. The solenoid valve closes after the jet has impinged on the
disk for one revolution. Following each test, a water jet is used to clean any liquid from the disk,
which is then dried with a microfiber cloth.

Two interchangeable disks, 63 cm in diameter and 1.5 cm in thickness, are used. One disk is made
of polished steel with a surface roughness of 1.8 μm on one half, and a mirror finish with surface
roughness of 0.17 μm on the other half. The second disk is transparent and made of polycarbonate
with a surface roughness of 0.13 μm. These arithmetic mean roughness values are measured by
scanning a 0.5 × 0.5 mm2 sample surface with an Olympus LEXT OLS3100 confocal microscope.
Switching the disks allows for testing on different surfaces and different viewing angles.

The nozzle assembly includes one of three interchangeable nozzle tips, with orifice diameters of
do = 810, 890, 1320μm, that generate liquid jets of diameters d = 760, 830, 1230 μm, respec-
tively, as measured optically. These jet diameters are independent of the tested fluid and nozzle back
pressure, presumably because the jet Reynolds numbers are sufficiently high that the vena contracta
is constant. The jet velocity v j ranges from 2.6 to 21 m/s. Further information about the nozzles
and jets is provided in Ref. [15], including the calibration curves between nozzle back pressure and
flow rate. The nozzle is positioned 5 cm away normal to the disk surface and is orientated such that
the jet impinges almost perpendicularly (with an error of less than 4◦ due to gravity). This nozzle
distance (50 or more jet diameters) is sufficiently large that one expects any nonuniformity in the
velocity distribution leaving the nozzle to relax well before impact, even at our highest Reynolds
numbers [32].

For the steel disk, two high-speed cameras (a Phantom V611 and a Phantom V7) record the
jet impingement behavior and the lamella simultaneously from different angles. One camera is
located slightly upstream from the jet and is orientated towards the impingement location; the
optical axis of the second camera is orientated about 10◦ relative to the disk surface to view the
impingement region from the side. A high-intensity 6700 Lumen white LED array with collimating
lens illuminates the impingement area. The cameras record images at 1280 px × 800 px resolution,
with typical magnifications corresponding with 20 μm/pixel, as determined by imaging a precision
laser-engraved ruler.

For the transparent polycarbonate disk, a single high-speed camera is located on the backside of
the transparent disk, orientated along the axis of the jet. Figure 1 shows a typical back-view image
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TABLE I. The composition and properties of test liquids at 23 ◦C.

Glycerol Viscosity Density
concentration (wt%) (mPa s) (kg/m3)

70 19.4 1180
80 50.7 1197
85 91.5 1215

and highlights the local Cartesian coordinate system that we use to describe the geometry, along
with some key length measurements: Lh and Lw. The heel length Lh is defined as the distance from
the center of the jet to the upstream edge of the liquid lamella in the −x direction. The lamella width
Lw is defined as the widest portion of the lamella in the y direction.

The three different mixtures of water and glycerol in Table I serve as Newtonian test liquids.
Their fluid density ρ is measured gravimetrically, and their viscosity μ is determined with an
Anton-Paar Physica Modular Compact Rheometer 301. The measured density and viscosity are,
respectively, within 0.5% and 3% of those reported elsewhere [33].

B. Numerical method

Three-dimensional simulations of liquid jet impingement on a moving wall are conducted with
ANSYS Fluent (2019 R3 release). In this code, the coupling between pressure p(x, y, z, t ) and
velocity u(x, y, z, t ) is achieved with the SIMPLE algorithm, spatial discretization is implemented
through a second-order upwind scheme, and time discretization uses a first-order implicit scheme.

The interface between the liquid of the impacting jet and the surrounding air is tracked with the
volume-of-fluid method (VOF) [34]. In VOF, the phase in each computational cell is represented by
the liquid volume fraction, α(x, y, z, t ), where 0 � α � 1 in any cell. A cell containing only liquid
corresponds to α = 1, and α = 0 represents a cell filled with air; intermediate values of α indicate
a cell that contains the interface. The liquid volume fraction is advected with local fluid velocity u,
and the material properties in a cell are determined by linear interpolation: ρ = (1 − α)ρair + αρl

and μ = (1 − α)μair + αμl . Practically, we adopt values for the density and viscosity of the liquid
phase to match the experiments, taking those of the other phase to be characteristic of air at room
temperature. For the bulk of the simulations (all results reported in Sec. III and Sec. V), we omit both
gravity and surface tension. However, in a small number of cases, we include them to either gauge
their effect (see Sec. II C) or to more carefully match physical conditions (Sec. II D), the ANSYS
software allowing the incorporation of surface tension through a suitably defined body force [35].

1. Computational domain and boundary conditions

The computational domain is a rectangular prism of size 20d × 7d × 4d . Figure 2 shows the
domain geometry and the associated boundary conditions. The domain is symmetric along the y = 0
plane and extends 4d upstream and 16d downstream from the impingement point at the origin. A
semicircular jet is injected from the top boundary in the (−z) direction and the bottom wall moves
in the (+x) direction. For the parameter space of interest, this domain is large enough to capture
the entire upstream (against the motion of the wall) and lateral spread of the lamella. The domain is
also sufficiently large in the downstream direction that viscous forces bring the entire lamella to the
wall speed before reaching the downstream boundary.

The boundary conditions are as follows: along y = 0, symmetry conditions are applied. The
moving wall is no slip: u(x, y, 0, t ) = (uw, 0, 0). Over the semicircular region of the top boundary,
r =

√
x2 + y2 � d/2 and z = 4d , the inflowing jet velocity and volume fraction are prescribed:

u(x, y, 4d, t ) = (0, 0,−v j )T and α(x, y, 4d, t ) = 1. Along all other boundaries, pressure-outlet
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FIG. 2. Computational domain and associated boundary conditions. For clarity, the mesh shown is coarser
than those used in the computations.

conditions are imposed, wherein the (gauge) pressure is set to be zero and all other conditions
are extrapolated from the interior of the domain.

Computations are initiated with either no liquid from the jet in the domain or using the final
solution from an existing simulation with different parameter settings. The system of equations are
then integrated forwards in time until a steady state is reached or discontinued and rejected
otherwise.

2. Meshing and mesh convergence

The computational domain is divided into cells using a nonuniform hexahedral mesh that is finer
around the liquid jet (near r = d/2) and the lamella (near z = 0), while being coarser in areas that
only contain air. Three grid resolutions are used, denoted as coarse, medium, or fine. For the coarse
grid, the mesh near the liquid jet forms an O-grid with �r = d/20; the mesh gradually transitions
to one of Cartesian type and becomes fully Cartesian for |x|, |y| � 2d , with �x = �y ≈ d/10 on
x < 2d . In the downstream direction (x > 2d), �x gradually increases from cell to cell by a factor
of 1.05. Along the z direction, the mesh resolves the thin lamella: The cells adjacent to z = 0 have a
vertical cell size �z = d/20 and successive cell heights gradually coarsen by a factor of 1.03 with
increasing z. An even coarser version of the grid is sketched in Fig. 2. The coarse grid is refined
once by halving the cell size in each dimension to obtain the medium grid, and the medium mesh is
refined in the same fashion to achieve the fine grid. Several cases are simulated with all three grids
to study mesh convergence.

Before reporting the mesh convergence results, it is important to appreciate that there is an issue
associated with the no-slip condition on the moving wall and our omission of any contact-line
physics, which prevents the liquid from the jet from touching the moving plane. Instead, air
unavoidably becomes swept along underneath the spreading liquid diverted from the jet. This air
layer becomes too thin to resolve in the computations, leaving an intermediate concentration within
the lowest grid cells. The mesh refinement studies reported below indicate that the varying degree
of resolution of the air layer does not appear to affect the convergence of the numerical solution
elsewhere. The layer can also be artificially removed by suitably resetting the concentration field
in the lowest grid cells. This device avoids any issues with spatial resolution, at the expense
of an apparent violation of mass conservation, but again does not affect the solution elsewhere.
Consequently, the unresolved air layer appears to be a minor price to pay for the omission of
any contact-line physics. Nevertheless, numerical stability problems associated with the resolution
failure become severe for lower velocity ratios, leading us to report results for only uw/v j > 0.5.

The benchmark case for which we report mesh convergence studies adopts the parameter values
Re j = 155 and uw/v j = 1.62. For the steady state reached in these computations, we compute the
Grid Convergence Index (GCI) [36] for a few physical quantities of interest. Between the medium
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FIG. 3. Vertical profiles of horizontal velocity along three different vertical lines (as indicated) for the three
grid resolutions, with Re j = 155 and uw/v j = 1.62.

and fine grids, the GCI values for the heel length Lh and lamella width Lw are 2.66% and 1.51%,
respectively. For the velocity profiles along select vertical lines shown in Fig. 3, the same GCI does
not exceed 1%. We further observe that the GCI between the coarse and medium grids is about four
times that between the medium and fine grids, indicating that the asymptotic range of convergence
is achieved with these meshes (given an order of convergence of 2).

The air-liquid interface, identified by the surface where α = 0.5, is plotted in Fig. 4 for the bench-
mark solutions on the three meshes. The first two panels show the convergence with refinement
along sections through the heel and the downstream lamella at x = 8d . The air layer underneath
the spreading liquid is visible in the latter, particularly for the fine mesh where the layer appears to
break up into a series of distinctive “bubbles.” The bottom panel shows the U-shaped footprint of
the lamella, again demonstrating convergence with mesh refinement.

We conclude that mesh convergence is satisfactory from the medium to the fine mesh. The
simulations in the following sections use the medium mesh (where �z = d/40) to achieve a balance
between computational resources and accuracy. In a few cases where the lamella becomes very thin,
the medium mesh is further refined in the z direction such that �z = d/80 and that in all the cases
there are at least four layers of cells across the thinnest part of the lamella. Even when the resolution
becomes this poor, it mostly arises well downstream where there is little structure to the velocity
field.

C. Dimensionless groups and confounding effects

A translation of the working dimensional parameters to Reynolds number and velocity ratio
indicates that the experiments are conducted over the range

15 � Re j = ρv jd

μ
� 6000 and 0.04 � uw

v j
� 14.

If σ and g denote surface tension and gravity, then we further estimate the Weber number, We =
ρv2

j d/σ > 10 (taking σ = 64 mN/m), and Froude number, Fr = uw/
√

gd > 9. These relatively
high values imply that the effects of surface tension and gravity are less significant.
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FIG. 4. Interface profiles for different grids with Re j = 155 and uw/v j = 1.62, showing sections through
(a) y = 0 and (b) x = 8d and then (a) the U-shaped footprint of the lamella on the (x, y) plane. The vertical
scale is exaggerated in (b).

To explore the effect of surface tension in more detail, we conducted separate simulations
in which we set σ = 0.64 N/m. Except for prompting a modest amount of capillary retraction
further downstream, these additional computations suggested that interfacial effects at the air-water
interface did not significantly impact the lamella dimensions. The capillary retraction, arising for
capillary numbers of Caw = μuw/σ < 18, builds up an elevated ridge at the lamella’s sides and
causes the maximum width to arise nearer the jet. Both effects can also be visually observed in
the experiments (with the retraction arising over distances comparable to the curvature from disk
rotation). The simulations indicate that surface tension may reduce Lw by up to 5%.

More awkwardly, the Froude number Fr = uw/
√

gd > 9 estimates gravitational effects over
distances of the jet diameter d , whereas the typical span of the lamella over the vertical surface
of the disk is much greater. Nevertheless, even if we replace the jet diameter by a typical lamella
length (which may be as much as 10d) in the Froude number, this dimensionless estimator of
gravitational effects still remains three or more. Thus, although it is possible that gravity may begin
to affect the largest lamellas, it is unlikely to play a key role. To further gauge the importance
of gravity, we conducted additional simulations in which gravity was included for a case with a
relatively large lamella (Re j = 525 and uw/v j = 0.5). In particular, simulations were conducted
including gravity, orientating its direction in first the positive and then the negative x direction.
These simulations, along with the corresponding simulation omitting gravity altogether, displayed
no significant difference in lamella geometry.

The circular, rotating geometry of the spinning disk also does not reproduce the rectilinear motion
of our target model problem. A measure of the effect of the Coriolis force experienced on the
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TABLE II. Experimental (Exp) results compared with simulation (CFD) results with matching operating
parameters.

Lh/d Lh/d Rel. Err. Lw/d Lw/d Rel. Err.
Re j uw/v j (Exp) (CFD) (%) (Exp) (CFD) (%)

16 1.06 0.89 ± 0.06 0.87 ± 0.01 −2 2.80 ± 0.14 2.61 ± 0.01 −7
73 0.84 1.34 ± 0.06 1.56 ± 0.01 16 4.63 ± 0.14 5.34 ± 0.05 15
159 0.96 1.83 ± 0.06 1.84 ± 0.01 1 6.05 ± 0.14 6.51 ± 0.03 8
158 2.89 1.10 ± 0.06 1.11 ± 0.01 1 3.47 ± 0.14 3.60 ± 0.03 4
208 2.71 1.24 ± 0.06 1.25 ± 0.01 1 3.85 ± 0.14 4.19 ± 0.08 9
296 1.03 2.15 ± 0.06 2.30 ± 0.01 7 7.14 ± 0.14 7.66 ± 0.02 7

spinning disk is provided by the Rossby number,

Ro = uw

2d�
= R

2d
∼ 0.3

0.001
∼ 300. (1)

Since Ro � 1, the effect of the Coriolis forces should be negligible. In fact, to within experimental
error, the lamella dimensions match between jet impaction on the spinning disk and on a surface
moving rectilinearly (a belt sander), for a few select experimental parameters settings (jet speed,
wall speed, jet diameter, etc.). Thus, the departure from rectilinear surface motion is not important
in our spinning disk experiments.

Provided that splash does not occur, the dimensions Lh and Lw for experiments on the mirror-
finished surface of the metal disk are the same, to within experimental error, as those on either the
rougher surface or the polycarbonate disk. In other words, the corresponding surface roughnesses
have no impact on the lamella geometry, consistent with the fact that flow is laminar and the
characteristic roughness height (0.17–1.8 μm) is rather smaller than the lamella thickness. To test
whether the static contact angle of the liquid with the surface impacts the steady lamella dimensions,
we conducted tests on a glass slide mounted on the disk. The static contact angle of the test liquid
with glass was measured to be 17◦, in comparison with the 87◦ observed for the polycarbonate. For
tests conducted at three different conditions [(Re j, uw/v j ) = (151, 0.8), (150,2.0) and (250,0.80)]
all lamella dimensions were the same to within experimental uncertainty. In other words, the
experimental lamella appears to be independent of the surface properties of the spinning disk.

D. Detailed comparison

Table II compares the dimensionless heel length Lh/d and lamella width Lw/d from six exper-
iments on the steel disk with results from simulations. The presented values for the simulations
are Richardson extrapolations [37], based on results computed with the medium and fine grids.
The six cases span a range of operating parameters, all of which are matched in the simulations,
including surface tension and gravity towards the x direction. Except in a single case, the differences
between the simulations and experiments are less than 10%; the CFD mostly predicts larger lamella
dimensions.

III. PHENOMENOLOGY

A. Regime diagram

Figure 5 shows the observed behavior on the steel disk with the mirror surface. Three regimes
are identified: steady deposition, unsteady splashing, and a transitional regime between the two. The
steady deposition regime may be further subdivided into steady deposition with a flat lamella (see
images in the two right columns of Fig. 7) and steady deposition with an obviously elevated rim
(see images in the two left columns of Fig. 7). For steady deposition, the jet spreads out smoothly
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FIG. 5. Experimental regime diagram. The different regimes are described in the text. The solid line
marks [Re j/(uw/v j )]1/3 = 2.5 (see Sec. V), and the dashed lines indicate the contours (1 + uw/v j )Re j =
700, 1000, 1300. The parameter settings of the simulations are shown by the red stars; these all correspond
to steady deposition (with or without stationary wave trains decorating the upstream heel, as in the top left
images of Fig. 8).

to form a distinctive, U-shaped lamella, as reported previously and shown earlier in Fig. 1. During
unsteady splashing, the edge of the heel lifts up and then fragments to release small droplets [see the
snapshot of Fig. 6(a)]. Over the transitional regime, the flow alternates irregularly between smooth
deposition and splashing, as found by Keshavarz et al. [27]. At much higher Reynolds numbers,
beyond the limits of the plot in Fig. 5, the jet itself becomes turbulent and we have observed bubbly
turbulent bores upstream of the jet, as illustrated in Fig. 6(b) for an experiment conducted using
water (cf. Ref. [25]).

FIG. 6. Examples of a splash at (Re j, uw/v j ) = (619, 0.44) (left) and a turbulent bore at (Re j, uw/v j ) =
(5840, 0.3) (right).
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FIG. 7. Experimental lamella shapes at varying Re j and uw/v j . The slight tilt of the jet was due to a
combination of the influence of gravity and mechanical constraints that limited the alignment of the jet. The
tilt is less than 4◦, and the perpendicular velocity component is below 0.2% of v j .

The transition between steady deposition and splashing largely follows a contour of constant
Re j (1 + uw/v j ) (see Fig 5). Because splashing arises when the heel lifts up, this observation
is consistent with the hypothesis, following classical arguments for drop impacts [38], that the
transition occurs when the velocity difference between the fluid and the underlying surface (which
is uw + v j for the heel) reaches a critical threshold, holding the properties of the ambient air and
surface tension fixed (see also Ref. [39]). As this threshold is likely sensitive to the surface properties
of the disk and ambient air properties [29], we have not tried to quantify the transition any further
experimentally; the regime diagram in Fig. 5 applies only to the mirrored steel disk at standard
atmospheric pressure.

We also avoided any detailed exploration of splashing states, or the transition to them, using the
numerical simulations: When the dynamics became unsteady and suggestive of splashing at higher
Reynolds numbers and velocity ratios, the treatment of the interface became unreliable, generating
small-scale features at the finest levels of the grid. The simulations even show steady deposition at
parameter settings where splashes were observed experimentally (see the red stars in Fig. 5, which
add the simulation settings to the plot). We attribute this conflict to the inability of the simulations
to capture the splash phenonemon.

B. Steady lamellae

Our main focus is on the regime of steady deposition; Fig. 7 presents a collage of images showing
how the lamella structure varies as the operating parameters sweep across this area of the regime
diagram. A similar collection of interface profiles from the simulations is shown in Fig. 8. Both
figures indicate that the lamella dimensions Lh and Lw increase when Re j increases or as uw/v j

decreases.
For most of the regime (approximately 15 < Re j < 400 and 0.3 < uw/v j < 3), a steady heel

forms upstream from the impingement point, and the liquid spreads into a lamella of nearly constant
lateral width. Examples of this behavior may be seen in the middle columns of Figs. 7 and 8 (see also
Fig. 4). To the upper-left part of the deposition regime (approximately Re j > 200 and uw/v j < 0.3),
the heel develops a pronounced elevated rim, as observed for the top-left case (Re j = 200, uw/v j =
0.3) in Fig. 7. For the simulations, similar features also appear, although sometimes taking the form

094101-10



IMPINGEMENT OF A CIRCULAR LIQUID JET ON A …

FIG. 8. Simulated lamella shapes for varying Re j and uw/v j .

of a stationary wavetrain (Fig. 8, top left). Finally, below the solid green line marked in Fig. 5
(which is rationalized in Sec. V below), the heel becomes relatively small, or even disappears, and
the lamella width approaches the jet diameter (lower right cases in Figs. 7 and 8).

C. Lamella anatomy

Based on the classical discussions of jet impact onto stationary walls, one expects the lamella
to decompose into a number of distinct regions with different dynamical character. First, given the
relatively high jet Reynolds number, the incoming fluid is expected to be diverted into a radially
outgoing potential flow by high impact pressures. Second, outside the impact zone, viscous stresses
grow in importance, gradually encroaching on the outflow from below and redirecting fluid motion
into the direction of the wall, thereby forming the upstream heel. Unlike the traditional impingment
problem in which the potential flow sits directly above a stationary wall, this viscous redirection
also implies that a layer of liquid must be carried back underneath the jet from the heel, cushioning
the impact. Last, far downstream [for x of O(Lh)], the lamella must approach constant width once
all the fluid reaches the wall speed uw. Mass balance at this stage sets the average thickness of the
lamella h in terms of its width LW : h = πd2v j/(4uwLw ).

To confirm these expectations, we select three examples with varying velocity ratio, uw/v j , but
fixed jet Reynolds number Re j = 137. These examples are presented in Figs. 9–11 and correspond
to cases with lamellae that are relatively wide, typical, and narrow, respectively. Cuts through the
impact pressure distribution that diverts the jet are shown along the top row, scaled by 1

2ρv2
j . High

pressure is restricted to the region directly underneath the jet, falling quickly to ambient values
beyond. In the inviscid jet impingement problem for a stationary wall [3,4], elevated pressures arise
over an impact zone with r =

√
x2 + y2 < d . As seen in Figs. 9–11, the extent of the impact zone is

similar for a viscous jet impinging on a moving wall, although in the example with the fastest wall
speed (Figs. 11), the upstream diverted fluid is redirected downstream before reaching such radii.

Streamlines drawn over the top surface of the lamella (lower left panels) display the viscous
redirection more clearly: Upstream of the jet axis (x < 0), a fraction of the fluid elements within
this surface turn and become tangential to the edge of the lamella before proceeding underneath to

094101-11



LIU, BALMFORTH, STOEBER, AND GREEN

FIG. 9. Simulation results for Re j = 137 and uw/vy = 0.7. The pressure distribution is plotted along the
top row for (a) z = 0.04d , (b) y = 0, and (c) x = 0. The black dots show select contours of constant pressure
for the inviscid solution of Lienhard et al. [3,4]; the corresponding contours from the simulation are indicated
by the red lines. Lienhard et al.’s interface profile is plotted by the white dashed line. The lower row displays
(d) streamlines along the top surface, (e) the distribution of the Bernoulli function p + 1

2 ρ|u|2 for x = 0, and
(f) radial pressure distributions along z = 0.04d and the angular cuts shown in (d). The streamlines of (d) start
at r = 1

2 d and z = 3
2 d and are colored according to the local speed |u|. In (e), the red lines indicate a selection

of streamlines beginning at z = 3
2 d . The black dots in (f) show the inviscid pressure solution and the curves

are color coded from θ = 0 (red) to θ = π (blue). The red dashed lines indicate r = d , and the vertical scale
in (b), (c), and (e) is exaggerated.

create the underlying return flow [see also the streamlines drawn in the midplane y = 0 in panels
(e)]. The other streamlines remain on the top surface and turn more gradually to the wall direction.
In all three cases, the radial pathways taken by the diverted fluid from the jet extend, at most, only
a little way beyond the impact zone (r < d).
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FIG. 10. A similar set of plots to those in Fig. 9 but for uw/v j = 2.

To visualize the diverted potential flow from the jet, we plot, in the left lower panels of Figs. 9–11,
the Bernoulli function, p + 1

2ρ|u|2, over the midplane y = 0. This quantity is largely constant for
the potential flow region but changes as viscous redirection takes effect. For the example with lowest
wall speed, the interface develops a prominent bump upstream of the jet, as seen earlier in Fig. 8.
This bump corresponds to a recirculation cell [Fig. 9(e)], which traps fluid elements lying perfectly
in the midplane; neighboring elements to either side spiral through and then out of the cell. The
sections through the midplane y = 0 have some similarity with the flow patterns seen for planar jets
impacting a moving wall [14,15], even though the geometrical constraints of that two-dimensional
problem are very different.

Figures 9–11 also shows the inviscid interface position and pressure distribution presented by
Lienhard et al. [3,4]. In their solution, the decay of the impact pressure for r → d implies that the
fluid diverted from the jet creates a radially outgoing film of thickness h = 1

8 d there (the incoming
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FIG. 11. A similar set of plots to those in Fig. 9 but for uw/v j = 7.

volume flux 1
4πd2v j corresponds to an outgoing flux of 2πdhv j). The local depths near the edge

of the impact zones in the numerical simulations are somewhat deeper as a result of the underlying
return flow. Although the return flow also distorts local pressures, the impact pressure distribution
remains close to Lienhard et al.’s solution near the moving wall [panels (f)]. Higher up within the
impact zone [panels (b) and (c)], the comparison degrades.

The approach to the final downstream lamella profile for the three examples is shown in more
detail in Fig. 12. The left-hand panels display a sequence of sections through the lamella at fixed
downstream stations, x. These highlight the perhaps surprising feature that the bulk of the final
profile has a uniform depth. The convergence of the average downstream speed 〈u〉 (with the average
taken over the liquid phase) to the wall speed is shown in Fig. 12(d); evidently, the fluid reaches this
state well before traveling distances of order 10d .
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FIG. 12. Sections through the upper interface of the lamella at x = 4
3 d , 2d , 7

2 d , 5d , 8d , and 14d (from red
to blue) for simulations with (a) uw/v j = 0.7, (b) uw/v j = 2, and (c) uw/v j = 7; Re j = 137. The convergence
of the downstream speed 〈u〉/uw , averaged over the liquid phase and scaled by uw , for all three cases is shown
in (d).

IV. A SIMPLE MODEL FOR THE LAMELLA U SHAPE

To provide a simple model of the U shape of the lamella, we use a relatively simple argument
inspired by one proposed by Wilson et al. for the cleaning of a soiled surface by a moving jet [40].
To begin, we first observe that the U shape is determined mostly outside the impact zone, where the
outflow from the jet appears much like a point source with constant flux Q = 1

4πd2v j . As discussed
by Watson [6], if there were no motion of the wall, the radial velocity of this outflow would be
approximately given by the boundary-layer form,

u(r, z) = U (r) f (η), η = z

h(r)
, (2)

where h(r) is the local depth, the profile function f (η) satisfies the conditions f (0) = f ′(1) = 0
and f (1) = 1, and the radial velocity on the top surface is (at large distances, for which Wilson’s
constant l can be neglected)

U (r) = A

r3
, A = cρl Q2

μ
, c = 3

∫ 1
0 f 2dη

4π2 f ′(0)(
∫ 1

0 f dη)2
. (3)

In the case of the similarity solution used by Watson for f (η), the constant c = 0.0681; the simpler
quadratic profile f (η) = η(2 − η), often used with the von Karman-Pohlhausen integral averaging
method, yields instead c = 0.0456.

In our Cartesian coordinates centered at the jet, the superposition of the free-surface velocity
with the uniform wall speed is

(
uw + U cos θ

U sin θ

)
, (4)

where θ is the polar angle. We now parametrize the edge of the lamella by r = r(θ ). If this curve is
set by the condition that the velocity field in (4) has no normal component along r = r(θ ), then

(r′ sin θ + r cos θ, r sin θ − r′ cos θ )·
(

uw + U cos θ

U sin θ

)
= 0.
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FIG. 13. The prediction for the steady lamella U shape in Eq. (7) compared with the Rankine half body,
for which r/Lh = (π − θ )/ sin θ .

With the form of U (r) given by Eq. (3), we now arrive at

d

dθ
[(r sin θ )3] = −3A

uw

(sin θ )2. (5)

Thus, if y ≡ r sin θ = 0 at θ = π , then

y3 = r3 sin3 θ = 3A

uw

∫ π

θ

sin2 ϑ dϑ = 3A

4uw

(2π − 2θ + sin 2θ ). (6)

Consequently,

r(θ ) = Lh

[
3(2π − 2θ + sin 2θ )

4 sin3 θ

] 1
3

(7)

and

Lh =
(

A

uw

) 1
3

, (8)

given that [(2π − 2θ + sin 2θ )/ sin3 θ ] → 4
3 and r → Lh for θ → π . In view of (3), the heel length

can be written as

Lh

d
= aRe

1
3
j

(
v j

uw

) 1
3

, (9)

where a = 0.45 for Watson’s similarity solution and a = 0.30 for the quadratic boundary layer
profile.

Finally, taking the limit θ → 0 in Eq. (6) now furnishes the lamella width,

Lw = 2y|θ=0 = 2

(
3π

2

) 1
3

Lh ≈ 3.35Lh. (10)

Therefore, both the heel length Lh and the lamella width Lw follow the same dependence on Re j

and (uw/v j ). The U shape predicted by (7) has a somewhat similar form to the Rankine half body
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FIG. 14. Heel lengths (top) and lamella widths (bottom) for series of experiments (“Exp”) and simulations
(“CFD”) with varying Re j at fixed uw/v j (as indicated). The lengths and widths are scaled by (uw/v j )1/3 to
eliminate the main differences between the data sets with different velocity ratios. The blue line indicates a
power law of 1/3.

(Fig. 13), even though that latter shape is prescribed purely by potential flow. More importantly, the
U shape is predicted to adopt a universal form after scaling by the lamella width.

Note that the power-law dependence of Lw and Lh on Reynolds number and velocity ratio follow
from much simpler scaling arguments characteristic of traditional boundary-layer theory: When the
velocity is veering towards the wall speed within the lamella, the inertial terms in the momentum

equation are O(u2
w/Lw ). These must balance the viscous stress, which is of order μuw/(ρh

2
). But

h = O(v jd2/(uwLw )) from the global mass balance. Hence, if Lh = O(Lw ), then we observe that
both must scale as (uw/v j )−1/3Re1/3

j .
Although the downstream lamella is somewhat thin, it is difficult to proceed beyond the simple

model and scaling analysis outlined above using conventional boundary-layer theory. A first com-
plication is the need to incorporate the underlying return flow that cushions the jet impact (which
complicates the distribution of flux and shape of the viscous boundary layer). In boundary-layer
theory, the heel length and lamella width should also greatly exceed the jet diameter, but there is no
such scale separation in either the experiments or simulations.

V. ANALYSIS

To interrogate the predictions of the simple model of Sec. IV, we collect together data extracted
from our experiments and simulations. Figure 14 shows the (scaled) heel lengths and lamella widths,
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FIG. 15. Heel lengths (top) and lamella widths (bottom) for varying uw/v j at fixed Re j (as indicated). The
lengths and widths are scaled by Re−1/3

j to eliminate the main differences between the data sets with different
Reynolds numbers. The blue line indicates a power law of −1/3.

Lh/d and Lw/d , for series of simulations and experiments with varying Reynolds number Re j at
fixed velocity ratio uw/v j . Figure 15 shows similar data, but for series with varying uw/v j at fixed
Re j . Experimentally, it is difficult to control v j precisely in order to set Re j and uw/v j for any one
series of tests, so results with velocity ratios or Reynolds numbers within the bounds indicated in
the legends are selected. In both figures, the results of the simulations and experiments fall close to
the power-law scalings predicted by Eqs. (9) and (10).

Figure 16 presents the full set of experimental and numerical data for heel length Lh and lamella
width Lw. In the first two panels of this figure, guided by Sec. IV, we formulate the scaled lengths,

Lh

d

(
uw

v jRe j

) 1
3

and
Lw

d

(
uw

12πv jRe j

) 1
3

,

and plot them against (Re jv j/uw )1/3 to separate cases at different operating parameters. In the
simple model, these scaled lengths equal a constant depending on the boundary layer velocity
profile. Specifically, the constant is 0.30 for the quadratic profile, indicated by the blue horizontal
lines in Fig. 16, and 0.45 for Watson’s similarity solution, shown by the purple line. The model also
predicts that the ratio Lw/Lh should equal the constant value (12π )1/3; we plot this ratio against
(Re jv j/uw )1/3 in Fig. 16(c).
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FIG. 16. Scaled heel lengths and lamella widths plotted against (Re jv j/uw )1/3 for both experiments and
CFD. The horizontal lines show the values predicted by the simple model of Sec. IV (using either Watson’s
similarity solution or the quadratic boundary-layer profile).

Overall, the data from both the experiments and simulations are in broad agreement with the
predictions of the simple model. For lower values of (Re jv j/uw )1/3, there is a suggestion in Fig. 16
of a trend away from a constant value, due perhaps to the fact that the heel length for these cases is
relatively short. Indeed, if Lh � d in Eq. (9), or (Re jv j/uw )1/3 < a−1, then the heel is predicted to
occur within the impact zone. The diverted outflow cannot then appear to come from a point source.
Accordingly, taking a value for a midway between 0.30 and 0.45, we adopt the rough criterion,

(Re jv j/uw )1/3 < 5
2 , (11)

as an indicator for when the steady lamella has a heel that is too small to be described by the model.
This limit is indicated by the vertical dashed line in Fig. 16 and is also displayed on the regime
diagram in Fig. 5.

Finally, Fig. 17 plots the horizontal footprints of lamella, scaled by Lw, for a collection of profiles
from the experiments and simulations. The top panel shows scaled shapes for cases with varying Re j
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FIG. 17. Lamella shapes from experiments (“Exp”) and simulations (“CFD”) scaled by Lw and compared
with the prediction in Eq. (7), for (a) fixed uw/v j and varying Re j and (b) fixed Re j and variable uw/v j . The
shaded area shows the average (in polar coordinates), plus or minus the standard deviation of six simulations.

at fixed uw/v j ; the bottom panel has fixed Re j and varying uw/v j . All the shapes are collapsed by the
scaling, even though both Re j and uw/v j vary by an order of magnitude, and all align satisfyingly
with the curve given by Eq. (7).

VI. CONCLUSION

In this study, the impingement of a liquid jet on a dry moving wall has been studied using
experiments and numerical simulation. At low values of Re j and high values of uw/v j , the impinging
liquid jet becomes immediately dragged downstream by viscous stresses, forming a thin liquid stripe
with a width given approximately by the jet diameter d . At high values of jet Reynolds number
or wall speed, jet impingement prompts a splash. For an intermediate range of conditions, steady
deposition results, with the liquid spreading into a U-shaped lamella. Experimentally, we collected
such observations together and provided an empirical regime diagram on the (Re j, uw/v j ) plane
that identifies the steady deposition phase.

The numerical simulations enable a deeper examination of the structure of the lamella: high
impact pressures divert the liquid jet sideways in a nearly potential-flow adjustment. Subsequently, a
viscous deflection turns the fluid towards the direction of motion of the wall. This viscous redirection
creates a distinctive heel upstream of the jet that returns fluid underneath the jet, cushioning its
impact. After traveling distances of less than ten or so jet diameters, all the fluid is eventually
brought to the wall speed. The final fluid film has almost uniform depth.

Guided by this vision of lamella dynamics, we constructed a simple model for the shape of the
lamella. This model predicts the length of the heel, the width of the downstream lamella, and that
the entire shape adopts a characteristic universal form if scaled by one of these distances. Results
from both the experiments and the simulations are in agreement with these predictions, except when
the heel becomes relatively small.

There are a number of open questions and suggestions for future work arising from this study.
The simple model for the lamella shape is relatively crude yet works surprisingly well. The model
does not, however, provide any insight into why the fluid surface eventually becomes flat. These
mixed successes of the model motivate a more careful analysis. We have also devoted little attention
to the transition to splashing that limits the deposition to one side of our regime diagram. Although
there have been some experimental studies of the onset of splash for an impinging jet [27,28],
there is currently no robust analytical model to provide complementary predictions. We also did
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not explore the impingement dynamics for very low velocity ratios. Here it is conceivable that
the upstream heel becomes extended, forming an elevated rim that eventually develops into a
hydraulic jump. Finally, our study applies to Newtonian fluids, but the relatively large range of strain
rates occurring during impingement, coupled with the wide range of applications with potentially
complex fluids, suggest that an exploration of the non-Newtonian version of the problem would be
worthwhile.
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