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Propagation of air fingers into an elastorigid Y-bifurcation
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We study experimentally the propagation of an air finger through the Y-bifurcation of an
elastic, liquid-filled Hele-Shaw channel as a benchtop model of airway reopening. With
channel compliance provided by an elastic upper boundary, we can impose collapsed
channel configurations into which we inject air with constant volumetric flow rate. We
typically observe steady finger propagation in the main channel, which is lost ahead of the
Y-bifurcation but subsequently recovered in the daughter channels. At low levels of initial
collapse, steady finger shapes and bubble pressure in the daughter channels map onto those
in the main channel. However, at higher levels of initial collapse where the elastic sheet al-
most touches the bottom boundary of the channel, experimentally indistinguishable fingers
in the main channel can lead to multiple states of reopening of the daughter channels. The
downstream distance at which steady propagation is recovered in the daughter channels
also varies considerably with injection flow rate and initial collapse because of a transition
in the mechanics regulating finger propagation. We find that the characteristic time and
length scales of this recovery are largest in the regime where viscous and surface tension
forces dominate finger propagation and that they decrease towards a constant plateau in
the limit where elastic forces supersede viscous forces. Our findings suggest that practical
networks are unlikely to comprise long-enough channels for steady-state propagation to be
recovered between bifurcations.

DOI: 10.1103/PhysRevFluids.8.094001

I. INTRODUCTION

Networks of elastic channels containing low-Reynolds-number multiphase flows are abundant in
the human body. Compliance of these channels and ensuing interaction between fluids and elastic
walls is a key feature of, e.g., the physiology of airways [1] and small blood vessels [2]. Often
these vessels are collapsed, as in the case of bronchioles before pulmonary airway reopening, so
that fluid flows in narrow gaps bounded by elastic walls [3]. Synthetic compliant networks are
common in microfluidics where the interaction of a flow with an elastic component can introduce a
functionality, such as a fluidic capacitance [4] or diodelike effect [5]. However, studies of channel
networks with elastic components are still in their infancy.

Here we present an experimental study of two-phase flow through a Y-bifurcation in a rigid
rectangular channel with an elastic upper boundary. Before the start of the experiment, the channel
is completely filled with liquid which is then drained to induce deformation of the upper boundary.
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Injection of air at constant volumetric flow rate reopens the initially collapsed channel via the
propagation of an air finger. This type of elastorigid channel has been used previously as an idealized
model of pulmonary airway reopening during the first breath of a newborn, when an air bubble
reopens the strongly collapsed, branched airway network filled with liquid [6,7]. However, to our
knowledge, this is the first attempt at studying experimentally the combined influence of channel
bifurcation and elasticity in an airway reopening problem [8], although some attempts have been
made to incorporate elastic elements into mostly rigid networks. For example, Baroud et al. [9]
studied finger propagation through a rigid, microfluidic Y-channel and investigated the influence
of elastic chambers attached to the ends of the daughter channels. Asymmetric branching of the
main finger was systematically observed when the identical daughter channels had open ends.
However, when the daughter channels were each connected to a large elastic chamber, identical
fingers propagated through both daughter channels for sufficiently small propagation speeds.

Our study will tackle two questions associated with fluid flows in networks: (i) how symmetric
is the flow after it encounters a channel bifurcation and (ii) how it recovers postbifurcation. The
question of flow symmetry through different network pathways is of fundamental importance for
studying airway reopening. It is also pertinent to transport of bubbles, droplets, capsules, and other
cargo passing through bifurcations in, e.g., microfluidics [10]. For example, bifurcation-induced
deformation of red blood cells flowing through a microfluidic network in a dilute suspension has
no time to relax before the next fork in the network is encountered, which directly impacts the cell
distribution at the network scale [11]. Here we consider a different type of compliant system and
focus on one bifurcation as a building block towards multigenerational branching networks.

So far, however, most theoretical and experimental works on airway reopening have focused
on a single initially collapsed fluid-filled tube or compliant channel, reopened by the propagation
of an injected air finger which redistributes the resident fluid. Early theoretical works [12–15]
systematically reported two branches of solution in terms of finger pressure P and capillary number
Ca = μU

σ
, where U is the finger tip speed and μ and σ are fluid viscosity and surface tension,

respectively. The level of collapse sets the pleural pressure (i.e., the pressure downstream), so
in the context of pulmonary mechanics, the results are often reported in terms of the pressure
difference between the bubble pressure and the pleural pressure. The two branches meet at a limit
point associated with a minimum pressure difference or yield pressure difference, which needs to
be exceeded for steady propagation to occur. Above this yield pressure difference, two distinct
behaviors are observed: pushing at low Ca, for which P decreases with increasing Ca, and peeling
at high Ca, for which P increases with increasing Ca [13]. Furthermore, the pushing branch was
found to be linearly unstable in a two-dimensional (2D) geometry consisting of a layer of liquid
trapped between infinite, planar, elastic walls [15]. Hence, stable reopening only took place via
peeling solutions. However, despite revealing some of the fundamental dynamics of the reopening
process, these early models were idealized: The 2D models of Gaver et al. [13], Jensen et al. [14],
Halpern et al. [15] could not capture the in-plane finger shape because of its unbounded geometry,
while the three-dimensional steady simulations of Hazel and Heil [12] imposed symmetry about the
two longitudinal midplanes of the tube, thus eliminating a host of asymmetric solutions observed
experimentally [16].

Early experimental studies of airway reopening reported a single peeling branch for different
oil-filled realizations of quasi-2D geometries and identified the yield pressure difference, which
occurs for vanishingly small values of Ca in the presence of gravity [17–20]. However, it is now
well established that tubes can be reopened by a variety of different propagation modes. In their
experiments, Heap and Juel [16] studied tubes that were strongly collapsed into two-lobed cross
sections and revealed reopening characterized by round-, asymmetric-, double-, and pointed-tipped
finger shapes, with P increasing with Ca in all experiments. They also reported that at a critical
value of Ca, a discontinuous drop in bubble pressure was accompanied by a transition from double-
to pointed-tipped finger shapes, suggesting that the system had at least two discontinuous peeling
branches of reopening. Ducloué et al. [6] explored reopening of a rectangular elastorigid channel of
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FIG. 1. Schematic diagram of reopening of a liquid-filled elastorigid channel by an air finger: (a) top
view and (b) side view along the channel centerline shown with dashed line in (a). The inset in (b) shows
schematically a collapsed transverse cross section of the channel at the start of experiment, which is maintained
sufficiently far ahead of the interface (i.e., beyond the “fluid wedge” region) throughout the reopening
experiment.

large aspect ratio (a Hele-Shaw channel), shown schematically in Fig. 1, and found that this simpler
quasi-2D geometry exhibits similar physics of reopening as observed in collapsible tubes.

The injection of air into an analogous liquid-filled rigid-walled channel of rectangular cross
section gives rise to the classical Saffman-Taylor instability, which typically results in the steady
propagation of a symmetric round-tipped finger [21]. This displacement flow is governed by the
ratio between viscous and surface tension forces measured by Ca and it can also exhibit complex
behaviors associated with, for example, geometric perturbations to the channel geometry [22–24].
In elastorigid channels, air injection induces elastic deformation in addition to viscous and surface
tension forces, and this alters the two-phase flow fundamentally. Rather than displacing fluid, the
propagating air finger, seen in top view in Fig. 1(a), tends to inflate the channel and redistributes
fluid within a wedge ahead of its tip as shown in Fig. 1(b). This wedge is relatively long at
lower levels of initial collapse and small Ca, and Ducloué et al. [6] found that symmetric fingers
analogous to the Saffman-Taylor finger propagate in the channel. However, as the amount of fluid
contained within the liquid wedge reduces with increasing initial collapse and/or Ca, fingers of
different morphology can form [6,25]. Longer liquid wedges are associated with dominant balance
between viscous and surface tension forces (this regime is referred to as “viscous”), while shorter
liquid wedges are linked to elastic forces superseding viscous forces (this regime is referred to as
“elastic”) [25]. As the reopening transitions from viscous to elastic, fingers start penetrating the
shallowest parts of the channel and peeling them apart much like in the classical problem of the
peeling of a flexible strip [26,27]. Furthermore, their fronts become flatter and prone to interfacial
instabilities [22,28,29], leading to more exotic shapes of reopening fingers such as, e.g., feathered
fingers, whose front perturbations are advected away from the tip along trajectories instantaneously
normal to the curved interface [30]. Many experimental results were reproduced quantitatively in
recent quasi-2D models [31,32]. They showed that diversity of propagation modes are associated
with complex solution structure with a wide range of stable and unstable, steady and time-periodic
modes, many occurring at similar values of the driving pressure. Most notably, a parameter regime
existed in which, depending on initial conditions, the elastorigid channel could be reopened by a
bubble propagating with different Ca for the same values of the bubble pressure [25]. Significance
of unsteady reopening was also corroborated by long-lived transients.

Given that unsteady reopening is common in a rectangular elastorigid channel with high level
of initial collapse [31,32], it is also likely to be a feature of the bubble propagation in a network
of elastic channels. However, in theoretical models of reopening of a network of occluded airways,
only steady reopening is assumed to take place and only if the bubble pressure exceeds a critical
threshold dependent on material parameters [33,34] in line with early studies of reopening by Hazel
and Heil [12] and Halpern et al. [15]. Yamaguchi et al. [35] found similarities in the reopening of
a rigid Y-channel in the presence of surfactants with reopening of a rigid Y-channel connected to
an elastic end chamber in Ref. [9], implying that wall elasticity is also likely to be of fundamental
importance in the related problem of liquid plug propagation in airways. However, this phenomenon
is typically investigated using rigid branching channels [36–38], in which the physics is described
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FIG. 2. Schematic diagram of the experimental setup.

by relating the driving pressure head to the flow resistance caused by the viscous dissipation and
capillarity. These can be written down accurately for each network generation if its geometry is
known, but we are yet to build rational lower-dimensional models in which the network geometry
can evolve in response to the changing fluid resistance as in elastic-walled channels.

In this paper, we explore experimentally the transfer of reopening modes between the channels
upstream and downstream of the elastorigid Y-bifurcation at various levels of initial collapse and
injection rates. Our experimental setup and methods are introduced in Sec. II. In Sec. III A, we
show that steady modes of finger propagation upstream of the Y-bifurcation transfer to different
steady modes expected for suitably reduced flow rates downstream of the Y-bifurcation. However,
in the limit of large initial channel collapse multiple reopening modes can coexist downstream
of the Y-bifurcation, and we explore this regime further in Sec. III B. We also find that transient
evolution of reopening fingers downstream of the Y-bifurcation typically persists over a significant
distance before they recover a state of steady propagation. Hence, in Sec. III C we study the unsteady
finger propagation through the Y-bifurcation, relating the time- and length scales for fingers to
recover steady states in the daughter channels to the reopening dynamics. In Sec. IV, we conclude
that simple transfer scenarios through the Y-bifurcation can only be assumed for sufficiently long
channels and only in the regimes without finger multiplicity.

II. EXPERIMENTAL METHODS

The experimental setup, a Y-shaped elastorigid Hele-Shaw channel with a flexible upper bound-
ary, is shown schematically in Fig. 2. It consists of three regions: a main channel, two daughter
channels, and a bifurcation region, where the two daughter channels meet [see Fig. 3(a)]. The
Y-shaped channel of constant depth b = 0.5 ± 0.01 mm was milled into a transparent Perspex block
by cutting a rectangular channel of length 483 ± 0.02 mm and width W = 15 ± 0.02 mm, and two
rectangular channels of length 310 ± 0.02 mm and the same width W as the first channel, oriented at
± 30◦ to the center line of the main channel. The Perspex block was covered by a rectangular latex
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FIG. 3. (a) Schematic diagram of different regions in the Y-channel. X1 and X2 axis are aligned with the
centerlines of the main and daughter channels, respectively, and the Y axis is perpendicular to X1, so that the
apex of the bifurcation is at X1 = X2 = Y = 0. The channel width in the bifurcation region of length 17 ±
0.02 mm varies linearly between 15 ± 0.02 mm and 34.64 ± 0.02 mm. (b) Typical spatiotemporal composite
image of the bifurcation region, obtained for Ai = 0.36 in the main channel and Q = 50 ml/min. The time
interval between sequential contours is 0.033 s. The blue solid and dashed lines denote the boundaries and
the central lines of the main or daughter channels, respectively. In (b), one frame is lost during recording, so
the position of the missing contour is marked with a red star.

membrane (Supatex) of thickness 0.33 ± 0.01 mm, Young’s modulus E = 1.44 ± 0.05 MPa, and
Poisson’s ratio ν = 0.5 [28]. The membrane was stretched uniformly in the direction transverse to
the main channel and clamped using a metal frame and G-clamps to form the upper boundary of the
Y-shaped channel [6,25]. Uniform transverse prestress was achieved by hanging evenly distributed
weights of total mass 2.49 ± 0.01 kg onto the membrane along one of the long edges of the Perspex
block before clamping, resulting in pretension of 32.5 N/m applied parallel to the width of the main
channel, and zero pretension parallel to the centerline of the main channel.

Prior to each experiment, the channel was completely filled with silicone oil (Basildon Chem-
ical Company Ltd.) of viscosity μ = 0.019 Pa s, density ρ = 953 kg m−3, and surface tension
σ = 20.8 mN m−1 at temperature T = 21 ± 1◦C. The liquid or gas was supplied to or evacuated
from the system using ports at the channel ends connected to tubing, and referred to as the head end
(HE) and the tail end (TE) in Fig. 2. During the filling procedure, some of the liquid drained from
the main channel into the HE tubing, so a reservoir was added halfway along it to trap excess liquid.
This avoided the obstruction of the air line with silicone oil. With the HE closed, the channel was
collapsed by setting a hydrostatic pressure difference Ph between the channel and ambient laboratory
pressure at the TE. The pressure difference caused the membrane to collapse symmetrically with
respect to the vertical midplane of the channel and uniformly along most of its length (see Fig. 4).

The reopening experiments were performed by injecting air into the fluid-filled channel using
a syringe pump (KDS 210) with a constant volumetric flow rate Q set between 10 ml/min and
150 ml/min. The resulting propagation of an air finger within the Y-shaped channel was captured
in two observation windows with top-view CMOS cameras (Teledyne Dalsa CR-GM00-H1400,
resolution 1400 × 1024 pixels) at 60 frames per second. To improve image quality, the channel
was lit from below by a custom-built LED array. The image resolution was 0.117 mm/pixel in
the first observation window (OW1), which covers the main channel, the bifurcation region and
the upstream end of the daughter channels, and 0.224 mm/pixel in the second observation window
(OW2), which covers just one of the daughter channels [see Fig. 3(a)]. The images were processed
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FIG. 4. (a) Membrane profiles for Ai = 0.91, 0.64, and 0.36 in the main channel (left to right) before the
start of air injection with color-coding corresponding to the vertical deformation of the membrane scaled by
b. Regions of the channel, where the vertical deformation could not be reconstructed, are black (for details,
see Appendix A). Lines denote the boundaries of the channel (solid lines), the start of bifurcation region
(vertical dashed line), and the apex of the bifurcation (vertical dash-dotted line). (b) Transverse profiles of the
membrane at X1/W = −2 for Ai = 1.37, 1.15, 1, 0.91, 0.75, 0.64, 0.49, 0.36, 0.33, and 0.32 (top to bottom)
before the air injection starts. (c) Transmural pressure across the membrane as a function of the level of initial
collapse Ai in the main (filled markers) and daughter (empty markers) channels, with zero transmural pressure
corresponding to no membrane deflection (Ai = 1). Lines are linear fits to the experimental data above the
points of the opposite wall contact. Star markers are used for the levels of collapse which correspond to the
membrane profiles in (a) and are referred to as low [Ai = 0.91 (0.88) in the main (daughter) channel], moderate
[Ai = 0.64 (0.57) in the main (daughter) channel], and high [Ai = 0.36 (0.32) in the main (daughter) channel]
initial collapse in the paper, respectively. The colors in (b) and (c) are consistent.

in MATLAB to create spatiotemporal composite images, such as in Fig. 3(b). During the longer
recordings, occasional frames were lost due to technical limitations of the imaging hardware. The
spatiotemporal patterns enabled us to study finger evolution and extract, for example, the finger
speed and tip position. The finger pressure P (relative to atmospheric pressure) was measured with
a pressure sensor (Honeywell 163PC01D36 ± 5 ′′ H2O) inserted into the middle of the air supply
line using a T-shaped tubing adapter, taking care to subtract the small pressure losses in the line.

The time evolution of the membrane deformation during reopening experiments was recon-
structed using a custom-built digital-image-correlation technique, described in detail in Appendix A.
Examples of collapsed membrane profiles before the start of air injection are shown in Fig. 4(a).
These results indicate that for each value of Ph, the initial level of collapse differs in different
regions of the Y-channel because of its varying geometry. For example, opposite wall contact, in
which the thickness of the liquid film between the membrane and the channel becomes smaller than
our experimental resolution, first occurs in the bifurcation region where the channel is the widest
and thus has the smallest effective stiffness [39]. The level of initial collapse is reported using
the nondimensional cross-sectional area Ai = At/A0 measured at X1/W = −2 in the main channel
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FIG. 5. Ca (black line) and P (red line) as a function of scaled finger tip position X/W (X = X1 ∪ X2) for
Ai = 0.91 (0.88) in the main (daughter) channel and Q = 150 ml/min. Vertical dashed lines delineate different
regions in the Y-channel.

and at X2/W = 0.67 in the daughter channels, respectively, where At and A0 denote the collapsed
and undeformed transverse cross-sectional areas, respectively, so that At/A0 = 1 corresponds to a
channel with a rectangular cross section.

Examples of membrane profiles in the cross section of the main channel, which are used for
estimating Ai, are shown in Fig. 4(b) for a range of transmural pressures (i.e., the difference
between internal and external pressure). The shape of the channel is symmetric with respect to
its centerline where the deflection is maximum. The channel is inflated under positive transmural
pressure (At/A0 > 1) and collapsed under negative transmural pressure (At/A0 < 1). The same data
are presented differently in Fig. 4(c), where transmural pressure is shown as a function of initial
level of collapse for the main and the daughter channels, respectively. It demonstrates that for a fixed
value of transmural pressure, the daughter channels are more collapsed (i.e., have a smaller Ai) than
the main channel. This is because the prestretch is applied in the direction parallel to the width of the
main channel and thus obliquely to the daughter channels, which means that the daughter channels
have a smaller effective stiffness. Based on estimates using the finite number of points in Fig. 4(c),
the first opposite wall contact in the main channel occurs at Ai = 0.33, whereas it is already seen in
the daughter channels at Ai = 0.36. In the vicinity of those points, small changes in Ai result in large
pressure variations in the main and daughter channels, respectively. However, for the data above the
points of opposite wall contact in Fig. 4(c), the transmural pressure increases linearly with Ai. In
this paper, we mostly report experiments at Ai = 0.91, 0.64, and 0.36 in the main channel and refer
to these levels of initial collapse as low, moderate, and high, respectively. The corresponding Ai in
the daughter channels were 0.88, 0.57, and 0.32, respectively, and we stress the difference between
the initial cross-sectional areas in different parts of the Y-channel where required. To achieve these
levels of collapse, we set Ph to −93, −280, and −467 Pa, respectively.

III. RESULTS

We performed reopening experiments in our Y-shaped channel under low, moderate, and high
levels of initial collapse (see Sec. II) for a wide range of constant volumetric air injection rates Q.
Figure 5 shows typical traces of the dimensionless finger speed Ca = μU

σ
(black line), where U is

the finger tip speed, and bubble pressure P (red line) as a function of the position of the finger tip
X normalized by the channel width W . This finger tip coordinate is aligned in turn with the main
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and daughter channels as the air finger propagates through the Y-shaped channel. The pressure is
approximately constant to within the experimental resolution of 5 Pa in the main channel. This
indicates a steady mode of finger propagation, which exhibits an approximately constant Ca. The
varying channel geometry around the Y-bifurcation leads to nonmonotonic variations of Ca and P
as the finger tip approaches and propagates through the bifurcation region. The main finger splits at
the Y-bifurcation into two propagating daughter fingers with the same pressure P and individually
measured values of Ca. As they propagate through the daughter channels, their typical evolution
is towards a steadily propagating finger. In the experiment shown in Fig. 5, both P and Ca exhibit
measurable variations in the first half of the daughter channel, only reaching constant values for
X2/W ≈ 12. Once the steady state is reached in the daughter channel, the finger propagates with
a value of Ca that is approximately half of that in the main channel. This is because the flow rate
divides equally between the identical daughter channels, which have very similar cross sections to
the main channel, and the relationship between flow rate and Ca is approximately linear [32]. The
steady-state pressure is accordingly reduced in the daughter channels, compared to that of the main
channel.

Our experiments also showed a small, systematic bias that promoted finger propagation in
one daughter channel ahead of the other upon exit from the Y-bifurcation. However, once steady
propagation was recovered, the relative position of the two finger tips did not change. This is
dramatically different from behavior expected in an analogous rigid system, in which the difference
between the two daughter fingers would continue to increase because the finger closer to the channel
end would experience a larger pressure gradient [9]. Naturally, the leading daughter finger in the
elastic-walled channel reached its end before the trailing finger. Fluid ahead of the leading finger
was displaced into the rigid outlet tubing, increasing resistance to air propagation. This led to a
sharp increase of P and the abrupt reduction of the velocity of the trailing finger (at X2/W ≈ 18.4)
seen in Fig. 5. The distance from this point to the end of the daughter channel gives the relative
distance between the tips of the leading and trailing daughter fingers in steady propagation.
Although this distance varied with flow parameters, it remained systematically smaller than two
channel widths and did not measurably influence the dynamics. Thus, we do not mention this bias
henceforth.

We begin in Sec. III A by examining how steady modes of finger propagation transfer from the
main channel to the daughter channels. We discuss the multiple modes of propagation encountered
as a function of Ai and Ca by comparison with previous studies in straight elastorigid Hele-Shaw
channels [6,25,31,32]. We show in Sec. III B that for high collapse, reopening modes in the main
channel can transfer to multiple outcomes in the daughter channels. We then proceed in Sec. III C
to characterize the recovery of steady finger propagation in the daughter channels.

A. Steadily propagating fingers in the main and daughter channels

We found that fingers propagate steadily through the main channel for most of the parameters
investigated. Their pressure, averaged over the domain −3.5 < X1/W < −2.5, is shown with circles
in Fig. 6 as a function of the average capillary number Ca, for low, medium, and high initial collapse
of the channel. The error bars on P, which indicate standard deviation over the visualization domain,
are always within ±7 Pa and thus typically hidden by the markers. The largest pressure fluctuations
were measured for fingers which failed to settle to a state of steady propagation and thus evolved
continually over the visualization window. These experiments are shown with blue markers in Fig. 6.
In contrast, the standard deviation of Ca is not a good indicator of steady finger propagation. The
corresponding error bars tend to increase as Ca or the level of initial collapse increases, because
the liquid wedge ahead of the finger tip which sets the finger velocity becomes thinner and thus the
finger becomes increasingly sensitive to channel imperfections [25,29].

Stars indicate fingers propagating in the daughter channels, which are shifted to approximately
half the value of Ca in the main channel because the flow divides equally between the two daughter
channels. The color of the markers is used to identify fingers in the main and daughter channels
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FIG. 6. [(a) and (b)] Averaged finger pressure P as a function of averaged capillary number Ca for
different levels of initial collapse: (a) Ai = 0.91/0.88 and Ai = 0.64/0.57 and (b) Ai = 0.36/0.32 in the
main channel (circles) and the daughter channels (stars), respectively. The data for the main and the daughter
channels obtained in the same experiment are shown using the same colors. Markers with blue boundaries in
(b) correspond to transiently evolving fingers with a nonconstant pressure trace throughout the main channel.
The insets show typical fingering patterns (either steadily propagating or, when there is more than one contour,
transiently evolving fingers) in different regions of the parameter space. The vertical line in (b), intended to
guide the eye, separates the region of lower Ca, in which the difference between the data in the main and the
daughter channels is the greatest. (c) Scaled pressure difference �P/(σ/b), where �P = P − Ph, as a function
of averaged capillary number Ca for all data from (a) and (b). The marker shapes are the same as in (a) and
(b). The lines provide a guide to the eye for extrapolating the pressure difference to Ca = 0 for each peeling
branch.

which originated from the same experiment. The length of the region where fingers propagate
steadily depends on the length of transients but averages of P and Ca are taken after the finger
reaches steady propagation (see Sec. III C).

Results shown in Fig. 6 are consistent with previous studies in nonbranching channels, with small
quantitative differences originating in variations of the constitutive relationships between pressure
and cross-sectional area of the channels [25,31,32]. In all experiments, the finger pressure increases
with Ca, which indicates reopening via the propagation of peeling fingers [13]. In Fig. 6(a), which
shows results for low and medium levels of initial collapse, circles and stars follow similar trends,
indicating that the reopening dynamics are insensitive to the difference of up to 11% between
the initial level of collapse in the main and daughter channels (see Sec. II). This is confirmed by
the inset images of matching fingers from the main and daughter channels at the same values of
Ca. The same data are shown in Fig. 6(c), where we relate the pressure difference �P = P − Ph,
normalized by the capillary pressure scale σ/b, to the capillary number Ca for various levels of
initial collapse. Estimating �P at Ca = 0 for the two peeling branches in Fig. 6(a) shows that
the corresponding yield pressure differences are approximately the same, �P(Ca = 0) ≈ 11σ/b,
despite the significant differences in the magnitude of P between the branches.

For low and medium levels of initial collapse in our experiments, the fingers are round-tipped,
see Fig. 6(a). They are associated with a relatively long liquid wedge ahead of them, so that the
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dominant force balance is between viscous and surface tension forces. At Ai = 0.91 (0.88) in
the main (daughter) channel, the fingers are symmetric about the centerline of the channel. When
Ai = 0.64 (0.57) in the main (daughter) channel, the fingers become increasingly asymmetric about
the centerline of the channel with increasing Ca. As explained Ref. [6], the finger asymmetry at
moderate levels of collapse stems from more significant variations of the liquid thickness within
the transverse cross section of the channel: The maximum collapse of the membrane occurs along
the centerline of the channel, with deflection reducing to zero near its boundaries where the sheet
is clamped [see Fig. 4(b)]. This promotes reopening with fingers propagating closer to one of the
channel side walls where the viscous resistance is smaller.

We observed more complex dynamics for high initial collapse [Fig. 6(b)] consistent with previous
findings [25,31,32]. In the main channel (Ai = 0.36), a succession of different modes of finger
propagation was observed for increasing Ca, including asymmetric, asymmetric with intermittent
tip perturbations, pointed-tipped fingers and feathered patterns, where small-amplitude viscous
fingering occurs at the bubble tip. The appearance of feathered patterns has been associated with
a switch from viscous forces to elastic forces balancing surfaces tension forces in the reopening
process. Figure 6(b) also shows that the dynamics at high initial collapse (i.e., close to the point
of the opposite wall contact) is very sensitive to small changes of the initial cross-sectional area
between the main and daughter channels. In the main channel, all the reopening fingers exhibit
unsteady behavior in the vicinity of the vertical dashed line, indicating a region of complex
dynamics. For Ca � 0.09 [left of the vertical dashed line in Fig. 6(b)], the finger pressure in the
daughter channel increases steeply with increasing Ca and does not map to the peeling curve
measured for the main channel. Accordingly, the inset pictures captured in the main and daughter
channels at approximately the same value of Ca do not match like in Fig. 6(a). Thus, the corre-
sponding yield pressure differences, estimated at Ca = 0 in Fig. 6(c), also differ considerably; we
obtain �P(Ca = 0) ≈ 8σ/b and �P(Ca = 0) ≈ 13σ/b for the daughter and the main channels,
respectively. However, these values remain of same order of magnitude as the values found in
Refs. [17–19]. In contrast, for Ca � 0.09 [right of the vertical dashed line in Fig. 6(b)], variations
of P with Ca in main and daughter channels are similar to each other. The data for the daughter
channels clearly forms two disconnected branches of steadily propagating fingers on either side
of the vertical dashed line. In the range 156 < P < 231 Pa, fingers with similar values of P can
propagate in the daughter channels with different average dimensionless speeds Ca, indicating a
region of bistability.

The existence of this region of bistability for the reopening of the Y-bifurcation is best illustrated
by repeated experiments conducted at the flow rate Q = 70 ml/min. In these experiments, similar
values of P and Ca were recorded to within experimental resolution in the main channel. However,
propagation of the fingers into the daughter channel led to distinct peeling behaviors in consecutive
experiments resulting in data points on both sides of the dashed line in Fig. 6(b). We explore the
sensitivity of the reopening modes of the Y-channel in further detail in the next section (Sec. III B.)

B. Multiple modes of finger propagation for the same injection rate

Figure 7(a) shows a close-up of P-Ca curve near the transition between two peeling branches
from Fig. 6(b), highlighting a selection of data from 20 identical experiments at Q = 70 ml/min.
In these experiments, fingers in the main channel largely resemble each other [Figs. 7(b)–7(d)],
although the feathered pattern evolves within the visualization region in all experimental runs. For
example, these fingers even briefly resemble the pointed-tipped symmetric fingers observed at lower
values of Ca [compare the red contours in Figs. 7(b)–7(d) to finger shapes in Fig. 6(b) at Ca ≈
0.075]. In contrast, three different modes of propagation, labeled M1, M2, and M3, are observed in
the daughter channels [Figs. 7(e)–7(g)]. M1 and M2 correspond to asymmetric fingers and feathered
fingering patterns, respectively. M3 fingers continually evolved throughout the daughter channel
from (i) a feathered finger to (ii) a pointed-tipped finger and finally to (iii) an asymmetric finger.
Remarkably, the two daughter channels could be either reopened by the same mode, e.g., M1 in
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FIG. 7. (a) Averaged finger pressure P as a function of averaged capillary number Ca from
Fig. 6(b) zoomed in on the region of bistability. [The vertical dashed line in (a) is exactly analogous to the
vertical dashed line in Fig. 6(b).] Larger markers highlight experiments shown in [(b)–(j)]. Superposition of
sequential contours with time interval of 0.033 s during reopening of [(b)–(d)] the main channel, initially
collapsed to Ai = 0.36, and [(e)–(g)] the daughter channels in the same experimental runs, respectively, initially
collapsed to Ai = 0.32, at Q = 70 ml/min. Insets in [(e)–(g)] show typical instantaneous finger shapes, marked
as M1, M2, and M3. The shapes with asterisks were not recorded directly; instead, snapshots from the other
daughter channel are used as representations of the shapes observed. Finger pressure P during the channel
reopening experiments analogous to [(b)–(g)] as a function of scaled finger tip position (h) in the main channel
X1/W and (j) in the daughter channel X2/W , respectively. The vertical dashed line in (h) denotes the start of
the bifurcation region.

Fig. 7(e), or different modes of finger propagation, e.g., M1 and M2 in Fig. 7(f) or M2 and M3 in
Fig. 7(g). We label these experiments according to the fingering modes observed in the daughter
channels, e.g., M1-M2 corresponds to the reopening in Fig. 7(f).

In Fig. 7(h) we show the pressure data in the main channel and bifurcation region in five
representative experiments at Q = 70 ml/min. The variability in the data is on the order of the
experimental resolution. However, these small differences between experimental runs are sufficient
to yield qualitatively different pressure traces downstream of the bifurcation region. This is shown in
Fig. 7(j) using pressure traces from 10 experiments, with the remaining data omitted to avoid over-
loading the figure. Strikingly, a steady state of constant pressure was reached almost immediately
for experiments labeled M1-M1, whereas for the experiments labeled M1-M2, it was only reached
at the end of the daughter channel with a considerably lower value. Although the final pressures
for M1-M1 and M2-M3 were similar, the M2-M3 pressure varied nonmonotonically, consistent
with the evolution of the M3 finger shapes shown in Fig. 7(g). [Because of this transient reopening
throughout the daughter channel, the experimental data for M2-M3 is not indicated in Fig. 7(a).]

These experiments clearly show that the modes of reopening of the daughter channels cannot
always be predicted from knowledge of the finger patterns and pressure traces in the main channel.
Beyond the multiplicity of long-term reopening scenarios, the multiple routes to steady-state prop-
agation are also associated with a variety of characteristic time- and length scales for the decay of
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FIG. 8. Spatiotemporal composite image for (a) Q = 70 ml/min and Ai = 0.91 (0.89) in the main (daugh-
ter) channel and (d) Q = 110 ml/min and Ai = 0.36 (0.32) in the main (daughter) channel. The time interval
between sequential contours is 0.017 s. [(b) and (e)] Capillary number Ca and finger pressure P as a function
of scaled finger tip position in the daughter channel X2/W for experiments in (a) and (d), respectively. Ca and
P are approximately constant beyond the vertical dashed lines until the air finger reaches the end of one of the
daughter channels [for (b), Ca and P are reached at different locations, X2/W = 4.6 and 15.5, respectively].
Insets show postbifurcation time evolution of the finger pressure P in the same experiments (black dots) and
fits to the data (red lines) assuming (b) exponential and (e) modulated exponential decay to a constant pressure,
see (1) and (2), respectively. [(c) and (f)] The relaxation time, T , obtained from fits such as in (b) and (e), as a
function of the injection rate on a semilog scale obtained for experiments with (c) Ai = 0.89 and (f) Ai = 0.32
in the daughter channel. The squares and circles were obtained using (1) and (2), respectively. Lines in (f) are
drawn to guide the eye.

transients. Although steady propagation was usually reached within the finite length of the daughter
channels, the dynamics of the propagating finger would sometimes also exhibit long-lived transients
during which the finger appeared to successively explore different modes of propagation known to
exist in this system [31].

C. Steady-state recovery in the daughter channels

We have found that the transition distance of a steadily propagating finger postbifurcation can
range from very short to longer than the length of the daughter channel in our experiment. This
suggests that transient finger evolution during recovery may be more important to the reopening of
an elastic network than steady states of propagation that may only be reached in sufficiently long
channels, so we also study this transient evolution. The flow rate in each of the daughter channels
is half of the injection flow rate, and the fingers propagate into channels that are marginally less
stiff and therefore more collapsed than the main channel (see Sec. II). Moreover, the membrane is
marginally less collapsed near the outer boundary at the inlet of the daughter channels due to the
geometry of the network and the orientation of the imposed prestress, see Fig. 4(a).

As shown in Refs. [6,25,31], and discussed in Sec. III A, the reopening of straight channels
depends crucially on whether viscous or elastic forces dominate. We therefore proceed to examine
the recovery towards steady propagation in these two limits. Figure 8 compares finger propagation in
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FIG. 9. Relaxation (a) time and (b) distance as a function of Q for Ai = 0.91 (0.88) (black markers), Ai =
0.64 (0.57) (gray markers) and Ai = 0.36 (0.32) (light gray markers) in the main (daughter) channel. As in
Fig. 8, the squares and circles were obtained using (1) and (2), respectively, and lines are drawn to guide the
eye.

the viscous regime (Q = 70 ml/min and Ai = 0.91, in the main channel, i.e., relatively low injection
rate and low initial collapse) and in the elastic regime (Q = 110 ml/min and Ai = 0.36, in the main
channel, i.e., relatively high injection rate and high initial collapse). In the viscous regime [Fig. 8(a)],
the round-tipped symmetric finger in the main channel divides into similar daughter fingers at the
bifurcation. In contrast, in the elastic regime [Fig. 8(d)], the finger front is flattened and feathered
in the main channel and transitions to a different feathered pattern in the daughter channels. These
regimes are associated with qualitatively different transient recovery in the daughter channels.

For the experiments in Fig. 8(a), the recovery of a steady state involves the monotonic decay
of Ca to a constant value Ca, which is less than half of its value in the main channel [Fig. 8(b)].
However, P evolves nonmonotonically to reach its constant value P. Thus, values for the average
capillary number Ca plotted in Figs. 6(a)–6(b) were obtained from experimental data by averaging
Ca once it reached a constant value and errors were estimated as the standard deviation of the data
within an experiment. In order to extract P from the time evolution of the pressure data, also shown
in Fig. 8(b), we fitted an exponentially decaying function of the form

P(t ) = C1 exp(−t/T ) cos(C2t + C3) + P, (1)

where Ci (i = {1, 2, 3}) and T are fitting parameters. The fit is shown in the inset to Fig. 8(b).
When fitting, we considered a range of possible P and selected the value which provided the best
least-squares fit of a straight line to ln P(t )−P

cos(C2t+C3 ) . The fit also produced a characteristic timescale of
transient decay T , which we refer to as the relaxation time. Figure 8(c) indicates that the relaxation
time decreases monotonically with flow rate for viscous reopening.

For the experiments in Fig. 8(d), both Ca and P decay monotonically to their constant values
Ca and Pa, respectively, at approximately the same position X2/W = 5 [Fig. 8(e)]. For this type of
transients, exponentially decaying functions of the form

P(t ) = C0 exp(−t/T ) + P, (2)

were fitted to the time evolution of the pressure data in order to extract P; see the inset to Fig. 8(e).
As before, C0 and T are fitting parameters. For this higher level of collapse, the relaxation time
shown in Fig. 8(f) is discontinuous with flow rate. There are two groups of points corresponding to
two peeling branches shown in Fig. 6(b). For data at smaller values of Q, we observe the same trend
of monotonic decay as in Fig. 8(c). However, for the data on the second branch corresponding to
the elastic reopening regime the relaxation time appears to saturate with increasing Q.
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Figure 9(a) shows variation of the relaxation time with injection rate for all experiments per-
formed with different levels of initial collapse. The interpretation of these results is complicated
as the dominance of elastic over viscous forces can switch as the channel geometry changes (see
Appendix B for the observations in the bifurcation region, for example), which in turn affects the
length of transients. The shortest timescales of reopening, shown with dark gray circles in Fig. 9(a),
are for fingers that adopt asymmetric shapes throughout the Y-channel, including in the bifurcation
region, e.g., for experiments with Ai = 0.64 (0.57) in the main (daughter) channel. This is consistent
with the fact that weakly asymmetric fingers are formed in the bifurcation (see Appendix B) and
thus adjustment to steady asymmetric shapes is likely to be rapid.

A more practical description of the transient dynamics is in terms of a relaxation distance. We
define it as the length of daughter channel required for the finger pressure to decay to within 2% of its
value P, a criterion which allows us to account for small fluctuations in P. Results shown in Fig. 9(b)
confirm the trends obtained for the relaxation time in Fig. 9(a), but the disconnection between data
associated with different modes of propagation is amplified. For example, it is clear that at high
initial collapse, the relaxation distance follows two separate trends with Q, resulting in an overall
nonmonotonic variation with Q. At smaller values of Q, the length scale of decay routinely requires
a long daughter channel exceeding 10 channel widths. The fact that the relaxation distance reaches
a constant value for high Q suggests that it may be possible to build lower-dimensional models of
elastic-walled networks based on the assumption of steady reopening in this regime, such as used in
Refs. [33,34].

IV. CONCLUSION

In this paper we have presented a bench top model of the reopening of a liquid-filled, collapsed
branching airway via the propagation of an air finger. Our model consists of a straight elastorigid
Hele-Shaw channel which bifurcates into two daughter channels of similar geometry. We find that
the influence of the channel bifurcation on the reopening dynamics depends significantly on the level
of initial collapse and the rate of air injection. At lower levels of collapse, following the decay of
transients, steady modes of finger propagation are recovered downstream of the bifurcation, which
are similar to those in the main channel for suitably reduced flow rates. In this regime, the dynamics
are insensitive to small differences in channel geometry between main and daughter channels.

However, at high levels of initial collapse, the finger dynamics becomes more complex and can
exhibit sensitivity to small changes to the initial collapse, as evidenced by qualitatively different
reopening processes in the main and daughter channels where initial collapse is only slightly
larger. This sensitivity concurs with the results of Cuttle et al. [25] and Fontana [40] and in the
bifurcating channel, it can lead to multiple reopening scenarios downstream of the bifurcation
despite apparently identical fingers in the main channel.

We find that the recovery of a steady state downstream of the bifurcation is regulated by the
same reopening mechanics that underpin finger propagation in straight elastorigid channels. At
smaller flow rates and/or lower levels of initial collapse, it is dominated by the balance between
viscous and surface tension forces—the viscous regime—and we find transients that persist for
longer and over a large distance. As the flow rate and/or level of initial collapse increase, the
system gradually transitions to the regime in which reopening is controlled by a balance between
elastic and surface tension forces—the elastic regime. This is associated with an overall decrease in
time scale and length scales of transients, but the route is complex because experiments can feature
different reopening regimes in the main channel, bifurcation, and daughter channels for intermediate
parameter values. In the elastic regime, the time- and length scales of the steady-state recovery are
the shortest and reach a constant plateau.

A key assumption in all tractable models of multiphase flows in elastorigid networks is that their
reopening is steady. Our experimental observations confirm that in channels of moderate length
(�10 channel widths) this assumption is reasonable for a limited range of parameters in the elastic
regime, where transients are relatively short lived. However, we also demonstrate complexity related
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FIG. 10. (a) Schematic diagram of the principle behind detecting line deformations. Examples of (b) the
calibration and (c) the reference image.

to dynamical sensitivity which is not accounted for in existing theoretical models, and thus our
findings may be used to inform future modeling assumptions.
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APPENDIX A: METHOD FOR RECONSTRUCTING VERTICAL DEFLECTION
OF THE MEMBRANE

The method for reconstructing the vertical deflection of the membrane in our experiments relies
on the method for reconstructing the vertical line displacement used by Ducloué et al. [6], Lister
et al. [27], Pihler-Puzović et al. [41], and Cuttle et al. [25]. We start by considering a horizontal
plane ABC, containing a point D that lies in the middle of the line AB; see Fig. 10(a). To reconstruct
its position as it moves vertically to the point E , we place a camera at an angle θ with the horizontal.
This implies that the image plane A′B′D′F ′ is parallel with the plane ABDF , where FD′ is at the
angle θ with the plane ABC and DF forms an angle θ with the vertical displacement DE . Thus, it is
possible to find the true displacement of the point D, DE , from the in-image displacement D′F ′ using
the conversion ratio C = DE/D′F ′ = DE/DF · DF/D′F ′ = DF/D′F ′ · 1/cos θ = S/cos θ , where
S is a calibration factor, which in principle varies for different points on the line AB. However, as the
width of the viewing area is much smaller than the camera-object distance in our experiments, we
assume that the scale factor S stays constant along the line AB and obtain it by relating the number
of the in-image pixels to the known length of the line AB. This allows us to calculate a vector of
vertical displacements VVD of points on the line AB from a vector of the corresponding in-image
displacements VID using the relationship VVD = VID · C.

To reconstruct the vertical deformation of the whole membrane, we needed to capture the
deflection of points lying on many parallel lines which cover the region of interest. Before the
channel was filled with liquid and collapsed to be subsequently inflated, a millimetric tracing paper
was laid flat on the flat elastic wall and a calibration image was taken [see Fig. 10(b)]. For each
of the parallel lines, the scale factor S and the angle θ were found from the calibration image and
recorded in vectors VS and Vθ , respectively. Thus, the conversion ratio vector VC = {V i

C} for all lines
was obtained using the formula V i

C = V i
S/ cos(V i

θ ). Then by knowing the in-image displacements
MID of different points on the membrane, we could reconstruct the vertical deformation field MVD

using the matrix relationship

MVD = MID · VC . (A1)

In our experiments, membrane deformations comprised both in-plane as well as out-of-plane
displacements. Both types of displacements are typically reconstructed using stereo or three-
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FIG. 11. (a) Membrane profile for Ai = 0.33 in the main channel before the start of air injection with color
coding corresponding to the vertical deformation of the membrane scaled by b. Regions of the channel, where
the vertical deformation could not be reconstructed, are black. Lines denote the boundaries of the channel (solid
lines), the start of bifurcation region (vertical dashed line), and the apex of the bifurcation (vertical dash-dotted
line). (b) Illustration of principal stretching directions in different regions of the Y-channel, whose boundaries
are shown using (blue) solid lines. (c) Recorded membrane deformation in the longitudinal midplane of the
bifurcation region (left axis) and the estimated relative error of this measurement (right axis). The vertical
dashed line corresponds to X1/W = −0.2, beyond which the relative error cannot be estimated because there
is no opposite wall contact.

dimensional digital image correlation with two synchronized digital cameras or using single-camera
stereodigital image correlation techniques with additional optical assistance [42]. These techniques
track three-dimensional positions of random particles, deposited on the deforming object. We also
traced a random speckle pattern on the elastic membrane created by sprinkling food powder onto
it while it was still flat, as shown in the reference image Fig. 10(c). However, we chose to neglect
the deformations due to in-plane stretching, assuming that the membranes predominantly deformed
through vertical displacement. This allowed us to employ one camera as in experiments with a
single line and apply a two-dimensional digital image correlation technique (2D DIC) to obtain
the in-image displacements MID of the speckle pattern. We used the 2D DIC method available
as an open-source MATLAB software Ncorr v1.2 [43], which employs a sum-squared difference
correlation criteria [44] to match the particles before and after the deformation and the B-spline
interpolation [45] to enhance the method for finding the displacement field to subpixel accuracy.
We found that imaging the membrane using a CMOS camera (Teledyne Dalsa CR-GM00-H1400,
resolution 1400 × 1024 pixels) at 1 frame per second during the collapse and at 60 frames per
second during the reopening experiments, respectively, was sufficient to reproduce reliable in-
image displacement measurements which could then be used to extract the vertical deformations
using (A1).

When reconstructing the vertical displacements MVD of the membrane, e.g., in Fig. 11(a), we
only used the in-image displacements in the flow direction [marked as X in the image Fig. 11(b)],
and while the horizontal in-plane stretching of the membrane was much smaller than its vertical
displacement, it was nevertheless the primary error source for the proposed method over the
majority of the channel area. The predominant direction of the stretching, schematically shown
with red double arrows in Fig. 11(b), was different in the main channel, the bifurcation region,
and the daughter channels. In the main channel, the reconstructed deflections were not affected
significantly by the in-plane displacement, which was mostly confined to the Y direction. However,
in the bifurcation region and the daughter channels, the stretching contributed significantly to the
X -directional in-image displacements. This was especially true at the apex of the bifurcation, where
the direction of stretching coincided exactly with the X direction. Conversely, in the main channel
the error was expected to be the largest near the side boundaries, which are not captured precisely
by the camera due to a small unavoidable misalignment between the channel and the metal frame
clamping the elastic membrane.
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In order to quantify these errors of the measurement method, we utilized the deformation results
obtained for the cross-sectional area of Ai = 0.33 in the main channel, when the opposite wall
contact occurred centrally in all parts of channel [see Fig. 11(a)]. By assuming the real vertical
displacements along the central lines and the boundaries of the main or daughter channels to be
−0.5 and 0 mm, respectively, we extracted the relative errors on the vertical displacement in these
regions by comparing them to the depth of undeformed channel, as done in the bifurcation region in
Fig. 11(c). This yields errors of up to 1.3% and 3.9% on the deflection along the centerlines of the
main and the daughter channels, respectively. The relative error near the boundaries of the channels
increases to 7% and 16.7%, respectively. The greatest relative error of 33% was estimated at the
bifurcation apex. However, we are primarily interested in the vertical displacements of the channel
centerline in the region of X1/W � −0.2 (as discussed in Appendix B), where the relative error on
the displacement is less than 2% in Fig. 11(c). For −0.2 � X1/W < 0 in Fig. 11(c), we could not
estimate the errors using the arguments above, as this region corresponds to where the membrane
adjusts its deformation from the opposite wall contact to being clamped at the apex.

APPENDIX B: REOPENING OF THE BIFURCATION REGION

Experimental observations in the bifurcation region of the channel also support the conclusion
that reopening in different parts of the Y-channel can be dominated by different forces, which in turn
affects the recovery of the steady state in the daughter channels. To demonstrate this convincingly,
we focus on experiments performed at a modest value of the flow rate Q = 10 ml/min so that
both main and daughter channels can reopen steadily for all levels of initial collapse. The height
of the collapsed channel is lower in the bifurcation region compared with the main channel [see
Fig. 4(a)], and its width varies linearly, which perturbs the incoming fingers and precludes their
steady propagation within the bifurcation region. Different reopening regimes within the same
experiment are thus a consequence of the changing geometry, which leads to altered constitutive
relationships between pressure and cross-sectional area of the channels.

Figure 12 shows sequences of finger outlines in top-view (left column) and the corresponding
sheet profiles along the longitudinal vertical midplane of the main channel (black lines, right
column) for five levels of initial collapse, 0.36 � Ai � 0.91 in the main channel. In the side-view
visualization, the position of the propagating finger tip is indicated by vertical red lines. All fingers
shown in Fig. 12 have rounded tips in the main channel, which is indicative of viscous reopening.
Yet their shapes in the bifurcation region at larger levels of initial collapse [Figs. 12(g) and 12(i)]
are typical of elastic reopening. For 0.64 � Ai � 0.91, the moderate initial collapse means that the
volume of fluid displaced in front of the finger as it propagates into the bifurcation region is sufficient
to inflate this domain significantly beyond the level of inflation in the main channel [Figs. 12(b),
12(d) and 12(f)]. This excess inflation is enhanced by the slowing of the finger as it approaches
the apex of the bifurcation. Thus, the fingers retain the round tip characteristic of viscous reopening
through the bifurcation region, until the interface flattens to accommodate tip-splitting caused by the
forking of the channel [Figs. 12(a), 12(c) and 12(e)]. However, as Ai is reduced, membrane profiles
that correspond to fingers still propagating in the main channel get steeper, indicating a reduction
in the length of the liquid wedge. When the level of initial collapse is reduced to Ai = 0.49 and
then further to 0.36 [Figs. 12(g)–12(j)], there is initial opposite wall contact between the top elastic
sheet and the bottom boundary in the bifurcation region. This further reduces the volume of fluid
during the reopening experiments, resulting in a minimal liquid wedge ahead of the finger which
can no longer promote the inflation of the channel in the bifurcation region. As the finger advances
into the bifurcation region with the elastic sheet in this limiting configuration [Figs. 12(h) and 12(j)]
the finger tip flattens and its speed decreases slightly to accommodate the widening of the finger
[Figs. 12(g) and 12(i)].

Figure 13 summarizes the transition from viscous to elastic reopening depicted in Fig. 12.
The sheet deflection at the finger tip shown in Fig. 13(a) increases within the bifurcation region
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FIG. 12. Finger shapes (left column), instantaneous membrane deformations in the longitudinal midplane
of the main channel (black lines in the right column) and the corresponding positions of the finger tip (red
vertical lines in the right column) for [(a) and (b)] Ai = 0.91, [(c) and (d)] Ai = 0.75, [(e) and (f)] Ai = 0.64,
[(g) and (h)] Ai = 0.49, and [(i) and (j)] Ai = 0.36 and Q = 10 ml/min (all levels of initial collapse cited based
on the main channel Ai). Note that there are more finger contours than corresponding membrane deformations
due to limited resolution of the membrane deformation reconstruction method near the apex of the bifurcation
(−0.2 < X1/W < 0) (see Appendix A); the last contours and membrane deformations that correspond to each
other are shown in red. Time intervals between sequential contours or membrane deformations are [(a) and (b)]
0.08 s, [(c) and (d)] 0.04 s, [(e) and (f)] 0.08 s and then 0.3 s beyond the red contour, [(g) and (h)] 0.24 s and
then 0.43 s beyond the red contour, and [(i) and (j)] 0.36 s and then 0.4 s beyond the red contour, respectively.
The blue lines in the left column mark boundaries of the Y-channel and the dashed line in the right column
marks the start of the bifurcation region.

indicating enhanced inflation relative to the main channel for 0.64 � Ai � 0.91. In contrast, a
marginal decrease indicating deflation relative to the main channel occurs for 0.36 � Ai � 0.49.

The plots of Ca and P as a function of scaled finger tip position X1/W for high, medium, and
low collapse [Figs. 13(b) and 13(c)] indicate that the geometry of the bifurcation region affects the
finger while it is still propagating in the main channel. The distance at which departure from steady
propagation occurs increases with decreasing level of initial collapse because of the lengthening
wedge of recirculated liquid ahead the finger. Pressure and capillary number traces also reflect the
qualitative difference in the reopening of the bifurcation region between modest (black and gray
curves) and high initial collapse (light gray curve). For low to moderate initial collapse, Ca increases
and P decreases as the finger approaches the bifurcation region. This is because resistance to
propagation is reduced in the widening channel which lowers viscous and elastic forces. Therefore,
once the finger enters the bifurcation region and begins to widen, Ca decreases to satisfy air mass
conservation. The wider channel means that lower pressure is required for inflation and thus pressure
continues to decrease. In contrast, for Ai = 0.36 in the main channel, the cross-sectional area of the
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FIG. 13. (a) The membrane deflection at the finger tip, normalized by the channel depth b, as a function of
scaled finger tip position X1/W for Ai = 0.36, 0.49, 0.64, 0.75, and 0.91 in the main channel (increasing in the
direction of the arrow) and Q = 10 ml/min. The horizontal dashed-dotted line is added to stress the change
in the behavior of membrane deflection at the finger tip. (b) Ca and (c) P as a function of scaled finger tip
position X1/W for different Ai and fixed Q = 10 ml/min. The black, gray and light gray lines correspond to
the experimental data for Ai = 0.91, 0.64, and 0.36 in the main channel, respectively. The vertical dashed lines
mark the start of the bifurcation region.

channel does not change significantly as the finger enters the bifurcation region because the channel
is highly collapsed. Once opposite wall contact occurs, a considerable increase in the transmural
pressure is required to alter the channel cross section [see Fig. 4(c)]. Thus, the finger quickly
widens on entering the bifurcation region but its thickness hardly changes, which results in a weakly
decreasing Ca under the constant volumetric flow rate constraint. The finger eventually inverts the
concave elastic sheet in a snappinglike manner at a threshold pressure. Once the sheet has inflated,
P and Ca follow the trends observed for lower initial collapse.
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Dynamic instabilities in the inflating lung, Nature (Lond.) 417, 809 (2002).

[2] F. Bosetti, Z. S. Galis, M. S. Bynoe, M. Charette, M. J. Cipolla, G. J. del Zoppo, D. Gould, T. S.
Hatsukami, T. L. Z. Jones, J. I. Koenig, G. A. Lutty, C. Maric-Bilkan, T. Stevens, H. E. Tolunay, and
W. Koroshetz, “Small blood vessels: Big health problems?”: Scientific recommendations of the National
institutes of Health workshop, J. Am. Heart Assoc. 5, e004389 (2016).

[3] A. B. te Pas, P. G. Davis, S. B. Hooper, and C. J. Morley, From liquid to air: Breathing after birth,
J. Pediatr. 152, 607 (2008).

[4] H. A. Stone, Tuned-in flow control, Nat. Phys. 5, 178 (2009).
[5] J. Alvarado, J. Comtet, E. deLangre, and A. E. Hosoi, Nonlinear flow response of soft hair beds, Nat.

Phys. 13, 1014 (2017).
[6] L. Ducloué, A. L. Hazel, A. B. Thompson, and A. Juel, Reopening modes of a collapsed elasto-rigid

channel, J. Fluid Mech. 819, 121 (2017).
[7] D. P. A. Juel and M. Heil, Instabilities in blistering, Annu. Rev. Fluid Mech. 50, 691 (2018).
[8] M. Heil and A. L. Hazel, Flow in flexible/collapsible tubes, in Fluid-Structure Interactions in Low-

Reynolds-Number Flows (Royal Society of Chemistry, Cambridge, UK, 2015).
[9] C. N. Baroud, S. Tsikata, and M. Heil, The propagation of low-viscosity fingers into fluid-filled branching

networks, J. Fluid Mech. 546, 285 (2006).
[10] A. T. S. Cerdeira, J. B. L. M. Campos, J. M. Miranda, and J. D. P. Araújo, Review on microbubbles and

microdroplets flowing through microfluidic geometrical elements, Micromachines 11, 201 (2020).
[11] A. Merlo, M. Berg, P. Duru, F. Risso, Y. Davita, and S. Lorthois, A few upstream bifurcations drive the

spatial distribution of red blood cells in model microfluidic networks, Soft Matter 18, 1463 (2022).

094001-19

https://doi.org/10.1038/417809b
https://doi.org/10.1161/JAHA.116.004389
https://doi.org/10.1016/j.jpeds.2007.10.041
https://doi.org/10.1038/nphys1213
https://doi.org/10.1038/nphys4225
https://doi.org/10.1017/jfm.2017.162
https://doi.org/10.1146/annurev-fluid-122316-045106
https://doi.org/10.1017/S0022112005007287
https://doi.org/10.3390/mi11020201
https://doi.org/10.1039/D1SM01141C


LI, JUEL, BOX, AND PIHLER-PUZOVIĆ
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