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Thermocapillary instability for a shear-imposed falling film

Arnab Choudhury and Arghya Samanta *

Department of Applied Mechanics, Indian Institute of Technology Delhi, 110016 Delhi, India

(Received 3 February 2023; accepted 12 September 2023; published 27 September 2023)

We investigate the linear stability analysis of a gravity-driven three-dimensional incom-
pressible viscous fluid flowing down a uniformly heated inclined plane under the influence
of an external constant shear stress on the fluid surface. Based on a coupled system of
boundary value problems involving the amplitudes of the perturbation normal velocity and
perturbation temperature, the stability analysis is accomplished for infinitesimal distur-
bances of arbitrary wave numbers. The analytical solution of the boundary value problems
in the long-wave regime reveals the existence of the H-mode, which is destabilized by
both the Marangoni number and the imposed shear stress acting in the coflow direction.
Furthermore, we determine the critical value of the Marangoni number below which the
inertialess flow is linearly stable, but the flow may be linearly unstable in this range due
to inertia. However, the numerical solution based on the Chebyshev spectral collocation
method reveals the existence of additional thermocapillary S-mode and thermocapillary
P-mode in the long-wave and finite streamwise wave number regimes, respectively. It is
found that the H-mode and S-mode instabilities are destabilized, but the P-mode instability
is stabilized if the constant shear stress is applied in the coflow direction. Interestingly,
as the imposed shear stress rises, the onset of instability for the H-mode and the onset
of stability for the S-mode merge with each other and produce a single onset for the
primary stability. However, a completely opposite phenomenon takes place if a constant
shear stress is imposed in the counterflow direction. In addition, we observe that the shear
mode exists in the high Reynolds number regime, and the associated instability can be
initiated at a lower Reynolds number by applying a constant shear stress in the coflow
direction. Conversely, the shear mode instability can be delayed by imposing a constant
shear stress in the counterflow direction. Finally, the spanwise wave number exhibits a
stabilizing influence on the H-mode, S-mode, and shear mode instabilities but exhibits a
destabilizing influence on the P-mode instability.

DOI: 10.1103/PhysRevFluids.8.094006

I. INTRODUCTION

During the past few decades, the subject of interfacial heat transfer and the stability of thin
liquid films has become attractive in engineering and science due to their immense applications.
Because of their large contact area and low thermal resistance, thin films are frequently used in
several industrial equipment, such as falling film evaporator, condenser, etc. [1]. Frisk and Davis
[2] and Brauner and Maron [3] reported that surface wave formation significantly enlarges the rate
of heat and mass transfers on the film surface and, consequently, plays a crucial role in the surface
wave dynamics and their transition to spatio-temporal chaos. Furthermore, thin films are very useful
things for the thermal protection of rocket engines and the cooling of micro-electronic devices. In
addition, the studies of thin films have huge importance in the coating industry for the quality of
surface coating. For the above reasons, we are motivated to conduct the present study.
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In this context, Kapitza and Kapitza [4] pioneered the experimental study of isothermal falling
film in the moderate Reynolds number regime. They observed the formation of a large tear-drop-
shape solitary wave on the surface of a falling film far away from the inception zone. Later, the
theoretical studies of the isothermal film flowing down an inclined plane were initiated by Benjamin
[5] and Yih [6] in the low Reynolds number regime. They essentially performed the linear stability
analysis and determined the critical Reynolds number for the onset of the H-mode/surface mode
instability analytically. After that, Lin [7], Bruin [8], and Chin et al. [9] predicted the existence of
shear mode in the high Reynolds number regime. However, they did notice that the inclination angle
should be sufficiently small to allow the shear mode to emerge. As discussed by Bruin, the surface
mode and the shear mode compete with each other to trigger the primary instability in the zone of
low inclination angle. Floryan et al. [10] further conducted the above study to take into account the
influence of surface tension on the shear mode. The following papers (Alekseenko et al. [11], Chang
[12], Liu and Gollub [13], Oron et al. [14], Craster and Matar [15]) are very relevant to researchers
in understanding the dynamics of falling films.

In parallel, the linear stability analysis of a nonisothermal liquid film flowing down a heated
inclined plane was originated by Lin [16] in the low Reynolds number regime. Using the long-
wave analysis, he calculated the critical Reynolds number analytically for the onset of H-mode
instability. Later, the above study was further revisited by Sreenivasan and Lin [17] to assess the
thermocapillary instability in the arbitrary wave number regime. In the long-wave regime, the role
of the Prandtl number in the thermocapillary instability was examined by Smith [18]. As reported by
Smith, the base flow can be susceptible to instability due to the infinitesimal perturbation at higher
values of the Prandtl number. His study also deciphered the physical mechanism for the initiation
of linear instability. An alternative physical mechanism of instability for the falling film over a
uniformly heated substrate was provided by Goussis and Kelly [19,20] through the method of energy
budget. In their studies, the hydrodynamic mode (H-mode) and the thermocapillary modes (S-mode
and P-mode) were identified in low to moderate Reynolds number regimes. As discussed by them,
there exist two distinct physical mechanisms for generating the destabilizing thermocapillary forces
responsible for the S-mode and P-mode instabilities. In particular, the thermocapillary S-mode
instability arises from the modification of the basic temperature due to the deformation of the
fluid surface. It generally occurs in the long-wave regime. However, the thermocapillary P-mode
instability arises from the convective interaction between the perturbation velocity field and the
basic temperature. This P-mode instability occurs in the finite wave number regime. Moreover, they
reported that the following criterion should be satisfied for the appearance of P-mode instability in
a viscous fluid layer [19,20], [

−dσ

dT
�T

]
ρcp

μλ
> 32.073, (1)

where σ is the surface tension, �T is the difference between the wall temperature and the ambient
temperature, ρ is the density, cp is the specific heat capacity at constant pressure, μ is the dynamic
viscosity, and λ is the heat transfer coefficient at the fluid surface. Indeed, the expression [− dσ

dT �T ]
is a measure of the thermocapillary force generated due to the change in surface tension caused
by the temperature variation, while the expression ρcp is a measure of the effect of convection in
extracting energy from the basic state. Obviously, the large magnitudes of these quantities support
the appearance of P-mode instability. As the dynamic viscosity μ and the heat transfer coefficient λ

are, respectively, measures of the energy loss due to viscous dissipation and of the heat loss through
the fluid surface, these two quantities oppose the P-mode instability. Hence, for the appearance of
P-mode instability, the energy transfer from the basic state to the disturbance and the work done by
the thermocapillary force should be greater than these kinds of energy losses. Furthermore, Goussis
and Kelly showed that the H-, S-, and P-modes are destabilized by the Marangoni number. The
effect of evaporation on thermocapillary instability was introduced by Joo et al. [21]. They also
performed a linear stability analysis based on the long-wave asymptotic expansion. To explore the
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nonlinear stability induced by the H-mode, Joo et al. [22] further revisited their previous study. As
a result, the evolution equation was developed in terms of the liquid film thickness. Their result
predicted that the rivulet on the film surface forms due to the thermocapillary S-mode instability.
After that, a complete study on the falling film instability over a heated substrate was accomplished
by Ruyer-Quil et al. [23] and Scheid et al. [24]. In their studies, a low-dimensional model in terms of
the local film thickness, local flow rate, and mean temperature across the film layer was developed.
Both linear and nonlinear stability analyses were performed. Their results showed a very good
match with the results obtained from the Orr-Sommerfeld boundary value problem. Furthermore,
the hydrodynamic mode (H-mode) and the thermocapillary mode (S-mode) were recognized in their
numerical simulation. As discussed by them, the H-mode and the S-mode instabilities reinforce
each other as the Marangoni number increases. In the case of the nonisothermal binary liquid film,
Hu et al. [25] carried out the study of absolute and convective instabilities. The hydrodynamic
mode (H-mode) and the thermocapillary modes (S-mode and P-mode) were identified in their study.
They demonstrated that the unstable modes are destabilized by the Soret number, as was observed
for the Marangoni number. In addition, they showed that the H-mode and the S-mode coalesce
with each other as the Soret number rises. The above study was further revisited by Pascal and
D’Alessio [26] and D’Alessio and Pascal [27] under the framework of the Orr-Sommerfeld-type and
depth-averaged equations, respectively. They carried out the linear and nonlinear stability analyses.
Samanta [28] examined the temporal inertialess instability of a liquid film flowing over a uniformly
heated substrate. The destabilizing effect of the Biot number on the temporal mode was reported.
Dávalos-Orozco [29] executed a nonlinear stability analysis for the heated liquid film by using the
Benney-type surface evolution equation. His intention was to investigate the effects of wall thickness
and heat conductivity on the unstable modes. A review of the isothermal and nonisothermal falling
liquid films can be found in the work of Dávalos-Orozco [30]. The study on the instability of a
liquid film flowing over a uniformly heated slippery substrate was conducted by Ding and Wong
[31]. They calculated the critical Reynolds number analytically for the onset of H-mode instability.
The Benney-type surface evolution equation and the weighted residual three-equation model were
developed for the instability analysis. As shown by them, the Benney-type surface evolution
equation provided a good result only close to the threshold of instability. However, the weighted
residual three-equation model supplied a good result up to a moderate value of the Reynolds
number. Their results also revealed that the amplitude of the traveling wave amplifies as the slip
length increases. The linear stability analysis of a binary liquid film flowing down a heated slippery
substrate was explored by Ellaban et al. [32] in the low Reynolds number zone. They predicted that
both the slip length and the Marangoni number have a destabilizing influence on the H-mode and
S-mode instabilities. The instability of gravity-driven films flowing over a heated porous substrate
was analyzed by Thiele et al. [33], Sadiq et al. [34], and Ogden et al. [35]. In all these studies, it
was reported that permeability has a destabilizing influence on the H-mode instability. Recently,
Choudhury and Samanta [36] accomplished a detailed study on the thermocapillary instability
of a liquid film flowing over a slippery plane. They found an additional shear mode in the high
Reynolds number regime. Their results revealed that the thermocapillary P-mode is destabilized
by the wall slip. But the shear mode instability becomes weaker with increasing value of the slip
length. Furthermore, the thermocapillary P-mode instability becomes stronger as the spanwise wave
number increases. However, the investigation of the spreading front of a free surface profile of a
viscous film that is released onto a sloping surface was initiated by Huppert [37] based on the
lubrication approximation, where the effect of the contact line was neglected. He demonstrated that
the wavelength of the fingering front is dependent on the surface tension but independent of the
coefficient of viscosity. Later, this study was further explored by Troian et al. [38] by including the
motion of the contact line. As discussed by them, the advancing film front can be unstable to fingers
in the perpendicular direction of the main flow, where the surface tension force is comparable to the
forces due to viscosity and gravitational acceleration. Furthermore, they reported that this fingering
instability is completely unrelated to the H-mode instability deciphered in the present study. After
that, the above flow problem was further revisited by Cazabat et al. [39] and Kataoka and Troian [40]

094006-3



ARNAB CHOUDHURY AND ARGHYA SAMANTA

to examine the fingering instability at the advancing film front caused by the Marangoni effect. As
the variation of surface tension with temperature is fairly constant for many fluids, they imposed a
constant temperature gradient along the impermeable substrate to generate a constant surface tension
gradient, or equivalently, a constant Marangoni surface stress along the direction of the flow, that
forces the liquid film to spread in the direction of the higher surface tension zone [39]. Two different
regimes were recognized: an outer region far from the leading edge where the Marangoni force
balances the viscous force, and an inner region near the leading edge where the capillary force is
also significant along with the viscous and Marangoni forces. Although the aim of the present study
is to explore the hydrodynamic instabilities induced by the H-mode, S-mode, P-mode, and shear
mode, we have further tried to relate our present study to the spreading front problem of a viscous
film, where the applied constant shear stress generated by the air flow across the film surface behaves
like the constant Marangoni surface stress created by the constant temperature gradient proposed in
the previous study [41]. The discussion can be found in Appendix E.

In the context of a shear-imposed flow, Smith [42] first rendered a physical mechanism of
instability for the H-mode/surface mode, where a constant shear stress is applied at the surface
of a gravity-driven falling film. He performed a linear stability analysis in the long-wave regime.
After that, Wei [43] studied the same problem, but the insoluble surfactant was introduced at the
film surface. As a result, the surfactant mode emerges along with the H-mode. He reported that
the imposed shear stress destabilizes the H-mode in the long-wave regime. Later, Samanta [44]
extended the study of Smith in the moderate Reynolds number regime. Both linear and nonlinear
stability analyses were carried out based on the low-dimensional model involving the local film
thickness and the local flow rate. According to Samanta, the H-mode instability begins as soon as
the kinematic wave speed exceeds the speed of the dynamic wave. Furthermore, it was demonstrated
that the amplitude of the traveling wave amplifies if the constant shear stress is imposed in the
coflow direction. Bhat and Samanta [45] further revisited the same problem to decipher the shear
mode, which generally appears in the finite wave number regime when the Reynolds number is very
large. As discussed by them, the shear mode can be destabilized by incorporating a constant shear
stress in the coflow direction. Recently, Samanta [46] executed the spatio-temporal analysis for the
shear-imposed film flow. It was demonstrated that the H-mode is convectively unstable. Trifonov
[47,48] and Tsvelodub and Bocharov [49,50] investigated the two-phase gas-liquid flows, where
the upper phase is taken as a laminar gas flow. Consequently, the Navier-Stokes equations were
employed to govern the flows for both liquid and gas phases.

The above literature survey reveals that most of the studies on thermocapillary instability are
two-dimensional, and there is no investigation of the spanwise wave number in the most unstable
modes. Furthermore, there is no study on the effect of imposed shear stress on the thermocapillary
instability. For these reasons, we are interested in exploring the thermocapillary instability of a
shear-imposed film flowing down an inclined plane when a constant shear stress is applied either in
the coflow direction or in the counterflow direction. In the present study, our concern is to decipher
the impact of imposed shear stress on the individual modes, such as H-mode, S-mode, P-mode, and
shear mode. The paper is organized as follows: The mathematical formulation is provided in Sec. II.
The analytical solution of the Orr-Sommerfeld-type boundary value problems is rendered in Sec. III,
while the numerical simulation of the Orr-Sommerfeld-type boundary value problems can be found
in Sec. IV. Results in low to moderate Reynolds number regimes are produced in Sec. V, but the
results in the high Reynolds number regime are supplied in Sec. VI. Inertialess stability analysis
is investigated in Sec. VII. Inviscid stability analysis is discussed in Sec. VIII. The summary and
conclusions are presented in Sec. IX.

II. MATHEMATICAL FORMULATION

Consider a three-dimensional gravity-driven incompressible viscous fluid flowing down a heated
inclined plane in the presence of an imposed shear stress τs in the streamwise direction (x > 0),
as sketched in Fig. 1. If τs > 0, then we say that the shear stress is acting in the coflow direction.

094006-4



THERMOCAPILLARY INSTABILITY FOR A SHEAR- …

FIG. 1. Sketch of a viscous film flowing down a heated inclined plane in the presence of an imposed shear
stress in the streamwise direction. The constant shear stress τs is acting in the coflow direction if τs > 0.
However, it is acting in the counterflow direction if τs < 0. Here, Ū (y) and T̄ (y) represent the base velocity
and base temperature profiles, respectively.

Otherwise, if τs < 0, then the shear stress is acting in the counterflow direction. Here, θ is the
inclination angle with the horizontal line. We assume that the plane is uniformly heated with a
temperature of T = Tw. Since, our goal is to explore the thermocapillary instability, the density ρ

and the dynamic viscosity μ of the fluid are assumed to be constants. However, the surface tension
σ (T ) of the fluid is not constant but varies linearly with the temperature by the following formula
[19]:

σ (T ) = σa − γ (T − Ta), (2)

where σa is the surface tension of the fluid at the ambient temperature of T = Ta and γ =
− dσ

dT |T =Ta > 0, because the surface tension of the fluid decreases as the temperature increases.
Suppose the origin of the Cartesian coordinate system lies on the inclined plane, and the axes
x, y, and z are labeled in streamwise, cross-stream, and spanwise flow directions, respectively.
The undisturbed fluid layer thickness is d , which is specified by the dashed straight line, while
the disturbed fluid layer thickness is h(x, z, t ), which is specified by the solid curvy line. The
nonisothermal fluid flow is governed by the continuity, momentum, and energy equations [51–53]

∂xu + ∂yv + ∂zw = 0, (3)

ρ(∂t u + u∂xu + v∂yu + w∂zu) = −∂x p + μ(∂xxu + ∂yyu + ∂zzu) + ρg sin θ, (4)

ρ(∂tv + u∂xv + v∂yv + w∂zv) = −∂y p + μ(∂xxv + ∂yyv + ∂zzv) − ρgcos θ, (5)

ρ(∂tw + u∂xw + v∂yw + w∂zw) = −∂z p + μ(∂xxw + ∂yyw + ∂zzw), (6)

ρcp(∂t T + u∂xT + v∂yT + w∂zT ) = κ (∂xxT + ∂yyT + ∂zzT ), (7)

where u, v, w, p, and T are the velocity components, pressure, and temperature of the fluid,
respectively. The notation g denotes the acceleration due to gravity, κ denotes the thermal conduc-
tivity, and cp denotes the specific heat capacity at constant pressure. As the temperature varies,
the thermal conductivity κ and the specific heat capacity cp are assumed to be constants. The
boundary conditions are as follows: (i) At the inclined plane, y = 0, the streamwise, cross-stream,
and spanwise velocity components must satisfy the no-slip and no-penetration boundary conditions,
respectively, while the temperature on the inclined plane is constant. Hence, we can use [28]

u = 0, v = 0, w = 0, T = Tw, at y = 0, (8)
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where Tw is the constant temperature on the plane. (ii) At the fluid surface, y = h(x, z, t ), the
dynamic boundary conditions are obtained by balancing the hydrodynamic stress, the surface stress
generated by the surface tension times the curvature of the fluid surface, the Marangoni stress
generated by the surface tension gradient due to the change in temperature, and the imposed shear
stress applied in the streamwise direction [36,42–44,51,54,55], which can be written as

μ[(∂yu + ∂xv){1 − (∂xh)2} + 2∂xh(∂yv − ∂xu) − ∂zh(∂zu + ∂xw) − ∂xh∂zh(∂zv + ∂yw)]

+ γ [∂xT + ∂xh∂yT ]
√

1 + (∂xh)2 + (∂zh)2 = τs

√
1 + (∂xh)2 + (∂zh)2, (9)

μ[(∂yw + ∂zv){1 − (∂zh)2} + 2∂zh(∂yv − ∂zw) − ∂xh(∂zu + ∂xw) − ∂xh∂zh(∂yu + ∂xv)]

+ γ [∂zT + ∂zh∂yT ]
√

1 + (∂xh)2 + (∂zh)2 = 0, (10)

Pa − p[1 + (∂xh)2 + (∂zh)2] + 2μ[∂xu(∂xh)2 + ∂zw(∂zh)2 + ∂xh∂zh(∂zu + ∂xw) − ∂xh(∂yu + ∂xv)

− ∂zh(∂zv + ∂yw) + ∂yv]

= σ [∂xxh{1 + (∂zh)2} + ∂zzh{1 + (∂xh)2} − 2∂xh∂zh∂xzh]{1 + (∂xh)2 + (∂zh)2}− 1
2 , (11)

where Pa is the ambient pressure surrounding the fluid surface. (iii) The heat transfer between air
and the fluid surface, y = h(x, z, t ), due to convection, is described by Newton’s law of cooling
[28,36,51]

κ
(∂xT ∂xh − ∂yT + ∂zT ∂zh)√

1 + (∂xh)2 + (∂zh)2
= λ(T − Ta), (12)

where λ is the heat transfer coefficient. (iv) To describe the temporal evolution of the fluid surface,
y = h(x, z, t ), we use the kinematic boundary condition

∂t h + u∂xh + w∂zh = v. (13)

A. Dimensionless criterion

The governing equations and the associated boundary conditions are made dimensionless by
using the following nondimensional variables:

u∗ = u

Us
, v∗ = v

Us
, w∗ = w

Us
, p∗ = pd

μUs
,

x∗ = x

d
, y∗ = y

d
, z∗ = z

d
, h∗ = h

d
, (14)

t∗ = tUs

d
, σ ∗ = σ

σa
, T ∗ = T − Ta

Tw − Ta
, τ = τsd

μUs
,

where Us = ρgd2 sin θ/(2μ) is the streamwise base velocity at the fluid surface without imposed
shear stress. For our convenience, the star symbols are removed from the nondimensional variables
in the subsequent mathematical expressions. Next, the nondimensional form of the governing
equations and the associated boundary conditions can be expressed as

∂xu + ∂yv + ∂zw = 0, (15)

Re(∂t u + u∂xu + v∂yu + w∂zu) = −∂x p + (∂xxu + ∂yyu + ∂zzu) + 2, (16)

Re(∂tv + u∂xv + v∂yv + w∂zv) = −∂y p + (∂xxv + ∂yyv + ∂zzv) − 2 cot θ, (17)

Re(∂tw + u∂xw + v∂yw + w∂zw) = −∂z p + (∂xxw + ∂yyw + ∂zzw), (18)
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TABLE I. List of different nondimensional numbers and their physical interpretations.

Nondimensional number Mathematical expression Physical interpretation

Reynolds number (Re) Re = ρUsd
μ

Inertia
Viscous force

Marangoni number (Ma) Ma = γ (Tw−Ta )
μUs

Marangoni force
Viscous force

Weber number (We) We = σa
μUs

Force due to surface tension
Viscous force

Biot number (Bi) Bi = λd
κ

Heat convection at fluid surface
Heat conduction within fluid

Prandtl number (Pr) Pr = ρcpν

κ

Momentum diffusion
Thermal diffusion

Péclet number (Pe) Pe = RePr = ρcpUsd
κ

Advective heat transfer
Heat conduction

Pe(∂t T + u∂xT + v∂yT + w∂zT ) = (∂xxT + ∂yyT + ∂zzT ), (19)

u = 0, v = 0, w = 0, T = 1, at y = 0, (20)

(∂yu + ∂xv)[1 − (∂xh)2] + 2∂xh(∂yv − ∂xu) − ∂zh(∂zu + ∂xw) − ∂xh∂zh(∂zv + ∂yw)

+Ma[∂xT + ∂xh∂yT ]
√

1 + (∂xh)2 + (∂zh)2 = τ
√

1 + (∂xh)2 + (∂zh)2, at y = h, (21)

(∂yw + ∂zv)[1 − (∂zh)2] + 2∂zh(∂yv − ∂zw) − ∂xh(∂zu + ∂xw) − ∂xh∂zh(∂yu + ∂xv)

+ Ma[∂zT + ∂zh∂yT ]
√

1 + (∂xh)2 + (∂zh)2 = 0, at y = h, (22)

pa − p[1 + (∂xh)2 + (∂zh)2] + 2[∂xu(∂xh)2 + ∂zw(∂zh)2 + ∂xh∂zh(∂zu + ∂xw) − ∂xh(∂yu + ∂xv)

− ∂zh(∂zv + ∂yw) + ∂yv]

= (We − Ma T )[∂xxh{1 + (∂zh)2} + ∂zzh{1 + (∂xh)2}
− 2∂xh∂zh∂xzh]{1 + (∂xh)2 + (∂zh)2}− 1

2 , at y = h, (23)

(∂xT ∂xh − ∂yT + ∂zT ∂zh)√
1 + (∂xh)2 + (∂zh)2

= Bi T, at y = h, (24)

∂t h + u∂xh + w∂zh = v, at y = h, (25)

where pa = Pad
μUs

is the nondimensional ambient pressure and ν = μ/ρ is the kinematic viscosity.
Based on the above dimensionless criterion, we have the following nondimensional numbers: the
Reynolds number (Re), Marangoni number (Ma), Weber number (We), Biot number (Bi), and Péclet
number (Pe), where Pe = Re Pr and Pr is the Prandtl number. The definition of each nondimensional
number and its physical interpretation can be found in Table I. As discussed by Kalliadasis et al.
[56], the above dimensionless numbers depend on the physical properties of the nonisothermal
fluid film, base film thickness, temperature difference between fluid and air phases, and inclination
angle. Furthermore, they pointed out that the investigation of each dimensionless number in the
thermocapillary instability is a difficult task because this is a large set of nondimensional numbers.
For this reason, they introduced a relevant set of dimensionless numbers as adopted in the study of
Goussis and Kelly [20]

G = 2Re

sin θ
= gd3

ν2
, M = 2γ (Tw − Ta)

ρ

(
1

g sin θ ν4

)1/3

, B = λ

κ

(
ν2

g sin θ

)1/3

,
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where G is the Galileo number or the modified Reynolds number, M is the modified Marangoni
number, and B is the modified Biot number. It should be noted that the modified Marangoni number
and the modified Biot number are no longer dependent on the base film thickness d . As our main
purpose is to investigate the effects of imposed shear stress and spanwise wave number on the
individual unstable modes, we will use the dimensionless numbers Re, Ma, We, Bi, and Pr according
to our choice of scaling. However, the dimensionless groups G, M, B, and the Kapitza number
Ka = 2σa/[ρ(ν4g sin θ )1/3] will also be used in the present numerical simulation to reproduce the
existing results of the literature. To explore the primary instability, it is essential to compute the
solution of the unidirectional parallel fluid flow with a constant fluid layer thickness of y = 1, the
so-called base flow. The analytical solution of the base flow equations can be written as

Ū (y) = (2 + τ )y − y2, 0 � y � 1, (26)

V̄ (y) = 0, W̄ (y) = 0, 0 � y � 1, (27)

P̄(y) = 2 cot θ (1 − y) + pa, 0 � y � 1, (28)

T̄ (y) = 1 −
(

Bi

1 + Bi

)
y, 0 � y � 1. (29)

It should be noted that the streamwise velocity Ū (y) of the base flow is explicitly dependent on
the imposed shear stress τ , and it is a quadratic polynomial in y. However, the temperature T̄ (y)
of the base flow is dependent on the Biot number Bi, and it is a linear polynomial in y. However,
we can see that the Marangoni number Ma does not appear in the basic temperature profile T̄ (y)
because the Marangoni number is not present in the boundary condition for Newton’s law of cooling
(24). Obviously, the basic temperature decreases monotonically from a minimum value at the fluid
surface and achieves its maximum value at the inclined plane.

B. Perturbation equations

To examine the primary instability, a three-dimensional infinitesimal perturbation is superim-
posed on the base flow. Consequently, we can decompose each flow variable into a basic part and a
perturbation part

u = Ū + u′, v = v′, w = w′, p = P̄ + p′, T = T̄ + T ′, h = 1 + h′, (30)

where u′, v′, w′, p′, T ′, and h′ represent the perturbation flow quantities, and Ū , P̄, and T̄ represent
the base flow quantities. After inserting the variable’s decomposition (30) into the nondimensional
governing equations and the associated boundary conditions (15)–(25) and linearizing with respect
to the base flow solution, one can obtain the perturbation equations in the following forms:

∂xu′ + ∂yv
′ + ∂zw

′ = 0, 0 � y � 1, (31)

Re(∂t u
′ + Ū∂xu′ + v′∂yŪ ) = −∂x p′ + (∂xxu′ + ∂yyu′ + ∂zzu

′), 0 � y � 1, (32)

Re(∂tv
′ + Ū∂xv

′) = −∂y p′ + (∂xxv
′ + ∂yyv

′ + ∂zzv
′), 0 � y � 1, (33)

Re(∂tw
′ + Ū∂xw

′) = −∂z p′ + (∂xxw
′ + ∂yyw

′ + ∂zzw
′), 0 � y � 1, (34)

Pe(∂t T
′ + Ū∂xT ′ + v′∂yT̄ ) = (∂xxT ′ + ∂yyT ′ + ∂zzT

′), 0 � y � 1, (35)

u′ = 0, v′ = 0, w′ = 0, T ′ = 0, at y = 0, (36)

∂yu′ + ∂xv
′ − 2h′ = −Ma

[
∂xT ′ − Bi

1 + Bi
∂xh′

]
, at y = 1, (37)
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∂yw
′ + ∂zv

′ = −Ma

[
∂zT

′ − Bi

1 + Bi
∂zh

′
]
, at y = 1, (38)

−p′ + 2 cot θh′ + 2∂yv
′ − 2τ∂xh′ =

(
We − Ma

1 + Bi

)
(∂xxh′ + ∂zzh

′), at y = 1, (39)

∂yT ′ = Bi

(
Bi

1 + Bi
h′ − T ′

)
, at y = 1, (40)

∂t h
′ + (1 + τ )∂xh′ = v′, at y = 1. (41)

C. Orr-Sommerfeld-type boundary value problem

Now, the solution of the perturbation equations (31)–(41) is assumed in the normal mode form
[36,57]

u′(x, y, z, t ) = û(y) exp[i(kxx + kzz − ωt )],
v′(x, y, z, t ) = v̂(y) exp[i(kxx + kzz − ωt )],
w′(x, y, z, t ) = ŵ(y) exp[i(kxx + kzz − ωt )],

T ′(x, y, z, t ) = T̂ (y) exp[i(kxx + kzz − ωt )],
p′(x, y, z, t ) = p̂(y) exp[i(kxx + kzz − ωt )],
h′(x, z, t ) = η̂ exp[i(kxx + kzz − ωt )],

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(42)

where û(y), v̂(y), ŵ(y), T̂ (y), p̂(y), and η̂ are, respectively, the amplitudes of the perturbation ve-
locity components, perturbation temperature, perturbation pressure, and fluid surface deformation.
Here, kx and kz are the streamwise and spanwise wave numbers, ω = kxc is the angular frequency, c
is the wave speed, and k = √

k2
x + k2

z is the total wave number of the infinitesimal perturbation [58].
Substituting the normal mode solution (42) in the perturbation equations (31)–(41) and eliminating
the terms involving pressure, the following coupled system of boundary value problems are obtained
for the perturbation normal velocity and perturbation temperature, respectively,

(D2 − k2)2v̂ = iRe

[
(kxŪ − ω)(D2 − k2) − kx

d2Ū

dy2

]
v̂, 0 � y � 1, (43)

(D2 − k2)T̂ = Pe

[
i(kxŪ − ω)T̂ + dT̄

dy
v̂

]
, 0 � y � 1, (44)

v̂ = 0, T̂ = 0, Dv̂ = 0, at y = 0, (45)

(D2 + k2)v̂ + k2Ma

[
T̂ − Bi

1 + Bi
η̂

]
+ 2ikxη̂ = 0, at y = 1, (46)

D3v̂ − 3k2Dv̂ + iRe[(ω − kx )Dv̂ − kxτDv̂ + kxτ v̂]

= k2η̂

[
k2

(
We − Ma

1 + Bi

)
+ 2 cot θ − 2ikxτ

]
, at y = 1, (47)

DT̂ + Bi

[
T̂ − Bi

1 + Bi
η̂

]
= 0, at y = 1, (48)

v̂ + i[ω − kx(1 + τ )]η̂ = 0, at y = 1, (49)

where D = d
dy is the differential operator. Here, the temporal stability analysis will be deciphered

and, thereby, the wave number k will be taken as a real number, while the wave speed c or,
equivalently, the angular frequency ω will be taken as a complex number [59].
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III. ANALYTICAL SOLUTION OF THE ORR-SOMMERFELD-TYPE
BOUNDARY VALUE PROBLEM

A. Long-wave solution

To carry out the primary instability, the long-wave analysis [6] is utilized. As stated by Squire
[57,60], the three-dimensional disturbances associated with the H-mode and shear mode are less
unstable than those of the two-dimensional ones. Consequently, the long-wave analysis is performed
for the two-dimensional infinitesimal disturbances of large wavelengths, i.e., kx = k(�1) and kz =
0. The derivation of Squire’s theorem for the shear-imposed nonisothermal fluid flow is rendered in
Appendix A. Now, we introduce the perturbation stream function ψ ′(x, y, t ) by using the following
relations:

u′(x, y, t ) = ∂yψ
′, v′(x, y, t ) = −∂xψ

′, (50)

where the perturbation stream function is considered in the normal mode form

ψ ′(x, y, t ) = φ̂(y) exp[ik(x − ct )], (51)

where φ̂(y) is the amplitude of the perturbation stream function. With the help of Eq. (51), one
can get v̂(y) = −ikφ̂(y). Next, the expression of v̂(y) is inserted in the coupled system of boundary
value problems (43)–(49). After that, the variables φ̂, T̂ , η̂, and c are expanded in infinite series
forms in the limit k → 0

φ̂(y) =
∞∑

n=0
φnkn, T̂ (y) =

∞∑
n=0

Tnkn,

η̂ =
∞∑

n=0
ηnkn, c =

∞∑
n=0

cnkn,

⎫⎪⎪⎬
⎪⎪⎭ (52)

where n is a nonnegative integer.

B. Zeroth-order approximation

After inserting Eq. (52) into the boundary value problems (43)–(49), we collect the leading-
order/zeroth-order [O(k0)] equations

D4φ0(y) = 0, D2T0(y) = 0, 0 � y � 1, (53)

φ0(y) = 0, T0(y) = 0, Dφ0(y) = 0, at y = 0, (54)

D2φ0(y) − 2η0 = 0, D3φ0(y) = 0, at y = 1, (55)

DT0(y) + Bi T0(y) − Bi2

1 + Bi
η0 = 0, at y = 1, (56)

φ0(y) − (c0 − 1 − τ )η0 = 0, at y = 1. (57)

The solution of the leading-order/zeroth-order equations (53)–(57) can be expressed as

φ0(y) = η0y2, T0(y) = Bi2η0y

(1 + Bi)2
. (58)

It should be noted that the leading-order solution φ0(y) is independent of the imposed shear stress τ ,
while the leading-order temperature T0(y) depends on the Biot number Bi, but it is independent of
the Marangoni number Ma and the Péclet number Pe. Using the leading-order kinematic boundary
condition (57), we get the leading-order/zeroth-order phase speed c0 for the H-mode

c0 = 2 + τ. (59)
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Clearly, the leading-order phase speed c0 for the H-mode is real and increases with the rising values
of the imposed shear stress τ .

C. First-order approximation

Collecting the first-order [O(k)] equations, we obtain

D4φ1(y) + iRe[D2Ū (y)φ0(y) + {c0 − Ū (y)}D2φ0(y)] = 0, 0 � y � 1, (60)

D2T1(y) + iPe[DT̄ (y)φ0(y) + {c0 − Ū (y)}T0(y)] = 0, 0 � y � 1, (61)

φ1(y) = 0, T1(y) = 0, Dφ1(y) = 0, at y = 0, (62)

D2φ1(y) + iMa

[
T0(y) − Bi

1 + Bi
η0

]
− 2η1 = 0, at y = 1, (63)

D3φ1(y) + iRe[(c0 − 1)Dφ0(y) − τDφ0(y) + τφ0(y)] − 2i cot θη0 = 0, at y = 1, (64)

DT1(y) + Bi

[
T1(y) − Bi

1 + Bi
η1

]
= 0, at y = 1, (65)

φ1(y) − (c0 − 1 − τ )η1 − c1η0 = 0, at y = 1. (66)

Here, we assume that the Weber number We and the Marangoni number Ma are of order O(1). As
a result, these nondimensional numbers are not appearing in the first-order normal stress boundary
condition (64). The first-order equations (60)–(66) are solved for the unknown functions φ1(y) and
T1(y), which can be found in Appendix B. After substituting the expressions of φ1(y) and T1(y) in the
first-order kinematic boundary condition (66), one can obtain the expression of c1 in the following
form:

c1 = i(a0 + a1Re + a2 cot θ ), (67)

where

a0 = MaBi

2(1 + Bi)2
, a1 = 4(2 + τ )

15
, a2 = −2

3
.

Obviously, the expression of c1 for the H-mode is purely imaginary. Now, the Marangoni number
Ma and the Biot number Bi appear in the expression of c1. Using the neutral stability condition
(ci ≈ |kc1| = 0) in the limit k → 0, one can obtain the critical value of the Reynolds number Rec

for the H-mode

Rec = 5 cot θ

2(2 + τ )
− 15MaBi

8(2 + τ )(1 + Bi)2
. (68)

It should be noted that a factor (2 + τ ) is present at the denominator in the expression of Rec.
Therefore, Rec → ∞ as soon as τ → −2, which implies that the base flow will always be sta-
ble to infinitesimal disturbances when τ = −2. In fact, this is the physical situation where the
leading-order phase speed c0 = (2 + τ ) of the infinitesimal disturbance becomes zero and the
base flow velocity U (y) = [(2 + τ )y − y2] becomes fully negative in the cross-stream direction.
Consequently, the infinitesimal disturbance will not propagate in the streamwise direction. As there
is no positive base velocity, the disturbance is not receiving any energy from the base flow to
become unstable, which is fully consistent with the result. Furthermore, we see that the analytical
expression of the critical Reynolds number Rec for the H-mode coincides with that of Wei [43] for
the isothermal viscous fluid flowing down an inclined plane (Ma → 0, Bi → 0) in the absence of
insoluble surfactant. Moreover, the critical Reynolds number Rec for the H-mode recovers the result
of Trevelyan and Kalliadasis [61] if the effect of imposed shear stress is removed from the fluid
surface. From the expression (68), we observe that the critical Reynolds number Rec reduces as the
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FIG. 2. (a) Variation of the critical Marangoni number Mac with the Biot number Bi when the inclination
angle θ alters. Here, Mac is computed from Eq. (69) for the inertialess flow configuration (Re = 0). Solid,
dashed, and dotted lines stand for θ = 15◦, θ = 30◦, and θ = 45◦, respectively. (b) Variation of the critical
Reynolds number Rec with the Biot number Bi when M̄a = 30, θ = 15◦, and τ = 0.5. Here, Rec is computed
from Eq. (70). Solid black line stands for Mac and dashed red line stands for Rec.

Marangoni number increases, which indicates that increasing the value of the Marangoni number,
or equivalently, increasing the value of the surface tension gradient γ (= − dσ

dT |T =Ta > 0) has a
destabilizing effect on the H-mode. More specifically, the surface instability caused by the H-mode
occurs if the Reynolds number is greater than the critical value Rec. As reported by Kalliadasis et al.
[51], the temperature of the fluid is maximum at the crest, while it is minimum at the trough due to
the difference in height of the disturbed fluid surface [see Eq. (58)]. As a result, surface tension is
minimum at the crest and it is maximum at the trough of the perturbed fluid surface, which creates
a flow from the crest to the trough direction on the deformed fluid surface due to the change in
surface tension. Now, if the Marangoni number is increased, or equivalently, γ is increased, then the
surface tension of the fluid decreases with the rising values of the temperature, preventing flow from
occurring in the crest-to-trough direction and producing a destabilizing influence on the H-mode. In
other words, the stabilizing effect of surface tension on the H-mode instability becomes weaker as
the surface tension reduces with increasing the value of the Marangoni number. Therefore, we can
conclude that the nonisothermal flow becomes more unstable than the isothermal flow due to the
H-mode in the presence of the Marangoni number. Now, if we set Rec = 0 in Eq. (68), then we can
get the critical value of the Marangoni number Mac for the onset of the inertialess instability

Mac = 4 cot θ (1 + Bi)2

3Bi
. (69)

Hence, if Ma > Mac, then the inertialess instability occurs in the long-wave regime. In other words,
there exists a range of the Marangoni number (Ma < Mac), where an inertialess nonisothermal
fluid flow over an inclined plane can be stabilized to infinitesimal disturbances. The variation of
Mac with the Biot number Bi is demonstrated in Fig. 2(a) when the inclination angle changes.
Clearly, we can find two separate zones of the Biot number, divided by a thin vertical dashed
line, where two different physical phenomena happen. Initially, the critical value of the Marangoni
number decreases up to Bi = 1, implying a destabilizing effect of the Biot number on the inertialess
instability. On the contrary, the critical value of the Marangoni number gradually increases if Bi > 1,
which indicates a stabilizing effect of the Biot number on the inertialess instability. Furthermore,
the critical value of the Marangoni number significantly decreases as the inclination angle rises.
Therefore, the increasing value of the inclination angle destabilizes the inertialess instability. Finally,
Mac becomes zero at θ = π/2. Hence, an inertialess nonisothermal fluid flow over a vertical plane
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will be unstable for any nonzero value of the Marangoni number. Section VII contains a detailed
discussion of the inertialess instability. Using Eq. (69), the critical Reynolds number Rec for the
H-mode can be rewritten as

Rec = 15Bi(Mac − Ma)

8(2 + τ )(1 + Bi)2
= 15BiM̄a

8(2 + τ )(1 + Bi)2
, (70)

where M̄a = (Mac − Ma). Obviously, the instability of the H-mode begins for any nonzero value
of the Reynolds number when Ma = Mac. However, if Ma < Mac (M̄a > 0), i.e., in the inertialess
stable zone, then we can retrieve a range of the Reynolds number, where the nonisothermal flow
can be unstable due to inertia. This result is depicted in Fig. 2(b). Furthermore, the critical Reynolds
number Rec for the H-mode attenuates as the imposed shear stress τ (> 0) rises. Therefore, one can
expect a destabilizing effect of the imposed shear stress on the primary instability induced by the
H-mode.

D. Second-order approximation

By collecting the second-order [O(k2)] equations and solving those equations, we can obtain the
expression of c2 for the H-mode

c2 = b0 + b1Bi + b2Bi2 + b0Bi3

120(1 + Bi)3
+ b3Re Ma Bi + b4Re cot θ + b5Re2, (71)

where the coefficients b0, b1, b2, b3, b4, and b5 and the details of the long-wave second-order
equations are provided in Appendix C. Clearly, c2 is real.

E. Third-order approximation

Similarly, by collecting and solving the third-order [O(k3)] equations, one can get the expression
of c3 for the H-mode

c3 = i

[
(h0 − h1Ma + h2Ma Pe + h3Ma Pe2)

100800(1 + Bi)5

− (h4 + h5Ma + h6Ma2)Re

50400(1 + Bi)4
− h7Re2

9979200
− h8Re3

32432400

]
, (72)

where the coefficients hi(i = 0, . . . , 8) used in the expression of c3 can be found in Appendix D.
Clearly, c3 is purely imaginary. Combining c0, c1, c2, and c3, the complex wave speed c for the
H-mode can be expressed as

c = c0 + kc1 + k2c2 + k3c3 + O(k4) = cr + ici. (73)

If the imaginary part of the complex wave speed is positive (ci > 0), then the infinitesimal perturba-
tion will grow exponentially with time, and the associated disturbance will be linearly unstable due
to the H-mode.

F. Padé approximation of the long-wave solutions

Following the works of Lange et al. [62] and Pal and Samanta [63], the Padé approximation
is applied to improve the result obtained from the fifth-order long-wave solution when the wave
number kx → 0. To this end, the complex wave speed c for the H-mode is expressed as a ratio of
two polynomials in terms of wave number kx = k (kz = 0)

c = Pd (k)

Qd (k)
, (74)
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FIG. 3. (a) Comparison of the neutral stability curve for the H-mode with the results computed from the
Padé approximation and the numerical simulation in (Re, kx) plane. Here kx = k and kz = 0. (b) Comparison
of the temporal growth rate for the H-mode with the results computed from the Padé approximation and the
numerical simulation when Re = 4. Solid, dashed, dotted, and dash-dotted lines stand for the results of the
numerical simulation, Padé approximation, third-order [O(k3)] long-wave analytical solution, and fifth-order
[O(k5)] long-wave analytical solution, respectively. The other parameter values are We = 62.5, Pr = 7, Bi = 1,
Ma = 4, θ = 15◦, τ = 0.5, and kz = 0.

where

Pd (k) = p0 + p1k + p2k2 + · · · + pik
i, Qd (k) = 1 + q1k + q2k2 + · · · + q jk

j 
= 0,

where the unknown coefficients p0, p1, . . ., pi and q1, . . ., q j are determined analytically by using
the long-wave solution. Figures 3(a) and 3(b), respectively, display the comparisons of the neutral
stability curve and temporal growth rate for the H-mode with the results computed from the Padé
approximation and the numerical simulation. The discussion of the numerical technique for solving
the boundary value problem (43)–(49) is provided in Sec. IV. Note that the results computed from
the Padé approximation capture the results of the numerical simulation in a larger range of wave
number than the long-wave analytical solution. In fact, except in the vicinity of the threshold of
instability, the long-wave third-order and fifth-order analytical results deviate from the numerical
results because the long-wave analytical solution is valid only in the limit k → 0 (kx = k, kz = 0).
From the above results, one can conclude that the results obtained from the Padé approximation are
more accurate than the results determined from the higher-order long-wave analytical solution.

IV. NUMERICAL SOLUTION OF THE ORR-SOMMERFELD-TYPE BOUNDARY
VALUE PROBLEMS

Now the boundary value problems (43)–(49) will be solved for the disturbances of arbitrary wave
numbers. To do that, we use the Chebyshev spectral collocation method [64]. First, we convert the
boundary value problems (43)–(49) into a generalized matrix eigenvalue problem

Aξ̂ = ωBξ̂ , (75)

where ω is the eigenvalue with associated eigenvector ξ̂ = [v̂, T̂ , η̂]T and the matrices A and B are
of the following forms:

A =
(
A11 0
A21 A22

)
and B =

(
B11 0
0 B22

)
, (76)
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where

A11 = iRekx[Ū (D2 − k2) + 2] − (D2 − k2)2,

A21 = − Pe Bi

1 + Bi
, A22 = iPekxŪ − (D2 − k2),

B11 = iRe(D2 − k2), B22 = iPe, D = d

dy
.

Second, the eigenvalue problem (75) is completed by using the boundary conditions (45)–(49).
Finally, we expand the amplitude function ξ̂ (y) in a truncated series of the Chebyshev polynomials
[57]

ξ̂ (y) =
N∑

i=0

ξiPi(y). (77)

Here, N is the number of Chebyshev polynomials, and ξi’s are the unknown Chebyshev coeffi-
cients. In the numerical simulation, we shift the liquid layer domain [0, 1] to [−1, 1] by using
the transformation y = (x + 1)/2 because the Chebyshev polynomials Pi(y) are defined over the
domain [−1, 1]. Accordingly, we replace the derivatives D → 2D, D2 → 4D2, . . . in the numerical
code. After substitution of Eq. (77) into the matrix eigenvalue problem (75), we evaluate the
Chebyshev functions at the Gauss-Lobatto collocation points x j = cos(π j/N ), which are extrema
of the Chebyshev polynomials, where j = 0, . . . , N .

A. Validation of the numerical code

In this subsection, we shall validate our numerical results with the existing results available
in the literature. First, we shall compare our numerical result with that of Ding et al. [31] when
τ = 0. Consequently, we choose the flow parameter values of Re = 15, We = 2000, θ = π/2,
Pr = 0.01, B = 1, τ = 0, and kz = 0. Furthermore, the Marangoni number Ma and the Biot number
Bi are rescaled by the following relations: Ma = M/(2Re)2/3 and Bi = B(2Re)1/3. Figure 4(a)
demonstrates the temporal growth rate of the H-mode for three distinct values of M or, equivalently,
for three distinct values of the Marangoni number Ma. Obviously, the current numerical code
recovers the result of Ding et al. [31] in the absence of imposed shear stress when M = 0. We see that
the temporal growth rate ωi for the H-mode becomes stronger as the Marangoni number rises, which
implies a destabilizing influence of the Marangoni number on the H-mode. This result is expected
because the critical Reynolds number Rec for the H-mode reduces with the increasing value of the
Marangoni number in comparison to that of the isothermal flow [see Eq. (68)]. Second, we have
reproduced the results of Hu et al. [25] when the Soret number and the imposed shear stress are set
to zero in the numerical simulation. In Fig. 4(b), the neutral stability curves are plotted in (kx, G)
plane for distinct values of M when Ka = 1569.2, θ = 15◦, Pr = 10, B = 0.03, τ = 0, and kz = 0.
In particular, the numerical results are exhibited for the H-mode and the thermocapillary S-mode.
Again an excellent agreement is observed between the current results and the results reported in Hu
et al. [25] when M = 156.92. It should be noted that only one neutral stability curve for the H-mode
specified by a solid line appears in (kx, G) plane when M = 0, because this is the situation of the
isothermal flow configuration. However, two neutral stability curves emerge if M or, equivalently,
the Marangoni number Ma keeps a nonzero value. More specifically, the neutral stability curve
pertaining to the S-mode appears in the low Galileo number regime, while the neutral stability curve
pertaining to the H-mode appears in the moderate Galileo number regime, which are specified by the
dashed lines in (kx, G) plane when M = 156.92. Clearly, the critical Gelileo number for the onset
of H-mode instability and the critical Galileo number for the onset of S-mode stability lie on the
G axis (kx = 0) when M = 156.92. Actually, the H-mode instability begins due to the infinitesimal
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FIG. 4. (a) Variation of the temporal growth rate ωi for the H-mode with streamwise wave number kx

for different values of M when Re = 15, We = 2000, θ = π/2, Pr = 0.01, B = 1, τ = 0, and kz = 0. Solid,
dashed, and dotted lines stand for M = 0, M = 2, and M = 4, respectively. The solid points are the results of
Ding et al. [31]. (b) Variation of the neutral stability curves in (kx , G) plane for different values of M when
Ka = 1569.2, θ = 15◦, Pr = 10, B = 0.03, τ = 0, and kz = 0. Solid, dashed, dotted, and dash-dotted lines
stand for M = 0, M = 156.92, M = 171.04, and M = 188.3, respectively. The solid points are the results of
Hu et al. [25].

perturbation of the fluid surface in the long-wave regime when the Galileo number exceeds the
critical value. However, the S-mode instability induced by the Marangoni stress begins in the
long-wave regime due to the infinitesimal temperature perturbation at the fluid surface when the
Galileo number is very low (G → 0). Now, if the Galileo number is increased, then inertia becomes
stronger and gradually dominates the Marangoni force induced by the variation in surface tension
due to the change in temperature. As a result, the S-mode instability becomes weaker and finally
becomes stable as the Galileo number rises. Furthermore, we observe that there exists a range of
the Galileo number where the S-mode instability is stable to infinitesimal temperature perturbation
when M = 156.92. The above facts indicate that inertia stabilizes the thermocapillary S-mode
instability. If the Galileo number is further increased, then the H-mode instability begins when
the Galileo number is greater than its critical value. However, there exists a range of the Galileo
number where both the H-mode and the S-mode are fully damped to infinitesimal perturbations
when M = 156.92. Instead, if the Marangoni number or, equivalently, M is increased, then the
neutral stability curves for the S-mode and H-mode approach toward each other and finally coalesce
with each other and generate a single neutral stability curve at M = 188.3. In this case, the onset
of stability to infinitesimal perturbation moves in the finite streamwise wave number regime when
M = 188.3 and kz = 0. This physical fact indicates a destabilizing impact of the Marangoni number
on the primary instability. To validate the analytical result, the critical Reynolds number for the
H-mode is computed numerically and compared with that of the analytical result in Table II when the
imposed shear stress τ changes. We can clearly see that the numerical results capture the analytical
results very well when Ka = 500, θ = 15◦, Pr = 7, B = 1, and M = 18. Furthermore, the critical
Reynolds number for the H-mode decreases with the increasing value of τ , but increases with the
decreasing value of τ . This result indicates that the imposed shear stress destabilizes the H-mode
instability if it applies in the coflow direction, but stabilizes the H-mode instability if it applies in the
counterflow direction. Actually, the base flow velocity accelerates as the magnitude of the imposed
shear stress increases. As a result, the perturbation gets more energy from base flow, that makes
stronger the kinetic energy of the perturbation and causes a destabilizing effect on the H-mode
instability [65].
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TABLE II. Comparison between the analytical and numerical values of the critical Reynolds number Rec

for the H-mode when the imposed shear stress τ changes. The other parameter values are Ka = 500, θ = 15◦,
Pr = 7, B = 1, and M = 18.

τ Analytical value (Rec) Numerical value (Rec)

−1.0 8.2780 8.2722
−0.5 5.2031 5.2034
0.0 3.6599 3.6562
0.5 2.7256 2.7278
1.0 2.0830 2.0831

B. Convergence of the spectrum

This subsection deals with the convergence of the spectrum computed from the matrix eigenvalue
problem (75) as the flow parameters change. Consequently, we introduce the relative error as defined
by Tilton and Cortelezzi [66] and Samanta [67]

EN = ‖cN+1 − cN‖2/‖cN‖2, (78)

where ‖.‖2 represents the L2 norm. Here, we have taken twenty least stable eigenvalues to compute
the relative error EN when the flow parameters vary. The ensuing results are demonstrated in
Fig. 5. In the numerical simulation, we have changed the values of the Marangoni number and the
imposed shear stress, while the other parameter values are fixed at Re = 5000, Ka = 500, θ = 15◦,
Pr = 7, B = 1, kx = 1, and kz = 0. In all cases, we see that the relative error EN of the spectrum
approximately converges in the range [O(10−6), O(10−5)] for N � 60. These results indicate that
sixty to one hundred Chebyshev polynomials are sufficient for achieving accurate numerical results
from the eigenvalue problem (75). The numerical simulations recognize the existence of three
distinct modes, which are called the H-mode, S-mode, and P-mode. More specifically, these modes
are emerged for low to moderate values of the Reynolds number, and they are distinguished by
their phase speeds, which are fully different from each other. However, when the Reynolds number

FIG. 5. (a) Variation of the relative error EN with the number of Chebyshev polynomials N for different
values of M when Re = 5000, Ka = 500, θ = 15◦, Pr = 7, B = 1, τ = 0.1, kx = 1, and kz = 0. Solid, circle,
and cross points stand for M = 0, M = 25, and M = 50, respectively. (b) Variation of the relative error EN

with the number of Chebyshev polynomials N for different values of τ when Re = 5000, Ka = 500, θ = 15◦,
Pr = 7, B = 1, M = 25, kx = 1, and kz = 0. Solid, circle, and cross points stand for τ = −0.1, τ = 0, and
τ = 0.1, respectively.
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FIG. 6. (a) The eigenvalues in (cr , ci) plane when Re = 15, θ = 15◦, kx = 0.4, M = 25, Ka = 500, and
τ = 0.5. (b) The eigenvalues in (cr , ci) plane when Re = 0.4, θ = 15◦, kx = 0.1, M = 30, Ka = 500, and
τ = 0.5. (c) The eigenvalues in (cr , ci) plane when Re = 10, θ = 15◦, kx = 3, M = 50, Ka = 500, and τ =
0.5. (d) The eigenvalues in (cr , ci) plane when Re = 6000, θ = (1◦/60), kx = 2.2, M = 50, Ka = 51000, and
τ = 0.1. The other parameter values are Pr = 7, B = 1, and kz = 0.

is very large, an additional shear mode [8–10,68,69] is also emerged numerically in the finite
streamwise wave number regime. We have depicted these distinct modes in Fig. 6 for the different
sets of parameter values. Clearly, the H-mode, S-mode, P-mode, and shear mode have distinct phase
speeds.

V. RESULTS IN LOW TO MODERATE REYNOLDS NUMBER REGIME

A. Effect of the imposed shear stress

In this subsection, we will explore the sole effect of the imposed shear stress on different unstable
modes detected in the numerical simulation. Initially, we analyze the results when the constant shear
stress is applied in the coflow direction (τ > 0). To this end, we choose the following parameter
values: Ka = 500, θ = 15◦, Pr = 7, B = 1, and kz = 0. Figure 7(a) displays the variations of the
neutral stability curves for the H-mode and S-mode when the imposed shear stress varies. We can
observe that two neutral stability curves emerge in (Re, kx) plane when τ = 0 and M = 25. In
particular, the neutral stability curve pertaining to the S-mode arises in the low Reynolds number
regime, while the neutral stability curve pertaining to the H-mode arises in the moderate Reynolds
number regime. As the imposed shear stress increases, the onset of instability for the H-mode moves
to the left, and the associated unstable region magnifies. On the contrary, the onset of stability
for the S-mode moves to the right, and the associated stable region contracts with the increasing
value of the imposed shear stress. These results can also be found in the inset of Fig. 7(a). Due to
the above physical phenomena, the onset of instability for the H-mode and the onset of stability
for the S-mode merge with each other and, ultimately, generate a single onset of stability as the
imposed shear stress rises. Clearly, the unstable zones for the H-mode and S-mode significantly
enhance with the increasing values of the imposed shear stress, implying a destabilizing impact
on the H-mode and S-mode. Next, we produce the result for the P-mode. Figure 7(b) illustrates
the variation of the neutral stability curve for the P-mode when the imposed shear stress changes.
In this case, the neutral stability curve arises in the form of a close-island-shape rather than the
open-domain-shape emerged for the H-mode when τ = 0. It is worth noting that the unstable region
for the P-mode appears in the finite streamwise wave number regime instead of the long-wave
regime. As long as the imposed shear stress increases, the unstable region for the P-mode gradually
shrinks and eventually becomes a point at τ ≈ 1.07. This fact indicates a stabilizing impact of
the imposed shear stress on the P-mode. If we further increase the value of τ , then the unstable
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FIG. 7. (a) Variation of the neutral stability curves for the H-mode and the S-mode in (Re, kx) plane for
different values of the imposed shear stress τ � 0 when M = 25. Solid, dashed, and dotted lines stand for
τ = 0, τ = 0.5, and τ = 1, respectively. Variations of the onset of instability Rec for the H-mode and the onset
of stability Res for the S-mode are shown in the inset of Panel (a). The line with diamond points represents
the onset of instability for the H-mode, and the line with square points represents the onset of stability for
the S-mode. (b) Variation of the neutral stability curve for the P-mode in (Re, kx) plane for different values
of the imposed shear stress τ � 0 when M = 50. Solid, dashed, dotted, and dash-dotted lines stand for τ = 0,
τ = 0.5, τ = 1, and τ ≈ 1.07, respectively. Variations of the onset of instability Repi and the onset of stability
Reps for the P-mode are shown in the inset of Panel (b). The line with square points represents the onset of
instability for the P-mode, and the line with diamond points represents the onset of stability for the P-mode.
The other parameter values are Ka = 500, θ = 15◦, Pr = 7, B = 1, and kz = 0.

region completely disappears from the neutral diagram. The variations of the onset of instability
and the onset of stability for the P-mode are exhibited in the inset of Fig. 7(b). Now, we will
examine the results for the case when the constant shear stress is acting in the counterflow direction
(τ < 0). Accordingly, we prefer the following parameter values: Ka = 500, θ = 15◦, Pr = 7, B = 1,
and kz = 0. Figure 8(a) illustrates how the neutral stability curves for the H-mode and S-mode
vary as the imposed shear stress changes in the counterflow direction. We can see that a single
neutral stability curve arises in (Re, kx) plane when τ = 0 and M = 37. As soon as the magnitude
of imposed shear stress is increased in the counterflow direction, two neutral stability curves appear
in (Re, kx) plane rather than one. The neutral stability curve associated with the S-mode emerges
in the low Reynolds number regime, while the neutral stability curve associated with the H-mode
emerges in the moderate Reynolds number regime as before. Clearly, the onset of instability for
the H-mode moves to the right, and the associated unstable region attenuates with the increasing
value of the imposed shear stress in the counterflow direction. On the contrary, the onset of stability
for the S-mode moves to the left, and the associated stable region magnifies as the imposed shear
stress increases in the counterflow direction. These results are also shown in the inset of Fig. 8(a).
Therefore, if the constant shear stress is applied in the counterflow direction, then one can expect a
stabilizing influence of the imposed shear stress on the primary instabilities induced by the H-mode
and the S-mode. Now, we will show the result for the P-mode. Figure 8(b) demonstrates how the
neutral stability curve for the P-mode changes as the imposed shear stress alters in the counterflow
direction. As before, we can observe that the unstable zone for the P-mode appears as a point in
the finite streamwise wave number regime when τ ≈ −0.066 and M = 35. If the magnitude of the
imposed shear stress is gradually increased in the counterflow direction, then the unstable region for
the P-mode expands and forms a close-island-shape. This result indicates that the primary instability
induced by the P-mode can be destabilized by applying a constant shear stress in the counterflow
direction. The inset of Fig. 8(b) exhibits the variations of the onset of instability and the onset of
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FIG. 8. (a) Variation of the neutral stability curves for the H-mode and the S-mode in (Re, kx) plane for
different values of the imposed shear stress τ � 0 when M = 37. Solid, dashed, and dotted lines stand for
τ = 0, τ = −0.5, and τ = −1, respectively. Variations of the onset of instability Rec for the H-mode and the
onset of stability Res for the S-mode are shown in the inset of Panel (a). The line with diamond points represents
the onset of instability for the H-mode, and the line with square points represents the onset of stability for the
S-mode. (b) Variation of the neutral stability curve for the P-mode in (Re, kx) plane for different values of the
imposed shear stress τ < 0 when M = 35. Solid, dashed, dotted, and dash-dotted lines stand for τ ≈ −0.066,
τ = −0.1, τ = −0.25, and τ = −0.40, respectively. Variations of the onset of instability Repi and the onset
of stability Reps for the P-mode are shown in the inset of Panel (b). The line with square points represents the
onset of instability for the P-mode, and the line with diamond points represents the onset of stability for the
P-mode. (c) The phase boundary for the existence of distinct unstable zones corresponding to the H-mode and
S-mode. The other parameter values are Ka = 500, θ = 15◦, Pr = 7, B = 1, and kz = 0.

stability for the P-mode. Furthermore, a close inspection of Figs. 7(a) and 8(a) discloses that there
is a special set of values for M and τ , for which the onset of stability for the S-mode and the onset
of instability for the H-mode coalesce and, finally, create a single onset for the linear stability to
infinitesimal disturbances. In other words, we can retrieve a boundary in (τ , M) plane that separates
the distinct regimes for the existence of unstable H-mode and S-mode. This phase boundary is
calculated numerically and shown in Fig. 8(c). If the parameter values do not belong to the shaded
zone, then there are no distinct unstable regimes for the H-mode and S-mode, and a single neutral
stability curve appears in (Re, kx) plane. Otherwise, we can obtain separate unstable zones for the
H-mode and S-mode in (Re, kx) plane if parameter values belong to the shaded zone.

B. Effect of the spanwise wave number

This subsection focuses on the sole effect of the spanwise wave number on the individual unstable
modes in a low to moderate Reynolds number regime. To produce the results, we choose the
following parameter values: Ka = 500, θ = 15◦, M = 35, Pr = 7, B = 1, and τ = 0.5. Figure 9(a)
displays how the neutral stability curves for the H-mode and the S-mode vary as the spanwise
wave number kz alters. We can see that there is a single neutral stability curve in (Re, kx) plane
when the spanwise wave number keeps the value kz = 0. If the magnitude of kz is increased, then
the single neutral stability curve suddenly turns into a pair of separatrics at kz ≈ 0.03, which is
specified by a dashed line. Actually, this is the situation where two neutral stability curves are
formed, and both curves are separated by a single point [see Fig. 9(a)]. In particular, one neutral
stability curve is associated with the H-mode, while the other neutral stability curve is associated
with the S-mode. If the magnitude of kz is further increased, then the unstable zones induced by the
H-mode and S-mode significantly diminish with the increasing value of kz. The interesting result
is that the unstable zone created by the H-mode gradually moves upward in the finite streamwise
wave number regime as the spanwise wave number rises. By contrast, the unstable zone created by
the S-mode gradually moves downward in the long-wave regime and ultimately disappears from
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FIG. 9. (a) Variation of the neutral stability curves for the H-mode and S-mode in (Re, kx) plane for different
values of the spanwise wave number kz when M = 35. Solid, dashed, dotted, and dash-dotted lines stand for
kz = 0, kz ≈ 0.03, kz = 0.1, and kz = 0.15, respectively. (b) Variation of the neutral stability curve for the
P-mode in (Re, kx) plane for different values of the spanwise wave number when M = 50. Solid, dashed, and
dotted lines stand for kz = 0, kz = 0.5, and kz = 1, respectively. The other parameter values are Ka = 500,
θ = 15◦, Pr = 7, B = 1, and τ = 0.5.

the neutral diagram as the spanwise wave number rises [see Fig. 9(a)]. The above results imply that
the H-mode and S-mode instabilities can be suppressed by including the spanwise wave number
to the infinitesimal disturbances. It should be noted that the result associated with the H-mode
is consistent with the statement of Squire’s theorem. Next, we have produced the result for the
thermocapillary P-mode. Accordingly, we take the following parameter values: Ka = 500, θ = 15◦,
M = 50, Pr = 7, B = 1, and τ = 0.5. Figure 9(b) reveals how the neutral stability curve for the
P-mode varies as the spanwise wave number kz changes. Obviously, the neutral stability curve arises
in the finite streamwise wave number regime rather than the long-wave regime. It is worth noting that
the unstable region generated by the P-mode grows in size with the increasing value of the spanwise
wave number. This fact indicates that the spanwise wave number has a destabilizing influence on the
P-mode instability. Therefore, the statement of Squire’s theorem cannot be applied to the P-mode
instability.

VI. RESULTS IN HIGH REYNOLDS NUMBER REGIME

Now, we will investigate the shear mode when the imposed shear stress varies. In general,
the shear mode can be identified numerically when the Reynolds number is very large, but the
inclination angle is sufficiently small [8–10]. First, we will produce the results when the constant
shear stress acts in the coflow direction (τ > 0). Accordingly, we take the following parameter
values: Ka = 51000, θ = (1◦/60), Pr = 7, B = 1, M = 15, and kz = 0. Figure 10(a) demonstrates
the variation of the neutral stability curve for the shear mode as the imposed shear stress changes.
Obviously, the neutral stability curve forms a tongue-like-shape in (Re, kx) plane. We can see that
the onset of instability for the shear mode shifts to the left side with the increasing value of the
imposed shear stress. This result can also be understood from the inset of Fig. 10(a), where the
variation of the critical Reynolds number for the shear mode is displayed with the imposed shear
stress. Therefore, one can begin shear mode instability at a lower Reynolds number than the case
when the imposed shear stress is absent. By contrast, if the constant shear stress is applied in the
counterflow direction (τ < 0), then the onset of instability for the shear mode shifts to the right
side [see Fig. 10(b)]. Therefore, the shear mode instability can be delayed by applying a constant
shear stress in the counterflow direction. Since, both the H-mode and the shear mode emerge in the
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FIG. 10. (a) Variation of the neutral stability curve for the shear mode in (Re, kx) plane for different values
of the imposed shear stress τ (� 0). Solid, dashed, and dotted lines stand for τ = 0, τ = 0.05, and τ = 0.1,
respectively. (b) Variation of the neutral stability curve for the shear mode in (Re, kx) plane for different values
of the imposed shear stress τ (� 0). Solid, dashed, and dotted lines stand for τ = 0, τ = −0.05, and τ = −0.1,
respectively. Variation of the critical Reynolds number Rei for the onset of instability corresponding to the
shear mode is shown in the inset of Panels (a) and Panels (b), respectively. The other parameter values are
Ka = 51000, θ = (1◦/60), Pr = 7, B = 1, M = 15, and kz = 0.

high Reynolds number regime, they can compete with each other to trigger the primary instability
at a sufficiently small value of the inclination angle [8,69]. To examine this physical phenomenon,
we take the following parameter values: Ka = 76000, θ = (1◦/60), Pr = 7, B = 1, M = 10, and
kz = 0. Figure 11(a) depicts two neutral stability curves for the H-mode and the shear mode in
(Re, kx) plane when τ = 1. In this case, we see that the threshold of instability for the shear mode
appears at a lower Reynolds number than that of the H-mode [see the dashed line in the inset of
Fig. 11(b)]. Hence, the shear mode dominates the primary instability for the given set of parameter
values. If the magnitude of the imposed shear stress is gradually decreased, then an interesting

FIG. 11. (a) Variation of the neutral stability curves for the H-mode and the shear mode in (Re, kx) plane
for different values of the imposed shear stress τ when θ = (1◦/60). Solid, dashed, and dotted lines stand for
τ = 1, τ = 0.25, and τ = −0.5, respectively. (b) Competition between the H-mode and the shear mode in
(Re, kx) plane when τ = 0.81 and θ = (1◦/60). Solid and dashed lines in inset figure stand for the variation
of the critical Reynolds number for the H-mode and the shear mode, respectively. (c) The phase boundary for
the distinct unstable zones corresponding to the H-mode and the shear mode. The other parameter values are
Ka = 76000, Pr = 7, B = 1, M = 10, and kz = 0.
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FIG. 12. Variation of the neutral stability curves for the H-mode and the shear mode in (Re, kx) plane for
different values of the spanwise wave number kz. Solid, dashed, and dotted lines stand for kz = 0, kz = 0.25,
and kz = 0.5, respectively. The other parameter values are Ka = 71096, θ = (3◦/60), Pr = 7, B = 1, M = 10,
and τ = 0.5.

scenario is perceived. At τ = 0.81, the threshold of instabilities for the H-mode and the shear mode
appear at the same Reynolds number [see Fig. 11(b)]. In this case, both the H-mode and the shear
mode trigger the primary instability. As the threshold of instability for the shear mode attenuates
at a faster rate than that for the H-mode with the decreasing value of the imposed shear stress, the
threshold of instability for the shear mode is always greater than that of the H-mode as soon as it
overtakes the threshold of instability for the H-mode [see the solid line in the inset of Fig. 11(b)]. As
a result, the shear mode will have no further chance to drive the primary instability. Consequently,
the H-mode dominates the primary instability with the decreasing value of the imposed shear stress.
From Fig. 11(b), one can further conclude that there is a special value of τ for a given parameter
values, for which the critical Reynolds numbers for the H-mode and the shear mode will be the
same. In other words, we can find a boundary in (θ , τ ) plane that separates the distinct regimes
for the H-mode instability and the shear mode instability. This phase boundary is demonstrated in
Fig. 11(c). If the parameter values lie in the shaded zone, then the H-mode dominates the primary
instability. However, the shear mode dominates the primary instability, if the parameter values do
not lie in the shaded zone. To examine the effect of the spanwise wave number on the shear mode,
we will produce a similar result, but the spanwise wave number will be varied instead of the imposed
shear stress. The result is displayed in Fig. 12. It should be noted that the H-mode dominates the
primary instability when kz = 0, because the threshold of instability of the H-mode is lower than
that of the shear mode. As soon as the magnitude of the spanwise wave number increases, the shear
mode triggers the primary instability because the threshold of instability of the shear mode is lower
than that of the H-mode. Therefore, the primary instability can be originated by the shear mode by
incorporating the spanwise wave number into the infinitesimal disturbance. Furthermore, we notice
that the spanwise wave number stabilizes the shear mode instability, as was observed for the H-mode
instability. This result is consistent with the statement of Squire’s theorem.

VII. INERTIALESS STABILITY ANALYSIS

To investigate the linear stability analysis for the two-dimensional nonisothermal fluid flow in
the inertialess limit, we set Re = 0, kx = k, and kz = 0 [6,28]. As a result, the Orr-Sommerfeld-type
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boundary value problems (43)–(49) are simplified into the following forms:

(D2 − k2)2v̂ = 0, 0 � y � 1, (79)

(D2 − k2)T̂ = 0, 0 � y � 1, (80)

v̂ = 0, T̂ = 0, Dv̂ = 0, at y = 0, (81)

(D2 + k2)v̂ + k2Ma

[
T̂ − Bi

1 + Bi
η̂

]
+ 2ikη̂ = 0, at y = 1, (82)

D3v̂ − 3k2Dv̂ = k2η̂

[
k2

(
We − Ma

1 + Bi

)
+ 2 cot θ − 2ikτ

]
, at y = 1, (83)

DT̂ + Bi

[
T̂ − Bi

1 + Bi
η̂

]
= 0, at y = 1, (84)

v̂ + i[ω − k(1 + τ )]η̂ = 0, at y = 1. (85)

The general solutions of Eqs. (79) and (80) can be written as

v̂(y) = r1eky + r2e−ky + r3yeky + r4ye−ky, (86)

T̂ (y) = r5eky + r6e−ky, (87)

where r1, r2, r3, r4, r5, and r6 are integration constants to be determined from the boundary
conditions. Inserting the solutions (86) and (87) in the associated boundary conditions (81)–(85),
one can get a homogeneous system of algebraic equations for the unknown variables r1, r2, r3, r4,
r5, r6, and η̂. Next, this system of equations is recast into a matrix equation form [69]

MX = 0, (88)

where

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0
k −k 1 1 0 0 0
0 0 0 0 1 1 0

2k2ek 2k2e−k 2k(k + 1)ek 2k(k − 1)e−k k2Maek k2Mae−k {2ik − k2Ma Bi
(1+Bi) }

−2k3ek 2k3e−k −2k3ek 2k3e−k 0 0 −k2{2 cot θ − 2ikτ + k2(We − Ma
1+Bi )}

0 0 0 0 (Bi + k)ek (Bi − k)e−k − Bi2

(1+Bi)

ek e−k ek e−k 0 0 ik{c − (1 + τ )}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

r1

r2

r3

r4

r5

r6

η̂

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore, the determinant of the matrix M must be zero for a nontrivial solution of X . Hence, we
can write

det(M) = 0, (89)

which leads to a dispersion relation in the following form:

Disp(c, k, Ma, We, Bi, τ, θ ) = 0. (90)
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FIG. 13. (a) Variation of the neutral stability curve for the inertialess instability in (Ma, k) plane for
different values of the Biot number (Bi � 1). Solid, dashed, and dotted lines stand for Bi = 1, Bi = 1.5, and
Bi = 2, respectively. (b) Variation of the neutral stability curve for the inertialess instability in (Ma, k) plane for
different values of the Biot number (Bi � 1). Solid, dashed, and dotted lines stand for Bi = 0.25, Bi = 0.5, and
Bi = 1, respectively. (c) Comparison of the neutral stability curve for the inertialess instability with the results
computed from the Padé approximation and the long-wave solutions in (Ma, k) plane when Bi = 1. Solid,
dashed, dotted, and dash-dotted lines stand for the results of the dispersion relation (90), third-order [O(k3)]
long-wave analytical solution, fifth-order [O(k5)] long-wave analytical solution, and the Padé approximation,
respectively. The other parameter values are We = 1000, θ = 15◦, and kz = 0.

Using the long-wave analysis in the limit k → 0, the complex wave speed c for the infinitesimal
disturbance is determined in the following form:

c = (2 + τ ) + i

6

[
3Ma Bi

(1 + Bi)2
− 4 cot θ

]
k − 2

3
(3 + τ )k2

− i

30

[
5Ma{Bi(2 + 3Bi) − 2}

(1 + Bi)3
+ 10We − 36 cot θ

]
k3

+
(

11

3
+ 6τ

5

)
k4 + i

630

[
7Ma{Bi(3 + 4Bi(33 + 20Bi)) − 54}

(1 + Bi)4
+ 378We − 1380 cot θ

]
k5

+O(k6). (91)

Finally, the neutral stability condition (ci ≈ |kc1| = 0) in the limit k → 0 provides the critical value
of the Marangoni number Mac for the inertialess instability

Mac = 4 cot θ (1 + Bi)2

3Bi
. (92)

Clearly, Eq. (92) coincides with that given in Eq. (69) for the inertialess instability. Next, we solve
the dispersion relation (90) in the arbitrary wave number regime for the complex wave speed c
when the flow parameters are constant. Figures 13(a) and 13(b) depict the neutral stability curve for
the inertialess instability in (Ma, k) plane when the Biot number varies. Obviously, there are two
different regimes of the Biot number as demonstrated before. More specifically, the unstable zone
for the inertialess instability becomes smaller as the Biot number rises (Bi � 1), which specifies
a stabilizing influence of the Biot number, or equivalently, the heat transfer coefficient on the
inertialess instability. By contrast, the unstable zone for the inertialess instability becomes larger
as the Biot number rises (Bi � 1), which specifies a destabilizing influence of the Biot number, or
equivalently, the heat transfer coefficient on the inertialess instability. This physical phenomenon
was discussed before in Sec. III based on the long-wave stability analysis. However, Fig. 13(c)
depicts the comparison of the neutral stability curve for the inertialess instability computed from
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the dispersion relation, long-wave analysis, and the Padé approximation, respectively. It should
be noted that the result obtained from the Padé approximation is more accurate in comparison
with the long-wave third-order and long-wave fifth-order solutions because the result of the Padé
approximation arrests the result of the dispersion relation in a larger range of wave number than the
long-wave third-order and long-wave fifth-order solutions.

VIII. INVISCID STABILITY ANALYSIS

This section deals with inviscid stability analysis for the two-dimensional nonisothermal fluid
flow in the presence of an imposed shear stress. Therefore, we set the Reynolds number Re very
large [68,70]. In the limit Re → ∞, the Orr-Sommerfeld-type boundary value problems (43)–(49)
are reduced to the following Rayleigh-type boundary value problems:

[(Ū − c)(D2 − k2) − D2Ū ]φ̂ = 0, y ∈ [0, 1], (93)

(Ū − c)T̂ − DT̄ φ̂ = 0, y ∈ [0, 1], (94)

φ̂ = 0, T̂ = 0, at y = 0, (95)

(c − Ū )Dφ̂ + DŪ φ̂ − 1

(c − Ū )

[
k2

(
Ŵe − M̂a

1 + Bi

)
+ 2 ˆcot θ

]
φ̂ = 0, at y = 1, (96)

where v̂(y) = −ikφ̂ and ω = kc. The new parameters Ŵe = We/Re, M̂a = Ma/Re, and ˆcot θ =
cot θ/Re are introduced in Eq. (96) to assess their effects on the unstable growth rate. It should be
useful to report here that we assume the new parameters Ŵe, M̂a, and ˆcot θ are of order O(1). Here,
c = cr + ici is the complex wave speed of the infinitesimal disturbance. Now, to solve the second-
order boundary value problems (93)–(96), we first apply the transformation φ̂(y) = (U − c)�(y),
which recasts the above Rayleigh-type boundary value problems (93)–(96) into the following forms:

D[(Ū − c)2D�] − (Ū − c)2k2� = 0, (97)

(Ū − c)[T̂ − DT̄ �] = 0, (98)

�(0) = 0, T̂ (0) = 0, (99)

(Ū − c)2D�(1) −
[

k2

(
Ŵe − M̂a

1 + Bi

)
+ 2 ˆcot θ

]
�̂(1) = 0. (100)

Next, Eq. (97) is multiplied by the complex conjugate function �∗ and integrated with respect to y
over the fluid layer depth [0, 1]. Finally, the boundary conditions (99) and (100) are used. The above
mathematical procedures yield the following equation:∫ 1

0
(Ū − c)2Q(y)dy =

[
k2

(
Ŵe − M̂a

1 + Bi

)
+ 2 ˆcot θ

]
|�(1)|2, (101)

where Q(y) = (|D�(y)|2 + k2|�(y)|2) � 0. Comparing the real and imaginary parts of Eq. (101),
one can obtain∫ 1

0

[
(Ū − cr )2 − c2

i

]
Q(y)dy −

[
k2

(
Ŵe − M̂a

1 + Bi

)
+ 2 ˆcot θ

]
|�(1)|2 = 0, (102)

ci

∫ 1

0
(Ū − cr )Q(y)dy = 0. (103)
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As we want to decipher the instability (ci > 0) for the inviscid nonisothermal fluid flow, the integral
(103) will not be vanished for cr > (1 + τ ) unless Q(y) = 0, which in fact indicates a trivial
solution. However, we are interested in finding a nontrivial solution. Therefore, for a nontrivial
unstable solution, we must have

cr = (1 + τ/2)2 −
[∫ 1

0 (1 + τ/2 − y)2Q(y)dy∫ 1
0 Q(y)dy

]
. (104)

After substitution of the expression of cr in Eq. (102), one can get the expression of ci as follows:

c2
i =

∫ 1
0 (1 + τ/2 − y)4Q(y)dy∫ 1

0 Q(y)dy
−

[∫ 1
0 (1 + τ/2 − y)2Q(y)dy∫ 1

0 Q(y)dy

]2

−
[
k2

(
Ŵe − M̂a

1+Bi

) + 2 ˆcot θ
]|�(1)|2∫ 1

0 Q(y)dy
. (105)

Expression (105) shows that c2
i , or equivalently, the growth rate of the inviscid nonisothermal fluid

flow accelerates with the increasing value of M̂a, but decelerates with the increasing values of Ŵe
and ˆcot θ . Therefore, one can report that M̂a has a destabilizing impact but Ŵe and ˆcot θ have a
stabilizing impact on the inviscid instability. Furthermore, using Eqs. (102) and (103), we can write∫ 1

0
Ū 2Q(y)dy = � + (

c2
r + c2

i

) ∫ 1

0
Q(y)dy, (106)

∫ 1

0
ŪQ(y)dy = cr

∫ 1

0
Q(y)dy, (107)

where � = [k2(Ŵe − M̂a
1+Bi ) + 2 ˆcot θ ]|�(1)|2. Suppose, Umin and Umax are the minimum and maxi-

mum values of the base velocity Ū . Then

0 �
∫ 1

0
(U − Umin)(U − Umax)Q(y)dy

= � + [
c2

r + c2
i − (Umin + Umax)cr + UminUmax

] ∫ 1

0
Q(y)dy, (108)

which implies that

[
cr − Umax + Umin

2

]2

+ c2
i �

[
Umax − Umin

2

]2

− �∫ 1
0 Qdy

. (109)

For a nontrivial solution, we have
∫ 1

0 Qdy > 0. Now, if we prefer the parameter values such that

� > 0, or equivalently, Ŵe > M̂a
1+Bi , then Eq. (109) simplifies into the following form:

[
cr − Umax + Umin

2

]2

+ c2
i �

[
Umax − Umin

2

]2

, (110)

which is the mathematical expression for Howard’s semicircle theorem. Clearly, for a given set of
parameter values with � > 0, the eigenvalues of the Rayleigh-type boundary value problems lie
within a semicircular disk of radius Umax−Umin

2 , whose center is located at cr = Umax+Umin
2 and ci = 0.
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IX. SUMMARY AND CONCLUSIONS

A linear stability analysis is performed for a gravity-driven three-dimensional shear-imposed thin
viscous incompressible film flowing down an inclined plane, where the bounding plane is uniformly
heated. As a result, the temperature is constant on the plane. However, the heat transfer due to
convection at the fluid surface follows Newton’s law of cooling. Depending on the application
of the constant shear stress on the fluid surface, the coflow (τ > 0) and the counterflow (τ < 0)
problems are thoroughly explored. A coupled system of boundary value problems is developed in
terms of the amplitudes of perturbation normal velocity and perturbation temperature to carry out
the linear stability analysis, which is solved analytically by using the long-wave series expansion,
and is also solved numerically by using the Chebyshev spectral collocation method in the arbitrary
wave number regime. The analytical solution shows that the H-mode exists in the long-wave regime,
and the critical Reynolds number for the onset of H-mode instability attenuates with the increasing
values of the Marangoni number and the shear stress imposed in the coflow direction. This fact
implies a destabilizing influence of the Marangoni number, or equivalently, increasing the value of
the surface tension gradient and the imposed shear stress on the primary instability induced by the
H-mode. Furthermore, a critical value of the Marangoni number is calculated at the inertialess limit,
below which the flow is linearly stable. However, the infinitesimal perturbation can be destabilized
in this range by including inertia in the flow configuration. If the stability analysis is performed
for an inertialess flow over a uniformly heated vertical plane, then the infinitesimal disturbance is
always linearly unstable for any nonzero value of the Marangoni number.

However, the numerical solution shows that the thermocapillary S-mode and the thermocapillary
P-mode exist along with the H-mode in a low to moderate Reynolds number regime. In particular,
the S-mode appears in the low Reynolds number zone, while the P-mode appears in the finite
streamwise wave number zone. From the numerical results, we see that the onset of instability
for the H-mode decreases, while the onset of stability for the S-mode increases as the imposed
shear stress rises. As a consequence, these two onsets merge with each other and generate a single
onset of stability for the infinitesimal disturbances at a particular value of the imposed shear stress.
By collecting these particular parameter values, we can generate a phase boundary to differentiate
the unstable zones for the H-mode and S-mode. In the case of the P-mode, we observe that the
unstable zone significantly diminishes with the increasing value of the imposed shear stress, and
ultimately vanishes at the higher value of the imposed shear stress. Therefore, one can destabilize
the H-mode and the S-mode instabilities but can stabilize the P-mode instability by applying a
constant shear stress in the coflow direction. However, if we impose a constant shear stress in the
counterflow direction, then the opposite scenario occurs. Furthermore, we see that the H-mode and
the S-mode instabilities can be suppressed while the P-mode instability can be intensified by adding
the spanwise wave number to the infinitesimal disturbances. This result predicts that the statement of
Squire’s theorem is not applicable to P-mode instability. Finally, we have noticed that an additional
shear mode emerges in the high Reynolds number regime when the inclination angle is sufficiently
small. The numerical result demonstrates that the shear mode can be destabilized by imposing a
constant shear stress in the coflow direction. By contrast, the shear mode can be stabilized by
applying a constant shear stress in the counterflow direction. Furthermore, it is observed that the
H-mode and the shear mode compete with each other to dominate the primary instability. The shear
mode triggers the primary instability at higher values of the imposed shear stress. As soon as the
magnitude of the imposed shear stress is reduced, the H-mode dominates the primary instability.
Additionally, we notice that the shear mode can initiate the primary instability if the spanwise wave
number is included in the infinitesimal disturbance.
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APPENDIX A: SQUIRE’S TRANSFORMATION FOR THE NONISOTHERMAL
SHEAR-IMPOSED FLOW

In this Appendix, we discuss Squire’s transformation for the nonisothermal fluid flow in the
presence of imposed shear stress. To this end, we use the normal node solution (42) and write the
linearized three-dimensional perturbation equations (31)–(41) in the following forms:

ikxû + ∂yv̂ + ikzŵ = 0, 0 � y � 1, (A1)

Re[(Ū − c)ikxû + ∂yŪ v̂] = −ikx p̂ + [
∂yyû − (

k2
x + k2

z

)
û
]
, 0 � y � 1, (A2)

Re(Ū − c)ikx v̂ = −∂y p̂ + [
∂yyv̂ − (

k2
x + k2

z

)
v̂
]
, 0 � y � 1, (A3)

Re(Ū − c)ikxŵ = −ikz p̂ + [
∂yyŵ − (

k2
x + k2

z

)
ŵ

]
, 0 � y � 1, (A4)

Pe[(Ū − c)ikxT̂ + ∂yT̄ v̂] = [
∂yyT̂ − (

k2
x + k2

z

)
T̂

]
, 0 � y � 1, (A5)

û = 0, v̂ = 0, ŵ = 0, T̂ = 0, at y = 0, (A6)

∂yû + ikx v̂ − 2η̂ = −Ma

[
ikxT̂ − Bi

1 + Bi
ikxη̂

]
, at y = 1, (A7)

∂yŵ + ikzv̂ = −Ma

[
ikzT̂ − Bi

1 + Bi
ikzη̂

]
, at y = 1, (A8)

−p̂ + 2 cot θη̂ + 2∂yv̂ − 2ikxτ η̂ = −
[

We − Ma

1 + Bi

](
k2

x + k2
z

)
η̂, at y = 1, (A9)

∂yT̂ = Bi

[
Bi

1 + Bi
η̂ − T̂

]
, at y = 1, (A10)

(Ū − c)ikxη̂ = v̂, at y = 1. (A11)

Next, the following forms of the extended Squire’s transformations [36,55] are used:

kxû + kzŵ = kũ, v̂ = ṽ, k2
x + k2

z = k2, p̂ = p̃,

c = c̃, kxT̂ = kT̃ , k cot θ = kx cot θ̃ ,

kxRe = kR̃e, kxPe = kP̃e, kWe = kxW̃e,

kMa = kxM̃a, Bi = B̃i, kxη̂ = kη̃.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A12)

With the help of the above transformations (A12), one can convert the three-dimensional per-
turbation equations (A1)–(A11) for the nonisothermal film flow into equivalent two-dimensional
perturbation equations,

ikũ + ∂yṽ = 0, 0 � y � 1, (A13)

R̃e[(Ū − c̃)ikũ + ∂yŪ ṽ] = −ik p̃ + [∂yyũ − k2ũ], 0 � y � 1, (A14)

R̃e[(Ū − c̃)ikṽ] = −∂y p̃ + [∂yyṽ − k2ṽ], 0 � y � 1, (A15)

P̃e[(Ū − c̃)ikT̃ + ∂yT̄ ṽ] = [∂yyT̃ − k2T̃ ], 0 � y � 1, (A16)

ũ = 0, ṽ = 0, T̃ = 0, at y = 0, (A17)
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∂yũ + ikṽ − 2η̃ = −M̃a

[
ikT̃ − B̃i

1 + B̃i
ikη̃

]
, at y = 1, (A18)

−p̃ + 2 cot θ̃ η̃ + 2∂yṽ − 2ikτ η̃ = −
[

W̃e − M̃a

1 + B̃i

]
k2η̃, at y = 1, (A19)

∂yT̃ = B̃i

[
B̃i

1 + B̃i
η̃ − T̃

]
, at y = 1, (A20)

(Ū − c̃)ikη̃ = ṽ, at y = 1, (A21)

where tilde quantities represent the parameters for the two-dimensional nonisothermal shear-
imposed film flow. The above transformation shows that R̃e = (kx/k)Re, which indicates that R̃e <

Re, as kz 
= 0 for the three-dimensional disturbances. Hence, one can conclude that the primary
instability (H-mode instability or shear mode instability) corresponding to the two-dimensional
disturbance is linearly more unstable than that of the three-dimensional disturbances for the non-
isothermal shear-imposed film flow.

APPENDIX B: SOLUTION OF THE FIRST-ORDER LONG-WAVE EQUATIONS

φ1(y) = y2

60
[10(d0 + d1Re) + d2y + d3y2 + d4y3], (B1)

T1(y) = − i Bi y

60(1 + Bi)3
[e0 + e1y2 + e2y3 + e3y4], (B2)

where

d0 = 3iMa Bi η0

(1 + Bi)2
+ 6(η1 − i cot θ η0),

d1 = i(3c0 − τ − 2)η0,

d2 = 20i cot θ η0,

d3 = −5iRe c0 η0,

d4 = iRe η0(2 + τ ),

e0 = Pe[2Bi{6Bi − 5(3 + Bi)c0 + 25} + 5Bi(4 + Bi)τ + 20]η0 + 60i Bi(1 + Bi)η1,

e1 = 10Bi (1 + Bi) Pe c0 η0,

e2 = −5(1 + Bi){1 + Bi(3 + τ )}Pe η0,

e3 = 3 Bi (1 + Bi) Pe η0.

APPENDIX C: LONG-WAVE SECOND-ORDER APPROXIMATION

The long-wave second-order [O(k2)] equations are

D4φ2(y) + iRe{c0 − Ū (y)}D2φ1(y) + (iRe c1 − 2)D2φ0(y) + iReD2Ū (y)φ1(y) = 0, 0 � y � 1,

(C1)

D2T2(y) + iPe{c0 − Ū (y)}T1(y) + (iPe c1 − 1)T0(y) + iPeDT̄ (y)φ1(y) = 0, 0 � y � 1, (C2)

φ2(y) = 0, T2(y) = 0, Dφ2(y) = 0, at y = 0, (C3)

D2φ2(y) + φ0(y) + iMa T1(y) − iMa Bi η1

1 + Bi
− 2η2 = 0, at y = 1, (C4)
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D3φ2(y) + iRe{(c0 − 1 − τ )Dφ1(y) + τφ1} + (iRe c1 − 3)Dφ0(y)

− 2i cot θ η1 − 2τη0 = 0, at y = 1, (C5)

DT2(y) + Bi

[
T2(y) − Bi η2

1 + Bi

]
= 0, at y = 1, (C6)

φ2(y) − (c0 − 1 − τ )η2 − c1η1 − c0η2 = 0, at y = 1. (C7)

The coefficients of expression c2 are

b0 = −80(3 + τ ), b1 = −15{Ma Pe + 16(3 + τ )},
b2 = −720 + 7Ma Pe + 5(Ma Pe − 48)τ,

b3 = 16τ − 57

120(1 + Bi)2
, b4 = 160 + 49τ

252
,

b5 = (256 + 77τ )(τ + 2)

1008
.

APPENDIX D: EXPRESSIONS OF THE COEFFICIENTS FOR c3

h0 = 6720(1 + Bi)5[18 cot θ − 5We],

h1 = 16800(1 + Bi)[Bi2(5 + 3Bi) − 2],

h2 = (1 + Bi)[280Bi(1 + Bi)(33 − 7Bi) cot θ ] + 2100Bi2(Bi − 3),

h3 = (1 + Bi)[Bi{Bi(749Bi+ 2090) − 5434}+ 10Bi τ {Bi(17Bi+ 52)τ + 254Bi+ 76Bi2 − 130}],
h4 = 20(1 + Bi)4[6617 + 448 csc2 θ + 10τ (422 + 49τ )],

h5 = Bi(1+ Bi)[−13720(1+ Bi) cot θ+ Pe τ (−560Bi τ − 3209Bi+ 3490)+ (9605 − 3653Bi)Pe],

h6 = 5250Bi2,

h7 = 2475Bi Ma[2τ (77τ + 750) + 2707]

(1 + Bi)2
− 2 cot θ [11τ (25400τ + 231519) + 4444928],

h8 = (τ + 2)[13τ (54800τ + 434841) + 9711616].

APPENDIX E: RELATION TO THE SPREADING PROBLEM WHERE THE LIQUID FRONT
PROPAGATES IN THE FLOW DIRECTION

To relate our study to the spreading of a viscous film onto a sloping surface [37,38,41], we
consider a flow of a two-dimensional incompressible viscous film, where the air flow is blowing
across the film surface and produces a constant shear stress τs in the streamwise direction (see
Fig. 14). In fact, the imposed constant shear stress in the present flow configuration behaves like
a constant Marangoni surface stress induced by the constant temperature gradient applied to a
bounding substrate in the earlier studies [38,41]. Furthermore, we assume that the temperature at the
inclined plane is the same as that of the liquid film surface. As a consequence, there is no variation in
density, viscosity, and surface tension of the viscous film as the temperature is constant. Within the
lubrication approximation (ε = hc/lc � 1, where hc and lc are, respectively, the characteristic length
scales in x and y directions, and ε is the lubrication parameter), the Navier-Stokes equations and the
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FIG. 14. Sketch of spreading of a viscous film flowing down an inclined plane in the presence of an imposed
shear stress in the streamwise direction.

associated boundary conditions are reduced to the following dimensional forms [14,37,38,41]:

−∂x p + μ∂yyu + ρg sin θ = 0, (E1)

∂y p + ρgcos θ = 0, (E2)

u = 0, at y = 0, (E3)

μ∂yu = τs, at y = h, (E4)

Pa − p = σ∂xxh, at y = h, (E5)

∂t h + ∂x

(∫ h

0
udy

)
= 0, at y = h. (E6)

It should be noted that the terms ρgcos θ and σ∂xxh are kept in the reduced set of equations (E1)–
(E6) for small slope angle [ε cot θ ∼ O(1)] and for strong curvature near the leading edge of
the viscous film [ε3σ/(μUc) ∼ O(1), where Uc is the characteristic velocity scale]. Solving the
momentum equations (E1) and (E2), we can obtain the height-averaged streamwise velocity of the
viscous liquid film,

〈u〉 = − h2

3μ
(ρgcos θ∂xh − σ∂xxxh − ρg sin θ ) + τsh

2μ
. (E7)

If the viscous film is very thin, then we can assume ρg � ∂x p [39], and consequently, the height-
averaged streamwise velocity reduces to

〈u〉 = σh2

3μ
∂xxxh + τsh

2μ
. (E8)

The first term in Eq. (E8) represents the contribution of velocity due to surface curvature, while the
second term represents the contribution of velocity induced by the surface shear stress. Now if we
examine the regime away from the advancing film front (outer regime), the film surface is nearly
flat due to negligible surface curvature. Therefore, in this regime, the fluid velocity is dominated by
the second term of Eq. (E8) and can be expressed as

〈u〉 = τsh

2μ
. (E9)
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Obviously, the imposed surface shear stress and the viscous stress balancing each other in the outer
regime and the liquid film spreads with a constant height-averaged velocity τsh0

2μ
, where h0 is the

thickness of the flat liquid film. Substituting Eq. (E9) into Eq. (E6), one can obtain the surface
evolution equation for the liquid film thickness h(x, t ),

∂t h + (τs/μ)h∂xh = 0. (E10)

The above hyperbolic Eq. (E10) is solved by using the method of characteristics, where h is constant
along the characteristic curve given by the equation

x = x0 + (τs/μ)h(x0)t, (E11)

where x0 is the initial value of x at t = 0 when h = h(x0). In what follows, the solution of Eq. (E10)
can be written as

h(x, t ) = [μ(x − x0)/(τst )]. (E12)

Therefore, at sufficiently long time and far from the initial location (x � x0), the liquid film profile
takes a self-similar form,

h(x, t ) = [(μ/τs)x/t]. (E13)

Now, we will use the global continuity equation [37]∫ xN (t )

0
h(x, t )dx = A, (E14)

where xN (t ) is the value of x at the downstream edge of the outer regime and A is the cross-sectional
area of the viscous film in the x-y plane. Using the expression of self-similar profile (E13), we
can determine the position of the leading edge/downstream edge of the viscous film for the outer
regime,

xN = (2Aτs/μ)1/2t1/2. (E15)

From Eq. (E13), we can see that the liquid film height increases in the downstream direction from
the flat film thickness and achieves its maximum height at the leading edge of the outer regime. Since
the film thickness smoothly reduces at a later stage, and finally, meets the impermeable substrate, the
capillary force must be significant in this regime (inner regime) along with the viscous stress and the
surface shear stress [40]. Hence, both terms of Eq. (E8) are important in the inner regime. Suppose
lN and hN are, respectively, the characteristic length scales in the inner regime in x and y directions,
where hN is the liquid film thickness at the leading edge of the outer regime and UN = τshN/(2μ)
is the associated height-averaged velocity where h = hN . Balancing the two terms of Eq. (E8), we
can obtain

lN = (3Ca)−1hN , (E16)

where Ca = μUN/σ = τshN/(2σ ) is capillary number.
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