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Bubble breakup reduced to a one-dimensional nonlinear oscillator
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Breaking dynamics of bubbles in turbulence produce a wide range of bubble sizes,
which mediates gas transfer, in particular, at the ocean/atmosphere interface. At the scales
close to the stability limit of bubbles torn away by inertial forces, a typical geometry that
induces bubble breakup is the uniaxial straining flow. In this configuration, the bubble
shapes and their limit of stability have been studied theoretically and numerically near their
equilibrium. Using numerical simulations, we investigate the bubble dynamics and breakup
in such flows, starting from initial shapes far from equilibrium. We show that the breakup
threshold is significantly smaller than the previous linear predictions and evidence that the
breakup threshold depends on both the Reynolds number at the bubble size, and the initial
bubble shape (ellipsoids). To rationalize the bubble dynamics and the observed thresholds,
we propose a reduced model for the oblate/prolate oscillations (second Rayleigh mode)
based on an effective potential that depends on the control parameters and the initial bubble
shape. Our model successfully reproduces bubble oscillations, the maximal deformation
below the threshold, and the bubble lifetime above the threshold.

DOI: 10.1103/PhysRevFluids.8.094004

I. INTRODUCTION

The evolution of bubbles and droplets in turbulent flows has important fundamental and practical
applications. Bubbles drive low solubility gas exchanges, such as CO,, at the ocean-atmosphere
interface [1-4] and play a major role in nuclear reactors and chemical reactions [5]. Due to the
inherent complexity of turbulent flows, identifying the key flow ingredients leading to breakup
remains challenging both experimentally and numerically [6-8]. In inertial flows, bubble fate is
primarily controlled by the ratio between the inertial forces and the capillary forces, namely the
Weber number, We. A Weber number of order unity separates stable (low We) from unstable (large
We) bubbles. The effect of viscosity, on its side is quantified by the Reynolds number that balances
inertia with viscous effects. Experimental measurements of bubble breakup in turbulence have
reported a broad range of critical Weber number, questioning the nature of the transition and the
threshold definition. In simplified flow geometries, one can perform rigorous stability analysis to
understand the physical mechanism at play. Stagnation point flows, for instance, have been studied
to model bubble deformations and breakup in turbulence [9,10]. By investigating the stationary
shapes and their linear stability, it has been shown that below a critical Weber number, Wef , a stable
and an unstable stationary solution coexist. At We3, the two solutions merge and no stationary
solution remains beyond We’: any bubble will surely break [11-14]. However, this transition,
called a saddle node bifurcation, only defines an upper bound for the critical Weber number We,
that separates breaking from nonbreaking bubbles in a given experimental or numerical setup. In

“alienor.riviere @espci.fr

2469-990X/2023/8(9)/094004(12) 094004-1 ©2023 American Physical Society


https://orcid.org/0000-0002-5658-0759
https://orcid.org/0000-0001-8179-4452
https://orcid.org/0000-0003-1429-4209
https://orcid.org/0000-0002-9315-2892
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.8.094004&domain=pdf&date_stamp=2023-09-21
https://doi.org/10.1103/PhysRevFluids.8.094004

ALIENOR RIVIERE et al.

(a) . (b) ,

FIG. 1. (a) Scheme of a bubble at the center of a uniaxial straining flow. (Oz) is the axis of symmetry.
Arrows show typical streamlines in the absence of bubble. (b) Enlargement around a bubble experiencing
its maximum deformation at Re = 400 and We = 7.3 ~ We.(Re = 400). The blue line denotes the bubble
interface, black lines, isocontours of the stream function.

subcritical transitions, the knowledge of Wef is insufficient to predict the dynamics in realistic
conditions since finite amplitude perturbation can lead to a state change well below the critical
value of global stability loss. Such transitions have been evidenced for instance in parallel flows
[15], open flows [16], or in spatially extended systems [17] such as dissipative solitons [18,19],
and in viscous drop breakup [20,21]. A dynamical description of bubble deformations far from the
stable states is therefore still lacking.

The relevance of stationary extensional flows for bubble breakup in turbulence has been brought
back into the spotlight by recent experimental studies, showing that the turbulence is frozen during
the break-up process [22], and that extensional flows are among the relevant geometries for bubble
breakup [23]. In this paper, we thus investigate numerically the dynamics of a bubble in a uniaxial
straining flow, starting from initial shapes far from their equilibrium position. We demonstrate
that the initial condition strongly affects the bubble fate and evidence the subcritical nature of the
transition to breakup. We then characterize the effective critical Weber number, as a function of
Reynolds number and initial bubble shapes (spheroids). We also show that the whole dynamics can
be reduced to a peculiar nonlinear 1D oscillator whose parameters depend on the initial bubble
shape, the Weber number, and the Reynolds number. Eventually, we successfully reproduce the
bubble temporal deformations and the behavior close to the critical Weber number.

II. NUMERICAL SETUP

We inject a spherical bubble of diameter D into a uniaxial straining flow u(z, r) = Eze, — %E rep,
where E is the typical shear amplitude, e, and e, are unit vectors of the axisymmetric coordinate
system (z,r) (see Fig. 1). Density and viscosity ratios are 850 and 55, respectively, close to
air-water ratios. Physically, this numerical experiment corresponds to a bubble quickly transported
or suddenly submitted to a new straining region. Both phases are assumed incompressible and
noncondensible. The bubble dynamics is controlled by two dimensionless numbers, the Weber
number

pE*D?
We = , €))
14

which compares inertia and capillary forces, and the Reynolds number

ED?
Re = — (2)
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which compares inertia and viscous force, with p and v the liquid density and the kinematic
viscosity, respectively, and y the surface tension between the two phases. One could alternatively
usethe Reynolds number, the Ohnesorge number Oh = v./p/(Dy ) which thus does not include the
straining rate but only the material, and geometrical properties of the bubble. While the Ohnesorge
number plays an important role in the final stage of a fluid breakup [24,25], it is more pertinent
in our configuration to use dimensionless numbers that involve the inertia of the flow. We perform
numerical simulations of the Navier-Stokes equations for two incompressible fluids, using the free
open source software Basilisk [26-29]. The interface is described using a geometric volume of fluid
method combined with a second-order sharp interface reconstruction, and we use adaptive meshgrid
refinement (AMR). We consider a half domain to enforce left-right symmetry: the numerical domain
is a square of size L = 10Ry, i.e., z € [0, L] and r € [0, L], with Ry the initial bubble radius. We
perform the numerical simulations in two steps, with a minimal grid size of L/2° and L/2'°,
respectively, corresponding to 51.2 and 102.4 points per bubble equivalent radius. The rational of
these numerical resolutions and the numerical convergence study can be found in the Supplemental
Material [30]. First we create a stationary stagnation point flow without a bubble, called precursor,
using Dirichlet boundary conditions for the velocity field at r = L (inflow) and Neumann condition
at z = L (outflow), and conversely for the pressure. Starting from a fluid at rest, the velocity field
converges to the straining flow, with an error on the total kinetic energy density smaller than 1%
of the theoretical value, 11pE>L?/48. Note that, since the straining flow is vorticity free, we can
use the same setup to simulate both viscous and inviscid flows. We extract the final stationary state
and inject a bubble of radius Ry = L/10 at the stagnation point (r = z = 0), by changing only
density and viscosity. The boundary conditions at the bubble interface are initially not fulfilled,
nevertheless the code adapts in a few time steps to restore a solution, which corresponds to a much
shorter time than all physical time scales considered in the following. This bubble injection method
has been successfully used to study bubble dynamics in other flows [31,32]. For each Reynolds
number, ranging from 10 to 800, we vary the Weber number. We also perform a series of inviscid
simulations.

Figure 1(b) shows an enlargement around a bubble at Re = 400 and We = 7.3, experiencing
its maximum deformation. Bubble interface is the blue line. The flow field, visualized by the
isocontours of the stream function (black lines), smoothly goes around the bubble. We also evidence
in this figure a recirculation air flow inside the bubble.

III. AN INITIAL VALUE PROBLEM

At low Weber number, the bubble first elongates and then relaxes to its equilibrium shape, either
via damped oscillations (for Re typically larger than 100), or monotonic relaxation (Re < 50). For
sufficiently large We, the bubble elongates along the z direction and breaks. We denote by We, the
critical Weber number which separates breaking from nonbreaking configurations. We measure We,
as a function of Re using a bisection method. The result is shown in Fig. 2(a). The critical Weber
number converges to the inviscid value (solid line), We2° at large Reynolds number with a viscous
correction, and We° — We, following 1/Re (inset plot). We observe that reducing Re for a fixed
We allows the bubble to pass from a stable to an unstable configuration. Indeed, viscosity plays
a destabilizing role through viscous shear at the interface. The static critical Weber number We>
has previously been investigated by several authors from quasistatic deformations [11,12] or linear
stability analysis [14]. The recent computation of Wef. as a function of the Reynolds number from
[14] is shown in Fig. 2(a) (open circles) together with the inviscid limit from [11] (dashed line).
The critical Weber number We, we measure is significantly smaller than We?. Indeed, in practice,
the threshold We? would be observed for quasistatic deformations of bubbles, henceforth neglecting
inertial effects. Starting from an initially spherical bubble, inertia cannot in fact be neglected. Above
the break-up threshold, We. < We < We?, there still exists a stable shape surrounded by a finite
basin of attraction, but the initial condition, i.e., the initial shape which is deformed compared to the
stable shape, leads to the escape from this basin, and therefore, to breakup. The observed break-up
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FIG. 2. (a) Critical Weber number versus Re (crosses) with an error inferior to 1072, The solid black line is
the inviscid value We2°. The blue curve has expression WeZ° exp(—100/(WeZ°Re)). Open circles and dashed
lines are Wef(Re) and its inviscid limit as computed by Sierra-Ausin et al. [14] and Miksis [11], respectively.
The inset shows the viscous correction to We?°. The dotted line follows 100/Re. (b) Critical Weber number
versus the ellipsoid shape parameter a,, for inviscid simulations. The blue curve is a polynomial fit of degree
two with a maximum at gy = 1. Initial (black) and critical (red) shapes are represented for every ay.

transition is henceforth a subcritical bifurcation. For such bifurcations, the response to an initial
finite perturbation is dramatic, and the dynamics cannot be investigated using only linear stability
analysis [16]. For viscous suspended drops in extensional flows at low Reynolds number, similar
subcritical breakups have been evidenced experimentally and numerically [20,21,33,34].

To test the sensitivity to the initial conditions, we also consider ellipsoids of revolution of the
same volume, 4/ 37 R3, with a local radius R(#), in an inviscid flow (see Fig. 1 for the definition
of 0). The semi axis ag = R(;r /2)/Ry sets the whole initial shape from volume conservation, with
prolate shapes corresponding to @y < 1 and oblate shapes to ay > 1.

The critical Weber number [Fig. 2(b)] dramatically depends on the initial bubble shape, as
expected for a sub-critical transition. The critical Weber number is maximum for the sphere, and
decreases for both oblate and prolate shapes as the additional surface energy takes part in the
break-up process. Near the maximum in gy = 1, we expect a quadratic dependency of We, with
the distance to the sphere |1 — ag|, as shown by the parabolic fit (blue line) in Fig. 2(b).

To quantify the bubble deformation dynamics, we introduce the second Rayleigh mode of
oscillation [35]:

"2 R6) .

x=2 ——Y,’(cosf)sin6do, 3)
0 Ry

where Y, is the spherical harmonics of principal number ¢ = 2 and secondary number m = 0,

corresponding to oblate-prolate oscillations at an angular frequency w; = (12y/(pR}))"/?. The
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FIG. 3. (a), (b) Several typical temporal evolution of x at Re = 400. Simulation data are in color, the model
(4) is superimposed (black dotted line). (a) An initially spherical bubble at low We. (b) Three evolutions close
to We,(ap), for a stable sphere (blue line), an unstable sphere (gray line), and a stable ellipsoid (orange line,
ap = 0.8).

modes £ = 2 are known to capture accurately most bubble deformations [31,36,37]. Here, due to
symmetries, only the mode m = 0 is present. Figure 3 illustrates the various dynamics of mode two.
Far from We, the mode amplitude x exhibits damped oscillations and converges to a finite value x,
corresponding to a no spherical stable shape, as shown in 3(a) for an initially spherical bubble at
Re = 400. The same behavior is also observed for different initial conditions. Figure 3(b) illustrates
the dynamics near the critical threshold. Slightly below the critical Weber number We,, for an
initially spherical bubble (blue curve), the amplitude first approaches a plateau with a maximum
value xn.x close to its critical value x. and eventually converges to a stable shape. Just above the
threshold (gray curve), the dynamics is initially indistinguishable from the stable case, until the
amplitude grows exponentially and finally decays abruptly right before breakup. For a different
initial shape, as illustrated in Fig. 3(b) with ap = 0.8 (orange curve), we observe the same behavior;
however, the critical deformation x, at threshold increases. These curves are symptomatic of a
subcritical transition with a stable and an unstable equilibrium position, in which the stability
depends on both the control parameters (We and Re) and the initial conditions.

IV. REDUCED MODEL

We assume that the whole bubble dynamics can be described by a damped nonlinear oscillator
for x of the form

F+r=—-VV(x,..), 4

where V(x,...) is an effective potential that may depend on all control parameters (We, Re,
and ag). Time is made dimensionless using the mode angular frequency w,. A = 20./2/30h, with
Oh = ~/We/Re the Ohnesorge number, is the theoretical linear damping factor as computed by
Lamb [38]. This theoretical expression perfectly captures dissipation in our complete dataset. The
case of a harmonic potential was investigated by Kang and Leal [39]. Here, we look for a stationary
polynomial potential, V, of degree three, the minimum degree allowing to have two equilibrium
positions. To do so we minimize, for every simulation, the mismatch between left and right hand
sides of Eq. (4), that is to say the quantity

I = /(5& + A% — po — p1x — pax?)*dt )

094004-5



ALIENOR RIVIERE et al.

(@) -2
10 X10 1.00
¢ Too
AN 0.75
[\8)
~—~ 54
G 0.505
:> \ * * " g
\‘% 0.25
0- -
¢
; N 0.00
-2
(b) , x10
800
5-
" 400
S \ 200 &
X
5] 100
50
—-10 T T T
-0.5 0.0 0.5 1.0 1.5

X

FIG. 4. (a) Evolution of the potential V, defined in (4), with We for initially spherical bubbles at Re = 400.
The range of explored x values have a more intense color. Stable equilibrium positions are denoted by red
diamonds (red dashed lines in a and (b). The maximum values, x;,x, are denoted by black stars [same in
3(a) and 3(b)]. (b) Evolution of V with Re for a fixed of We = 5.

by optimizing pg, pi, and p,. This model perfectly describes the temporal evolution of x, both far
from We, [see black dotted line in Fig. 3(a)] and close to We, [Fig. 3(b)]. The effective potential
V depends on both We, as illustrated in Fig. 4(a) for Re = 400, where blue curves correspond
to We — 0 and yellow curves to We — We,, as well as on Re [see Fig. 4(b)] and a, (data not
shown). For a given Re, as Weber increases, the stable equilibrium (red diamonds) shifts to the right,
in agreement with the literature [11,14,39]. Concomitantly, as We increases, the initial velocity,
Xo o ~/We, increases and the energy barrier decreases, leading to the critical case where xyax = X,
and We = We, (yellow curve). Increasing We furthermore would lead to the merging of the two
equilibrium positions at We = We?, corresponding to the global stability loss.

Conversely, for a fixed We, as Re decreases, the equilibrium position shifts to the positive values
and the energy barrier decreases, as illustrated in Fig. 4(b) for We = 5. Both effects are consistent
with the destabilizing role of viscosity which leads to a decrease of We, with Re, as can be seen in
Fig. 2.

Figure 5 shows the evolution of the three coefficients py, p;, and p, of Eq. (5) with We and
Re for initially spherical bubbles. Circles denote finite Reynolds number simulations while black
crosses are for inviscid simulations. For all Re, the constant forcing py, depends linearly on We
[Fig. 5(a)], as was found theoretically in the inviscid case by Kang and Leal [39]. However, there
was no theoretical prediction for the Re dependency. Figure 5(b) shows that py decreases with Re,
in agreement with the destabilizing effect of viscosity and converges to its inviscid value (black
dotted line). The shape is compatible with a 1/Re decay (solid black line), reminiscent of the
Reynolds dependency of We,. The linear coefficient p; is found to always be negative [Fig. 5(c)]:
the linear restoring force is positive, and —p; is the oscillator angular frequency. We found a weak
dependency of p; with Re from 100 to 800. For the lowest Reynolds number Re = 50, the value of
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FIG. 5. Evolution of the coefficients of the three parameters defined in (5) with Re and We for initially
spherical bubbles. Colored circles correspond to finite Re simulations and black crosses to inviscid simulations.
(a) Constant coefficient py as a function of We. py evolves linearly with We. (b) Evolution of p, with Re. The
dotted black line is the average inviscid value. We recover a more efficient forcing at small Re, compatible with
a 1/Re scaling (solid black line). (c) Evolution of the linear coefficient p; with Re. The black dotted line is
the prediction of the pulsation from Kang and Leal [39] found from a linear development. (d) Evolution of the
quadratic coefficient p, with We.

p1 is underdetermined, as the oscillations are overdamped. As We increases, the angular frequency
|p1| decreases, as can be visualized in Fig. 3. For small We, the dynamics is well approximated
by a linear oscillator, and we recover the theoretical prediction from Kang and Leal [39] (black
dotted line). They show, by developing the dynamics around the equilibrium position, that the
linear dependency of the pulsation with We comes from the coupling of mode two with mode four.
The nonlinear coefficient p; is found to be always positive, in agreement with the existence of an
unstable equilibrium position for x. p; is of order one, and exhibits nonmonotonic evolution with
the Weber number [Fig. 5(d)]. However, p, values may be underdetermined for small and moderate
values of We, for which the dynamics is mostly linear. We did not find a clear dependency of p,
with Re.
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V. DYNAMICS CLOSE TO THE CRITICAL POINT

We now use this effective potential V description for the dynamics of x to quantify the evolution
of the maximal deformation as We — We,. For the sake of simplicity, we consider the limit of
negligible dissipation, in which energy is conserved:

L33 + V(xo, We) = 12 + V (x, We), (6)

with the initial condition xy = +/2We. Without any loss of generality we set V (xo, We) = 0 for all
We. We define max x = xp,x. At this point X, = 0, so that xp,y is the solution of

We = V (Xmax, We). (7

Since 0,V |, = 0, developing (7) around the unstable position x., at the lowest orders in We, — We
and X, — Xmax, gives

Wec + (We - wec) = Vc + (WC - Wec)8WCV|C + %(xc - xmax)zaxxvh" (8)
where V., = V(x;, We,) and |. = [, .we,. Since, by definition, We, = V., we get
(e = Xmar)” = A(We, — We) ©)

with A = 2(0weV|. — 1)/0.:V |.. Figures 4(a) and 4(b) show that 9,V |, is always negative, indeed;
X, is a maximum; and dw.V |, < 0. This ensures that A > 0, so that x. — xy,.x Writes

Xe — Xmax = VA(We. — We). (10)

To give a simpler description of the shapes close to the critical point, we introduce the deforma-
tion parameter D = 1 — R(7r/2,1)/R(0, t) with D < 0 for oblate shapes, D > 0 for prolate shapes,
and D — 1 for an infinitely long gas filament along z. Figure 6 shows D for both the inviscid
ellipsoids (triangles) and the spheres at finite Re (circles). For We — 0, the bubble is insensitive
to the surrounding flow and Dyox — Dy =1 — ag when gy < 1. Conversely, for We — We, the
maximum deformation converges to a critical value D,, which depends on both Re and aj. We find
that both the initial bubble deformation and the Reynolds number increases the critical deformation
D., with a slight difference between oblate and prolate shapes for the same distance to the sphere
|1 — apl|. The total deformation being mainly given by the amplitude x, we expect D to follow

D, — Dyax = 01/ 1 — We/We, (11)

as We approaches We,. For each Re and a( value, we fit the two parameters « and D, of Eq. (11).
All data sets collapse on the same master curve as represented in the inset of Fig. 6(a) for sphere,
showing that Eq. (11) also holds for nonconservative systems (finite Re). Figures 6(b) and (6) show
the evolution of D, with Re and ay, respectively, while 6(d) and 6(e) present the evolution of the
slope. In both 6(b) and 6(d), the black dotted line [which corresponds to ap = 1 in 6(c) and 6(e)]
represents inviscid values. D, increases with Re and decreases with the distance to the sphere.
These dependencies are reminiscent of the evolution of We,. with both Re and ay. Indeed, since
larger deformations need to be reached in order to break for larger Re or distance to the sphere, We,
increases. The deformation D, varies strongly with ag, which implies that bubble faith is highly
dependent on bubble history. The critical shapes show that bubbles are more deformed at criticality
when the initial shape is not spherical [see Fig. 2(b)], revealing the importance of inertial effect in
the breakup process. We also conclude that there is no absolute maximum deformation after which
the bubble breaks.

Similar developments can be performed to model the lifetime slightly above the critical Weber
number. Indeed, when We — We,, the bubble lifetime is dominated by the time spent close to the
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FIG. 6. (a) Maximal deformation as a function of the distance to We.. Finite Re simulations are denoted
with circles, inviscid ellipsoids by triangles, and inviscid spheres by diamonds. As We — We,, the maximal
deformation converges to its critical value D.. Inset plot: Rescaled Dy, for the spheres, with two parameters
that depend on Re: D, and «. In (b) the black dotted line denotes the inviscid value for spheres [and correspond
to ap = 1 in (¢)]. (b), (c) Evolution of D, with Re and ay, respectively. (d), (¢) Similar plots for the evolution
of the slope with Re and a.

unstable shape. We show in the Supplemental Material [30] that this time can be expressed as
ET = ET(2We) — Blog(We/We, — 1), (12)

where ET (2We) and § are two constants, and We > We,. Figure 7(a) shows the dimensionless
lifetime, ET, as a function of the distance to the critical point. In the limit of large Weber number,
for all cases, the lifetime converges to the advection time 1/E. Near We = We,, the lifetime diverges
logarithmically. After adjusting the two constants of Eq. (12) for each dataset, all the data collapse
onto a single curve, as shown on the inset plot of Fig. 7(a) for initially spherical bubbles. Figures 7(b)
and 7(c) show that ET (2We) =~ 1, a value that is independent on both Re and ay. On the contrary,
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FIG. 7. (a) Dimensionless lifetime, ET, as a function of the distance to We.. Finite Re simulations are
denoted with circles, inviscid ellipsoids by triangles, and inviscid spheres by diamonds. As We — We,, the
lifetime diverges logarithmically. Inset plot: Rescaled ET for the spheres, with two parameters that depend on
Re: ET (2We) and . In (b) and (c) the black dotted line denotes the inviscid value for spheres [and correspond
to ap = 1 in (c) and (e)]. (b), (c) Evolution of ET (2We) with Re and ay, respectively. (d), (¢) Similar plots for
the evolution of the slope 8 with Re and a.

the slope B increases as the initial shape gets away from the sphere [see Fig. 7(e)] and slightly
increases with Re [7(d)].

VI. CONCLUSION AND PERSPECTIVES

In this paper, we evidence that bubbles can break in a uniaxial straining flow, even when there
still exists a stable equilibrium position. The threshold at which breakup occurs depends on both the
Reynolds number and the initial bubble shape. Since, in real configurations, bubbles dynamics are
rarely quasistatic, these results have practical important consequences: history matters. The critical
Weber number at which bubbles break should always be considered together with a set of initial
conditions or at least understood in a statistical sense. In turbulent flows for instance, the probability
that a bubble encounters a large pressure or velocity fluctuation that breaks it depends on its size,
but all bubbles can break.
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Taking advantage of the dynamical system approach, we show that bubble dynamics can be
described by a simple one dimensional oscillator which depends on We, Re, and on the initial
bubble shape. This model successfully captures the maximum deformation and the lifetime close to
critical conditions.

In a turbulent flow, a bubble will be immersed in a succession of various flow geometries of
random duration. The relevance of the uniaxial strain flow has been shown by the experimental
work of Masuk et al. [23], who measured the relative orientation between the bubble principal axis
of deformation and the velocity gradient tensor at the bubble scale (see Fig. 5 of [23]). From their
measurements, two main flow geometries were identified: the slip of a bubble with respect to the
surrounding flow and the straining flow that elongates (respectively compresses) the bubble.

The persistence time of each flow geometry can be estimated, considering turbulent scaling laws
for bubbles within the inertial range. A lower bound of the typical correlation time of velocity
fluctuations at the bubble scale is given by the eulerian correlation time, namely the eddy turn-
over time, t.(d) ~ €~ '/3d*/3, where € is the energy dissipation rate. This time can be compared to
the bubble capillary period T> = 7/(2+/6)/pd3/y of the dynamics. We have the relation . /7>

43 /7 We, 12 where We; is the Weber number at the bubble scale, usually defined by We, =
2p€?/3d>3 ]y . In practice, as long as We, < 4.8, the flow is correlated over more than one period of
oscillation, since T, < t.(d), and can thus be considered as frozen. In this regime, corresponding to
all bubbles near the critical stability threshold, the dynamics described in this article may hold. One
main perspective of this work will then be to model turbulence as a succession of stationary uniaxial
straining flows of given orientation and strain rate. One could then evaluate the bubble deformation
experienced in a given flow configuration, and iterate the process using a newly found initial shape
and a randomly picked flow configuration until the dynamical critical Weber number is exceeded.
This approach could be used to provide a versatile statistical framework for bubble breakup.
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