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We analyze the effects of the fine structure of the electric double layer and of the
electrode reaction rate upon wavelength selection of the growing perturbation mode in
morphological instability in cathodic electrodeposition from a dilute electrolyte solution.
The metal cathode is modeled as a cation exchanger with a fixed charge density equal to the
average concentration of free electrons that is several orders of magnitude higher than the
typical ionic concentration in a solution. This invokes the need to consider the steric mod-
ifications in the modeling of the electric double layer at the solution/electrode interface.
Accordingly, the results for Bikerman’s steric model are compared to those for the classical
Nernst-Planck-Poisson-Stokes model valid for pointlike ions. For both models, the diffuse
electric double layer splits into a thin inner portion commensurate with the width of the
Stern layer and the steric exclusion width, and a much thicker outer portion scaling with the
Debye length. For quiescent cathodic electrodeposition, this fine structure combined with
a finite electrode reaction rate regularizes the short-wave singularity in morphological in-
stability of the electrodeposition front. This regularization selects a finite range of unstable
perturbation modes, with critical wavelength corresponding to the fastest-growing mode.
This wavelength scales with the geometric average of the width of the highly charged inner
portion of the electric double layer and the reaction–diffusion length, defined as the ratio
of cation diffusivity to the electrode reaction rate. The fluid flow induced by the motion of
the solid/liquid interface has a negligible effect on morphological instability. At the same
time, the emerging electroconvective (electroosmotic) flow in the nonequilibrium regime
with its related electroosmotic instability, has a major effect, selecting the width of the
cathodic diffusion layer as the dominant length scale for morphological instability and
the emerging dendrites. It is observed that the steric correction considerably lowers the
voltage threshold for the onset of the nonequilibrium electroosmotic instability.

DOI: 10.1103/PhysRevFluids.8.093701

I. INTRODUCTION

Cathodic electrodeposition of a metal is essential for many industrial applications including
electroplating [1–3], synthesis of nanowires as material for electronics and thermoelectric energy
applications [4,5], and rechargeable galvanic battery operation [6–10]. Dendrite formation resulting
from morphological instability (MI) in electrodeposition and, especially, the role that the related
fluid flows play in this process, has been of major interest to physicists in the past three decades
[11–16]. This included the study of the effects of electrode kinetics, buoyant, bulk electroconvective,
and electroosmotic flows [14,16], the possible role of the bulk electroconvective instability (ECI),
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and the effects of washing off of the forming dendrites by a tangential flow [16,17]. More recently,
Li et al. [18,19], addressed the effect of the Butler-Volmer electrode kinetics on ECI in electrode-
position. Since the early 1990s, researchers have discussed the possible role of the extended space
charge (ESC) in the dendrite tip formation and flow generation [15,20]. The term ESC pertains to
a peculiar charged structure, which forms at a charge-selective interface (electrode, ion exchange
membrane, nano-/microchannels’ junction) next to the diffuse electric double layer (EDL) under
extreme diffusion limitation conditions, when the interface electrolyte concentration approaches
zero [21–29]. One kind of MI arising in electrodeposition has recently attracted particular attention
of the research community, mainly in the context of the design of galvanic batteries with metal
(lithium) electrodes. The problem was that the metallic dendrites that form during battery charging
penetrated the porous separators, creating the risk of battery short circuiting and explosion. Thus,
controlling dendrite formation presented itself as a major challenge. This issue was tackled in a wide
range of studies, including purely theoretical linear stability analyses for the fixed charge model
[30], and for the surface conduction/leaky membrane model [31], purely experimental research
[6,32,33], and a combined theoretical/experimental study [34].

In our own recent study [35], we addressed the effects of the EDL, electrode kinetics, and
electroosmotic flow upon the wavelength selection in MI in cathodic electrodeposition. Without
suitable regularization, e.g., by surface tension [36–38], MI is singular in the sense that the infinite
wave number perturbation mode grows the fastest. In our study [35], we did not take surface tension
into account. This was motivated by two considerations. First, surface energy for a solid/liquid
interface is not an easily measurable quantitative parameter. Second, we wished to focus on how the
EDL, the finite reaction rate, and, ultimately, the fluid flow may regularize wave number selection.
We found that the finite width of the EDL coupled with the finite electrode reaction rate selects the
fastest-growing perturbation mode with the wavelength that is the geometric average of the EDL
width and the reaction-diffusion length (the ratio of cation diffusivity to the cathodic reaction rate
constant). This wavelength is one to two orders of magnitude greater than colloid-size capillary
length determined by surface tension. Accordingly, the electroosmotic flow induces a shift toward
still longer waves, especially in the nonequilibrium electroosmosis regime related to the formation
of the ESC [39]. These findings stand in qualitative agreement with the available experimental
observations on dendrite formation in electrodeposition [40,41].

The analysis in Ref. [35] was carried out for unrealistically low fixed charge concentration (FCC)
in the cathode, comparable to the average cation concentration in solution. One peculiarity of this
regime is the uniform structure of the EDL. This uniformity was observed to yield a negligible
effect of the Stern layer upon the wavelength selection. The purpose of this paper is to extend the
analysis of Ref. [35] to the realistic range of FCC. If the latter is to be crudely identified with the
density of free electrons in the metal, in accord with the Drude model [42,43], it should be many
orders of magnitude higher than the typical electrolyte concentration. This invokes the need to take
into account the steric modifications to the classical Nernst-Planck-Poisson-Stokes (NPPS) model
valid for pointlike ions.

This paper is organized as follows. We begin with a formulation of the cathodic electrodeposition
model problem in the classical NPPS formulation. This is followed by the discussion of a suitable
steric modification of this model. Next, we recapitulate the basic assumptions underlying the view
of a metal cathode as an ion exchanger. This is followed by a straightforward analysis of the
EDL for high FCC in both the classical and the sterically modified version. We observe that the
EDL unsurprisingly splits into a thin inner sublayer adjacent to the interface in which the Debye
length is rescaled by the square root of FCC, and an outer part, scaled by the Debye length.
The width of the inner sublayer is commensurate with that of the Stern layer and the steric exclusion
length.

Having established this background, we present a linear stability analysis of steady-state elec-
trodeposition incorporating two types of flow. One is the flow induced by the mere propagation of
the solid/liquid interface. It is observed that this type of flow, albeit intriguing in principle, has a
negligible effect on the course of MI for realistic (low) rates of electrodeposition. The other type of
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FIG. 1. (a) Scheme of the electrodeposition process and the geometry of the addressed problem; (b) The
electric potential ϕ(Z ) and (c) the charge density ρ vs. scaled distance from the charged wall. c(0) = 1, ϕ(0) =
0, ζ = −8 (A = e−4). Red continuous lines: exact solutions given by (b) Eq. (18) and (c) Eq. (19b); Blue dotted
lines: thin layer approximation, (b) Eq. (20a) and (c) Eq. (20c); Black dotted lines: infinite ζ approximation,
(b) Eq. (21a) and (c) Eq. (21c). (d) Cation concentration at the outer edge of the Stern layer, c+(0), vs. FCC,
p1, for ζ � −1 and (1) δ = 0.1, (2) δ = 0.2, (3) δ = 0.4.

flow is electroosmosis, which has a major effect on electrodeposition in the nonequilibrium regime,
just like in the low FCC case [35].

Our linear stability analysis shows that for a realistically high FCC, the Stern layer has a
considerable effect on the short-wave features of MI. An unexpected finding is that taking into
account the finite ionic size has a major effect upon the onset of the nonequilibrium electroosmotic
instability.

II. CATHODIC ELECTRODEPOSITION. MODEL PROBLEM

A. Classical Nernst-Planck-Poisson-Stokes model for pointlike ions.

The two-dimensional boundary value problem for the electrodissolution/deposition process that
we address reads as follows. Let the cell be defined as a two-dimensional (2D) layer of a binary
electrolyte: −∞ < x̃ < ∞, ỹ0(x̃, t̃ ) < ỹ < ỹ1(x̃, t̃ ). Here, ỹ = ỹ0(x̃, t̃ ) stands for the outer edge of
the cathodic Stern layer (Stern layer/solution interface) position of the cathode, whereas ỹ = ỹ1(x̃, t̃ )
stands for its anodic counterpart. Tildes are used to denote dimensional variables, as opposed to their
dimensionless counterparts, [see Fig. 1(a) for the geometry]. The classical NPPS model for the ionic
transport considers the electrolyte as a dilute solution of the pointlike charges (ions) and reads:

∂ c̃±

∂ t̃
= −∇J̃±, (1a)
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J̃± def= ṽc̃± − D±
(

∇c̃± + Fz±c̃±

RT
∇ϕ̃

)
(1b)

d�ϕ̃ = −4πρ̃, ρ̃
def= F (z+c̃+ + z−c̃−), (1c)

mṽt = −∇ p̃ − ρ̃∇ϕ̃ + η�ṽ, ∇ · ṽ = 0. (1d)

The Nernst-Planck equations are introduced in (1a), with c̃+ and c̃− as cationic and anionic
concentrations, J̃+ and J̃− being the respective fluxes, defined by (1b), where ṽ = ũi + ṽj is the fluid
velocity, ϕ̃ the electric potential, D+ and D− cationic and anionic diffusivities, and z+ and z− are
the cationic and anionic charge numbers (in what follows, for brevity, we assume D+ = D− = D,
z+ = −z− = z). F is the Faraday constant, R is the universal gas constant, and T is the absolute
temperature. Equation (1c) is the Poisson equation for the electric potential, where d is the dielectric
constant of the solution and ρ̃ is the space charge density due to the local imbalance of ionic
concentrations. Finally, (1d) are the Stokes and continuity equations, where m is solution density
assumed constant, p̃ is the pressure, η is the dynamic viscosity, and −ρ̃∇ϕ̃ is the electrical volume
force acting in the fluid.

The following boundary conditions are imposed on the electrodes. The cathode, ỹ = ỹ0(x̃, t̃ ), is
characterized by:

n = − ỹ0x̃√
1 + ỹ2

0x̃

i + 1√
1 + ỹ2

0x̃

j, τ = 1√
1 + ỹ2

0x̃

i + ỹ0x̃√
1 + ỹ2

0x̃

j, (2a)

c̃M
ỹ0t̃√

1 + ỹ2
0x̃

= D

[
∇c̃+ + Fzc̃+

RT
∇ϕ̃

]
· n, (2b)

ϕ̃ − λ̃S∇ϕ̃ · n = 0, (2c)

D

[
∇c̃+ + Fzc̃+

RT
∇ϕ̃

]
· n = Kcc̃+ exp

(
αczF

RT
ϕ̃

)
− Kac̃M exp

(
−αazF

RT
ϕ̃

)
, (2d)

[
∇c̃− − Fzc̃−

RT
∇ϕ̃

]
· n = 0, (2e)

v · τ = 0, v · n = ỹ0t̃√
1 + ỹ2

0x̃

. (2f)

The free boundary condition (2b) models the propagation of the cathode surface due to elec-
trodeposition. Here, c̃M is the constant molar concentration of the electrode metal atoms, whereas
the right-hand side is the normal diffusion/migration component of the cationic flux. Boundary
condition (2c) prescribes the potential drop across the Stern layer, while postulating zero potential
of the cathode. Here, λS stands for the effective width of the Stern layer [29]. The right-hand side
of Eq. (2d) stands for the Butler-Volmer electrode reaction kinetics [29,44,45]. Here, Kc and Ka

are rate constants for the cathodic and anodic reactions, dependent on the type of cation, nature
of the electrode surface and obeying an Arrhenius-type dependence on temperature, and αc, αa are
the transfer coefficients for these reactions. We set αc = αa = 1

2 , corresponding to single electron
transfer reactions [29]. Boundary condition (2e) corresponds to impermeability of the moving
cathode’s surface for anions. Finally, Eqs. (2f) are the no-slip conditions prescribing the normal
component of fluid velocity equal to the speed of the cathode surface propagation in the normal
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direction and vanishing tangential component of the fluid velocity at the interface. The anode,
ỹ = l + ỹ1(x̃, t̃ ), is described by:

n = ỹ1x̃√
1 + ỹ2

1x̃

i + −1√
1 + ỹ2

1x̃

j, τ = 1√
1 + ỹ2

1x̃

i + ỹ1x̃√
1 + ỹ2

1x̃

j, (3a)

c̃M
ỹ1t̃√

1 + ỹ2
1x̃

= −D

[
∇c̃+ + Fzc̃+

RT
∇ϕ̃

]
· n, (3b)

ϕ̃ − λ̃S∇ϕ̃ · n = Ṽ , (3c)

D

[
∇c̃+ + Fzc̃+

RT
∇ϕ̃

]
· n = Kcc̃+ exp

(
zF [ϕ̃ − Ṽ ]

2RT

)
− Kac̃M exp

(
− zF [ϕ̃ − Ṽ ]

2RT

)
, (3d)

[
∇c̃− − Fzc̃−

RT
∇ϕ̃

]
· n = 0, (3e)

v · τ = 0, v · n = − ỹ1t̃√
1 + ỹ2

1x̃

. (3f)

The anodic boundary conditions, Eqs. (3), are similar to Eqs. (2), with Ṽ standing for the voltage
applied between the two electrodes.

We rewrite the boundary value problem (1)–(3) in a dimensionless form by employing the
following natural scaling for the basic variables:

x = x̃

l
, y = ỹ

l
, t = t̃

t0
, (4a)

t0 = l2

D
, ϕ = zF ϕ̃

RT
, c± = c̃±

c0
. (4b)

Here, l is the initial distance between the electrodes and c0 is the average concentration of the
electrolyte.

v = ṽ
v0

, v0 = d

4πηl

(
RT

Fz

)2

, p = p̃l

ηv0
. (5)

The dimensionless governing equations read:

∂c+

∂t
= −∇J+, (6a)

∂c−

∂t
= −∇J−, (6b)

J± = vc± − (∇c± ± c±∇ϕ), (6c)

ε2�ϕ = c− − c+, (6d)

1

Sc
vt = −∇p + κ�ϕ∇ϕ + �v, ∇ · v = 0. (6e)

Here, ε is the dimensionless Debye length,

ε = rd

l
, rd =

√
dRT

4z2πc0F 2
, (7)

where rd is the dimensional Debye length. Furthermore, κ , κ = d
4πηD ( RT

Fz )2, is the electroconvective
coupling coefficient identical to the material Peclet number employed in our previous studies
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[46–48]. The advantage of this scaling, previously employed by Demekhin and his colleagues
[49,50], is that it leaves the convection term in the ionic flux expression (6c) free of the control
parameter, with flow velocity determined by either electroconvection or the propagation of the free
boundary. Finally, Sc, Sc = t0η

ml2 , is the Schmidt number. For realistic physical situations Sc � 1.
Thus, in what follows, we set the left-hand side of Eq. (6e) equal to zero.

The dimensionless cathodic boundary conditions, y = y0(x, t ) = Ut + z0(x, t ), read:

ρ(U + z0t ) = [−(c+
x + c+ϕx )z0x + c+

y + c+ϕy], (8a)

1√
1 + z2

0x

[−(c+
x + c+ϕx )z0x + c+

y + c+ϕy] = kC (c+e
ϕ

2 − p1e− ϕ

2 ), (8b)

ϕ − λ√
1 + z2

0x

(−ϕxz0x + ϕy) = 0, (8c)

−(c−
x − c−ϕx )z0x + c−

y − c−ϕy = 0, (8d)

−uz0x + w = U + z0t , u + wz0x = 0. (8e)

Here, U is the average velocity of the cathodic surface propagation (velocity of the flat free boundary
in mathematical terms), z0(x, t ) is the dimensionless deviation of the cathodic surface from flatness
(the perturbation of the flat boundary in the subsequent linear stability analysis).

kC = Kcl

D
, kA = Kal

D
(9)

are the dimensionless rate constants for the cathodic and anodic reactions,

ρ = c̃M

c0
, p1 = kA

kC

c̃M

c0
, λ = λS

l
. (10)

For the sake of simplicity, we assume an infinitely high reaction rate (reaction equilibrium) and
vanishing capacity of the Stern layer on the anode/solution interface, and postulate flatness of the
anodic surface. We also neglect the effect of the anodic EDL on the MI and impose the boundary
conditions on the outer edge of the anodic EDL. Under these assumptions, the dimensionless anodic
boundary conditions, at y = y1(x, t ) = 1 + Ut , assume the following form:

c−
y − c−ϕy = 0, c+ = c−, ln c+ + ϕ = ln p1 + V, w = U, u = 0. (11)

V = zFṼ
RT in the right-hand side of the continuity condition for the electrochemical potential is the

dimensionless voltage. By transformation to the moving frame, that is, by replacing the variable y

by z defined as z = y − Ut , and the velocity v by v1
def= u1i + w1j = v − U j, the model problem

(6), (8), (11) is rewritten as

z0(x, t ) < z < 1 :
∂c±

∂t
+ v1∇c± = ∇(∇c± ± c±∇ϕ), (12a)

ε2�ϕ = c− − c+, (12b)

0 = −∇p + κ�ϕ∇ϕ + �v1, ∇ · v1 = 0; (12c)

z = z0(x, t ) : ρ(U + z0t )

= [−(c+
x + c+ϕx )z0x + c+

z + c+ϕz], (12d)

1√
1 + z2

0x

[−(c+
x + c+ϕx )z0x + c+

z + c+ϕz] = kC (c+e
ϕ

2 − p1e− ϕ

2 ), (12e)
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ϕ − λ√
1 + z2

0x

(−ϕxz0x + ϕz ) = 0, (12f)

−(c−
x − c−ϕx )z0x + c−

z − c−ϕz = 0, (12g)

−uz0x + w1 = z0t , u + (w1 + U )z0x = 0; (12h)

z = 1 : c−
y − c−ϕz = 0, c+ = c−, ln c+ + ϕ

= ln p1 + V,w1 = u1 = 0. (12i)

We complete the model description by determining the physically relevant range of the con-
trol parameters. For a 10−2 M–10−1 M diluted aqueous solution of copper sulfate extensively
used in the experiments, e.g., Refs. [12–14,16–20,37], the relevant parameters are as follows:
D = 7 × 10−6 cm2

s , z = 2, Ka = Kc = 1.34 × 10−5 cm
s , η = 1.8 × 10−2 g

cm·s , ρ̃ = 140 M, rd ∼ 7 ×
10−8–2.5 × 10−7cm, λS ∼ 5 × 10−8–10−7cm. For l ∼ 10−2–10−1cm-thick electrolyte layer, we
find ρ = p1 ∼ 1.4 × 103–1.4 × 104, ε ∼ 7 × 10−7–2.5 × 10−5, κ = 0.1, kC = kA ∼ 2 × 10−2–2 ×
10−1, λ ∼ 5 × 10−8–10−6. In what follows we address this range of the dimensionless physical
parameters and assume that ρ = p1.

B. Incorporating the steric effects in the electrodeposition model.

To investigate the possible effect of overcrowding of cations near the cathode, we are going to
employ the steric regularizations of the classical Poisson-Boltzmann (PB) EDL model. Historically,
the first modified Poisson-Boltzmann (mPB) model, taking into account the effect of the finite ionic
size (the ionic steric effect) was due to Bikerman [51]. In this model, the expression for the ionic
electrochemical potentials is modified in order to take into account the constraint on the volume
available for ions. The recent progress in the studies of ionic liquids and the development of various
engineering applications, such as microfluidic devices, microbatteries, and electrochemical sensors,
brought about the need to further refine the mPB model. The goal was to improve the description
of the response of an electrolyte to a high applied voltage, large enough to cause crowding of ions
near the electrode surface with the bulk solution remaining dilute [45,51–63].

The recent steric mPB models [45,59–62], either based on the Landau-Ginzburg-type approach,
taking into account the short-range Coulomb correlations, such as the Bazant-Storey-Kornishev
(BSK) model [59], or the cluster model by Ram, Adar, and Andelman [63], yield replacing the
common Poisson equation for the electric potential by a suitable fourth-order equation. Below we
outline the mathematical framework of the Bikerman mPB model of cathodic electrodeposition to
be used in this study and comment on the prospects of employing more advanced steric models
[59,63].

In its dimensionless form, the Bikerman model boundary value problem [45], reads:

z0(x, t ) < z < 1 :
∂c±

∂t
+ v1∇c± = ∇(c±∇μ±),

μ± = ln
c±

1 − ν(c+ + c−)
± ϕ (13a)

ε2�ϕ = c− − c+, (13b)

0 = −∇p + κ�ϕ∇ϕ + �v1, ∇ · v1 = 0; (13c)

z = z0(x, t ) : p1(U + z0t ) = z[−c+μ+
x z0x + c+μ+

z ], (13d)

1√
1 + z2

0x

[−c+μ+
x z0x + c+μ+

z ] = kC

√
c+ p1(e

μ+−μ+
s

2 − e− μ+−μ+
s

2 ), μ+
s = ln p1 (13e)
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ϕ − λ√
1 + z2

0x

(−ϕxz0x + ϕz ) = 0, (13f)

−c−μ−
x z0x + c−μ−

y = 0, (13g)

−uz0x + w1 = z0t , u + (w1 + U )z0x = 0; (13h)

z = 1 : μ−
z = 0, c+ = c−, μ+ = V + ln p1, w1 = u1 = 0. (13i)

Here μ± are the regularized ionic electrochemical potentials, and ν is the dimensionless ionic
volume at zero voltage. The reciprocal of ν defines the maximum possible dimensionless total ionic
concentration. In what follows we consider ν ∼ 10−3–10−1, corresponding to the 0.1–10 M range
of the maximal total ionic concentration. We note that the Bikerman model (13) is a straightforward
generalization of the classical model (12). This latter constitutes a regular asymptotic limit of the
Bikerman model for vanishing ionic volume, ν = 0. On the other hand, in the framework of the BSK
or Ram-Adar-Andelman model [59], one deals with a singularly perturbed Poisson equation in the
form of the following fourth-order equation for the electric potential:

ε2(1 − δ2∇2)∇2ϕ = c− − c+. (14)

Here δ = lc
l , where lc is the ionic correlation length which varies from the typical ionic diameter

1–3 × 10−8cm for high ionic concentrations to the Bjerrum length, lB ∼ 7 × 10−8cm for dilute
electrolytes.

Accordingly, this singularly perturbed Poisson equation has to be complemented by the following
additional boundary condition accounting for the vanishing normal derivative of the mean-field
charge density at the interface:

n · ∇(∇2ϕ) = 0. (15)

Due to the extreme complexity of computational implementation of the related generalization for the
cathodic electrodeposition problem for realistic range of control parameters, we defer its analysis to
a future study and remains in the framework of the classical model and its Bikerman modification.

III. METAL CATHODE AS AN ION EXCHANGER AND THE FINE STRUCTURE OF THE EDL

In the spirit of the Drude model [42,43], we regard the metal cathode as an ion exchanger in which
the free electrons play the role of fixed charges. A more precise analogy would be the so-called liquid
ion exchanger in which the ion-exchange groups are free to move and redistribute in space. However,
here, for simplicity we assume that the interface concentration of free electrons is equal to their
average concentration in the metal, assumed to be fixed and independent of the electrode potential.
In addition, we assume local electroneutrality in the metal, that is, equality of the metal cation
concentration and the free electron concentration, FCC. The cations of the solution are assumed to
exchange with those in the metal by means of electrode reaction governed by the Butler-Volmer
kinetics. Thus, for a metal electrode with FCC of 10–400 M and a dilute electrolyte with bulk
concentration of 1–100 mM, the interface concentration of counterions (assumed to be close to FCC)
is expected to be three to five orders of magnitude higher than their bulk concentration, in particular,
possibly considerably higher than the limit prescribed by steric restriction. This determines the
peculiarity of a quasiequilibrium EDL, which we discuss below.

Motivated by the subsequent applications to MI, below we trace the fine structure of the cathodic
EDL for large values of ζ potential in the classical and Bikerman models. Let us start with the
classical Gouy-Chapman theory for pointlike ions. According to this theory, the electric potential
and the ionic concentrations in the EDL are solutions of the Poisson-Boltzmann equation controlled
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by two parameters: ionic concentration (taken in the bulk or on the interface) and the potential drop
across the EDL:

0 < Z < ∞ :
d2ϕ

dZ2
= c−(Z ) − c+(Z ), (16a)

c+(Z ) = c(0)eϕ(0)−ϕ(Z ), (16b)

c−(Z ) = c(0)e−ϕ(0)+ϕ(Z ). (16c)

Here, Z = z−z0
ε

is the EDL boundary-layer variable and c(0), ϕ(0) are, respectively, the electrolyte
concentration and the electric potential at the outer edge of the EDL. Integration of Eqs. (16) yields

ϕ(Z ) = ϕ(0) + 2 ln
e

ζ

2 + 1 − (1 − e
ζ

2 )e−Z
√

2c(0)

e
ζ

2 + 1 + (1 − e
ζ

2 )e−Z
√

2c(0)
, (17)

where ζ = ϕ(0) − ϕ(0) < 0, is the potential drop across the diffuse EDL. To characterize the near-
the-interface portion of the EDL responsible for the bulk of the cationic concentration variation, let
us define the parameter A as A = e

ζ

2 =
√

c(0)
c+(0) . Neglecting the transcendentally small terms in (17),

we obtain the following expression for the electric potential ϕ in the EDL, which is uniformly valid
for large negative ζ and high cationic surface concentration c+(0):

ϕ(Z ) = ϕ(0) + 2 ln
2A + 1 − e−Z

√
2c(0)

1 + e−Z
√

2c(0)
, (18)

Differentiation of Eq. (18) yields, upon disregarding the transcendentally small terms, the following
expressions for the electric field, E = − 1

ε
ϕ′(Z ), and the electric charge density, ρ = c+(Z ) −

c−(Z ):

E = −4
√

2c(0)

ε

e−Z
√

2c(0)

4A + 1 − e−2Z
√

2c(0)
, (19a)

ρ = 8c(0)e−Z
√

2c(0) 1 + e−2Z
√

2c(0)

(4A + 1 − e−2Z
√

2c(0) )2
. (19b)

For the vicinity of the charged surface, 0 � Z
√

c(0) � 1, the following asymptotic approximations
hold for the electric potential, the electric field, and the charge density:

ϕ(Z ) = ϕ(0) + 2 ln
2 + Z

√
2c+(0)

2
, (20a)

εE = − 2
√

2c+(0)

2 + Z
√

2c+(0)
, (20b)

ρ = 4c+(0)

(2 + Z
√

2c+(0))2
. (20c)

When the distance from the charged solid exceeds O(A), O(A) < Z < ∞, the structure of the EDL
is described by the following asymptotic expressions:

ϕ(Z ) = ϕ(0) + 2 ln
1 − e−Z

√
2c(0)

1 + e−Z
√

2c(0)
, (21a)

εE = −4
√

2c(0)
e−Z

√
2c(0)

1 − e−2Z
√

2c(0)
, (21b)

ρ = 8c(0)e−Z
√

2c(0) 1 + e−2Z
√

2c(0)

(1 − e−2Z
√

2c(0) )2
. (21c)

093701-9



I. RUBINSTEIN AND B. ZALTZMAN

Thus, for large ζ and c+(0) � 1, the EDL splits into two parts: a thin, O( ε√
c+(0)

)-wide compact
sublayer adjacent to the charged wall in which the electric field and the charge density are functions
of the cationic wall concentration [c+(0)] and where the major part of the EDL charge is located,
and a much wider, O( ε√

c(0)
)-wide residual sublayer, the tail, where these characteristics are solely

determined by the bulk concentration, c(0). These asymptotic expressions, (21), are valid for the tail,
Z � A, and are singular at Z = 0, corresponding to an infinite ζ potential [46]. Equations (20), (21)
describe the fine structure of the EDL in the vicinity of the wall in terms of the dependence of the
electric field and the electric charge density on ζ and the wall concentration c+(0). In Figs. 1(b)–1(c)
we illustrate this structure by plotting the electric potential, the electric field and charge density
profiles for a sequence of A.

To evaluate the effect of the Stern layer on ionic overcrowding we refer to zero electric potential
being zero at the cathode and complement the EDL model, (16), by the following 1D version of
Eq. (13f):

ϕ(0) = δ
dϕ

dZ
, (22)

where δ = λ
ε
. Then, for the equilibrium EDL (zero electric current) and high ζ potential, ζ � −1,

we find, keeping the leading-order terms in Eq. (17):

p1 = c+(0)eδ

√
c+ (0)

2 . (23)

For p1 � 1, this yields

c+(0) ≈ 2

(
ln p1

δ

)2

. (24)

Therefore, as shown in Fig. 1(d), even for high FCC of the order of 102 M, for a realistic width of
the Stern layer the ionic concentration at its outer edge does not exceed 10 M.

To account for the steric effect in overcrowding of cations near the cathode for large negative ζ ,
we employ the Bikerman regularization of the PB EDL model (13) and rewrite it in terms of the
inner EDL variable Z:

0 < Z < ∞ :
d2ϕ

dZ2
= c−(Z ) − c+(Z ), (25a)

dμ±

dZ
= 0, (25b)

c± = eμ±∓ϕ

1 + ν(eμ+−ϕ + eμ−+ϕ )
. (25c)

Integrating Eq. (25b) and substituting the boundary conditions at the outer edge of the EDL, we find

μ+ − ϕ(0) = μ− + ϕ(0) = ln
c(0)

1 − 2νc(0)
, (26)

and rewrite Eq. (25a) as follows:

d2ϕ

dZ2
= c(0)

eϕ−ϕ(0) − e−ϕ+ϕ(0)

1 + νc(0)(eϕ−ϕ(0) + e−ϕ+ϕ(0) − 2)
, (27)

Next multiplying Eq. (27) by ϕ′(Z ) and integrating the obtained equality we obtain:

√
ν

dϕ

dZ
=

√
2 ln[1 + νc(0)(e

ϕ(0)−ϕ

2 − e
ϕ−ϕ(0)

2 )2]. (28)

Therefore, for the moderate values of ζ potential, νc(0)e
ζ

2 � 1, the steric effect is negligible and
its solution up to the leading order is given by Eq. (17). For the large negative values of ζ potential,
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(a) (b) (c)

(f)(e)(d)

FIG. 2. (a), (b) The drop of the electric potential ϕ(Z ) − ϕ(0) vs. scaled distance from the charged wall
for c(0) = 1, ν = 0.001, and ζ = −10 (a), ζ = −20 (b). Blue continuous line: solution to Eqs. (25). Red
continuous line: solution to the classical model (17). Black dashed lines: thin layer approximation, Eq. (29).
(c), (d) The charge density ρ = c+ − c− vs. scaled distance from the charged wall for c(0) = 1, ν = 10−3

and ζ = −10 (c), ζ = −20 (d). Blue line: solution to Eqs. (25). Red line: solution to the PB model (17).
(e) The dependence of the EDL total charge � on ζ -potential for c(0) = 1. Red continuous line: PB model,
ν = 0; Black dashed lines: solution to the mPB model, Eqs. (25), for (1) the intermediate steric effect, ν =
10−3, (2) the severe steric effect, ν = 10−2, (3) the extreme steric effect, ν = 10−1. (f) ζ potential, ζ , vs.
dimensionless voltage V computed by solving the 1D steady-state version of Eqs. (12) and (13). Red continuous
line: vanishing steric parameter, ν = 0, Eqs. (12); black dashed line: steric effect model, Eq. (13); ν = 10−3

(1), ν = 10−2 (2). Inset: Same plots for the dependence of ζ on the dimensionless electric current J . p1 =
14000, ε = 2 × 10−5, λ = 5 × 10−6, kC = 2 × 10−2.

νc(0)e
ζ

2 � O(1), the EDL splits into two parts, as in the PB model. The first O(ε)-wide part is
the tail, where these characteristics are solely determined by the bulk concentration, c(0), and
are described by Eq. (21). To describe the thin compact component of the EDL adjacent to the
charged wall we consider the region of high potential drop, ϕ(Z ) − ϕ(0) � 1, and disregarding the
transcendentally small terms in Eq. (28), we obtain the following simplified equation:

dY

Y
√

2(1 + Y )
= − dZ√

ν
, (29)

where Y = νc(0)eϕ(0)−ϕ(Z ).
Thus, accounting for the steric effect yields the O(

√
νε) width of the compact, strongly charged

portion of the EDL adjacent to the cathode surface instead of O( ε√
c+(0)

) derived above within the
PB model.

In Fig. 2, we illustrate the EDL characteristics for the 1D steady state in the PB, Eqs. (12), and
mPB, Eqs. (13), models for the set of control parameters corresponding to a 10−2 M solution of the
copper sulphate. In Figs. 2(a), 2(b) we observe the emergence of the new

√
νε EDL length scale for

the high ζ -potential regime in the steric model (the dashed line vs. the continuous blue line). The
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actual dimensionless width of the compact highly charged EDL sublayer adjacent to the cathode
is about 10

√
νε and slightly increases with the increase of ζ potential. For high voltage (close to

or above the limiting current, I = −c+μ+
z = −4), the concentration at the outer edge of the EDL

approaches zero and the ESC forms. Simultaneously, the total ionic concentration constraint 1
ν

yields
saturation of the interface charge density, implying its decrease in comparison to the classical model,
Eqs. (16), and increase at the outer edge of the compact sublayer, Figs. 2(c), 2(d). Subsequently, we
will see that this charge redistribution has a substantial effect on the onset of the nonequilibrium
electroosmotic vortical flow and, thus, affects the wavelength selection in MI. To complete this
outline of the EDL structure in the steric model (25), we present the dependence of the total EDL
charge, � = ε

dϕ

dZ (0), on ζ potential, Fig. 2(e), and of ζ potential on voltage, Fig. 2(f), and current
density I , inset to Fig. 2(f), for the varying steric constraint parameter ν.

IV. EFFECTS OF THE FINE STRUCTURE OF THE ELECTRIC DOUBLE LAYER AND OF THE
FLOW ON THE MODE SELECTION IN MORPHOLOGICAL INSTABILITY

In this section we study MI of the quiescent, 1D steady-state solution to the problem (13), which
reads: c+(x, z, t ) = c+

0 (z), c−(x, z, t ) = c−
0 (z), ϕ(x, z, t ) = ϕ0(z), v1 = 0, z0(x, t ) = 0, z1(x, t ) =

0.

0 < z < 1 : c+
0 μ+

0
′ = p1U = J, μ+

0 = ln
c+

0

1 − ν(c+
0 + c−

0 )
+ ϕ0; (30a)

c−
0 μ−

0
′ = 0, μ−

0 = ln
c−

0

1 − ν(c+
0 + c−

0 )
− ϕ0; (30b)

ε2ϕ′′
0 = c−

0 − c+
0 , (30c)

z = 0 : p1U = kC

√
c+

0 (e
μ+

0
2 − p1e− μ+

0
2 ), ϕ0 − λϕ′

0 = 0, (30d)

z = 1 : c+
0 = c−

0 , ln c+
0 + ϕ0 = ln p1 + V, (30e)∫ 1

0
c−

0 (z)dz = 1. (30f)

Here, J in Eq. (30a) is the absolute value of the dimensionless electric current. Equation (30f)
prescribes the total mass of anions in the diffusion layer. We carry out a linear stability analysis
of this solution with a focus on the following three cases: (i) classical model for pointlike ions,
ν = 0; (ii) intermediate steric restriction, ν = 10−3, (in dimensional terms, this corresponds to an
approximately 10 Molar maximum total ionic concentration for a ten-millimolar bulk solution); (iii)
severe steric restriction, ν = 10−2 (1 Molar maximum total ionic concentration for a ten-millimolar
bulk solution).

We begin with κ = 0, corresponding to a vanishing electroconvective effect of MI and address
the following simplified formulation in which we omit the electrical force term in the Stokes
equation (13c):

0 = −∇p + �v1, ∇ · v1 = 0. (31)

Let us consider a perturbation of the solution (30) of the form:

c± = c±
0 (z) + αC±(x, z, t ), μ± = μ±

0 + αM±(x, z, t ), (32a)

ϕ = ϕ0(z) + α�(x, z, t ), w1 = αW (z, x, t ), z0 = αZ (x, t ). (32b)

Here, α � 1 is the perturbation parameter. Linearization with respect to α followed by the Fourier
and Laplace transforms,

C±(x, z, t ) = C±(z)eikxeSt , M±(x, z, t ) = M±eikxeSt , (33a)

�(x, z, t ) = �(z)eikxeSt , W (z, x, t ) = W (z)eikxeSt , Z (x, t ) = eikxeSt , (33b)

093701-12



HOW THE FINE STRUCTURE OF THE ELECTRIC DOUBLE …

yield the following linear stability problem:

0 < z < 1 : SC+ + W c+′
0 = (c+

0 M+′)′ − k2c+
0 M+ + J

(
C+

c+
0

)′
, (34a)

SC− + W c−′
0 = (c−

0 M−′)′ − k2c+
0 M−, (34b)

C± = c±
0 (M± ∓ �) − νc±

0 (c+
0 (M+ − �) + c−

0 (M− + �)) (34c)

ε2(�′′ − k2�) = C− − C+, (34d)

W IV − 2k2W ′′ + k4W = 0; (34e)

z = 0 : Sp1 = c+
0 M+′ + C+μ+

0
′
, (34f)

M−′ = 0, (34g)

c+
0 M+′ + C+μ+

0
′ = J

2

C+ + c+
0

′

c+
0

+ kC

√
c+

0

M+ + μ+
0

′

2
(e

μ+
0
2 + p1e− μ+

0
2 ), (34h)

ϕ′
0 + � = λ(ϕ′′

0 + �′), (34i)

W = S, W ′ + Uk2 = 0; (34j)

z = 1 : C+ = C−, M−′ = 0, M+ = 0, W = 0, W ′ = 0. (34k)

First, we address the short-wave perturbations, k � 1. Introducing the scaled variable z = kz and
keeping the leading order terms in problem (34), we arrive at the following linear stability problem
asymptotically valid in the limit k → ∞:

0 < z < ∞ : 0 = d2M+

dz2 − M+, (35a)

0 = d2M−

dz2 − M−, (35b)

d2�

dz2 − � = 0, (35c)

d4W

dz4 − 2
d2W

dz2 + W = 0; (35d)

z = 0 :
dM+

dz
= dM−

dz
= d�

dz
= W − S = dW

dz
+ Uk = 0, (35e)

Sp1 = J

2

C+ + c+
0

′

c+
0

+ kC

√
c+

0

M+ + μ+
0

′

2
(e

μ+
0
2 + p1e− μ+

0
2 ), (35f)

z = ∞ :
dM+

dz
= dM−

dz
= d�

dz
= dW

dz
= d3W

dz3 = 0. (35g)

Straightforward solution of problem (35) yields: M+ = M− = C+ = C− = � = 0, W = Se−z +
(−Uk + S)ze−z. Applying Eq. (35) we obtain:

S ≈ J

p1

√
1 − νc+

0 (0)

(
kCe

ϕ0 (0)
2 − ϕ0(0)

2λ
(1 − νc+

0 (0))
3
2

)
. (36)

We note that the asymptotic growth rate, S, is finite and negative for the realistic values of ζ

potential. For a very large negative ζ such that the interface cation concentration is very close to

093701-13



I. RUBINSTEIN AND B. ZALTZMAN

(a) (b)

(d)(c)

FIG. 3. (a) Growth rate S vs. wave number k; p1 = 1.4 × 104, J = 2 (V = 2.2), ε = 2 · 10−5, ν = 0;
(1) kC = 0.02, λ = 2 × 10−6; (2) kC = 0.02, λ = 0; (3) kC = ∞, λ = 0. Inset: same plots in linear scale.
(b) Growth rate S vs. wave number k; p1 = 1.4 × 04, J = 2(V = 2.2), ε = 2 × 10−5, kC = 0.02, λ = 2 ×
10−6; (1) classical pointlike-ions model ν = 0; (2) intermediate steric effect, ν = 0.001, corresponding to a 10
Molar maximum total ionic concentration for a ten-millimolar bulk solution; (3) severe steric effect, ν = 0.01,
corresponding to a Molar maximum total ionic concentration for a ten-millimolar bulk solution. (c) Critical
wave number kcr vs. steric parameter ν; the remaining parameters are the same as for plot (a), curve (1).
Inset: Maximal growth rate Smax vs. ν. (d) Critical wave number kcr vs. p1 for J = 2 and (1) kC = 0.2, ε =
2 × 10−6, λ = 2 × 10−7, (2) kC = 0.02, ε = 2 · 10−5, λ = 2 × 10−6. Black lines– power law approximations
kcr = 270p1/4

1 (1) and kcr = 29p1/4
1 (2). Inset: kcr vs. λ for p1 = 1.4 × 104; the remaining parameters are the

same as for curve (2).

its maximum:

1 > νc+
0 (0) > 1 − (λkC )

2
3 , (37)

the asymptotic value of S becomes positive.
In the limit of the infinite reaction rate, kC = ∞, S = O(k) = sk, Eqs. (34f)–(34j) yield:

z = 0 : c+
0

dM+′

dz
− p1s = 0,

dM−′

dz
= 0,

d�

dz
= 0, (38a)

M+ + dμ+
0

′

dz
= 0, (38b)

W − sk = dW

dz
+ Uk = 0. (38c)
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(a) (b) (c)

FIG. 4. (a) Red lines: critical wave number kcr vs. reaction rate kC , p1 = 1.4 × 104, J = 2 (V = 2.2), ν =
0, λ = 10−1 × ε, (1) ε = 2 × 10−4, corresponding to a 10-µm wide diffusion layer in dimensional units. Black
line: power-law approximations kcr = 6800k1/2

C . (2) ε = 2 × 10−5, corresponding to a 100-µm wide diffusion
layer. Black line: – kcr = 2200k1/2

C . (3) ε = 2 × 10−6, corresponding to a 1 mm wide diffusion layer. Black
line: – kcr = 690k1/2

C . (b) Red lines: Critical wave number kcr vs. dimensionless Debye length, ε, (1) kC = 1,
black line: power law approximations kcr = 9.4ε−1/2; (2) kC = 0.1, black line: – kcr = 3ε−1/2; (3) kC = 0.01,
black line: – kcr = 0.94ε−1/2. The remaining parameters are the same as for plot (a). (c) Critical wave number

kcr vs.
√

kC
√

p1
ε

, J = 2, (V = 2.2). Red dots: – computed values of kcr taken from Figs. 3(c), 4(a), 4(b); black

line: linear approximation kcr =
√

kC
√

p1√
2ε

.

Solving Eqs. (35a)–(35d), (35g), (38) we find that

M− = � = M+ + J

c+
0 (0)

e−z = 0, W = ske−z + (s − U )kze−z. (39)

Substituting Eq. (39) into Eq. (38a) we obtain s = − J
p1

= U > 0, implying the return of the short-
wave singularity typical of unregularized MI.

In the limit of vanishing width of the Stern layer, λ = 0, for a finite reaction rate, kC the short-
wave (k � 1) asymptotic solution to problem (34) reads

� = −ϕ′
0(0)e−z, M+ = M− = 0,W = Se−z + (S − Uk)ze−z, (40)

and, thus,

S ≈ J

2

⎛
⎜⎝Jνc+

0 (0) + 2kC√
1 − νc+

0 (0)

⎞
⎟⎠ > 0. (41)

This implies a finite positive nonsingular growth rate in the short-wave limit.
Summarizing, for a finite reaction rate kC , taking into account the fine structure of the EDL that

includes a Stern layer of finite width regularizes the short-wave singularity in MI and yields a finite,
albeit large, range of wave numbers for growing perturbation modes. This is illustrated in Fig. 3(a),
where the dependence of the growth rate parameter S on the wave number k is presented for the
solution to the full problem, (34), and for two asymptotic limits, those of the vanishing width of
the Stern layer and of the infinite reaction rate kC . We show that, for a finite kC , accounting for
the finite width of the Stern layer eliminates the short-wave singularity and defines a finite range
of unstable modes. We define the critical wave number kcr > 0 as that of the fastest growing mode
with Smax = maxk S(k) = S(kcr ). For the vanishing electroconvective flow case, κ = 0, the increase
of the steric restriction parameter, ν > 0, mainly affects the maximal growth rate Smax and slightly
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(a)

(c)
(d)

(b)

FIG. 5. (a), (b) The flow streamlines for p1 = 103, ε = 10−4, λ = 2 × 10−6, kC = 10 and k = kcr = 1727
(a) and k = 3000 > kcr (b). The dashed black line at the bottom marks the periodic electrode surface distortion.
The color scale depicts concentration variation: the red color corresponds to the high values of dimensionless
concentration near the electrode surface and the gray color to the relatively low concentration in the tail of
the EDL. (c), (d) The dependencies of the convective flux (c) and the diffusion/migration flux (d) components
on the dimensionless distance from the electrode surface for k = 100 < kcr (red line), k = kcr = 1727 (black
line), and k = 3000 > kcr (blue line). Inset to (d): The ratio of the convective and diffusion flux components
versus y for the same values of the wave number, k.

reduces the value of the critical wave number, kcr , Figs. 3(a), 3(b). Therefore, in the remainder
of our analysis of the (κ = 0) regime we consider the classical model for pointlike ions, ν = 0.
Next, we address the dependence of the critical wavelength, kcr , on the main dimensionless control
parameters: the width of the Stern layer, λ, the reaction rate, kC , the interface cation concentration,
p1, and the dimensionless Debye length, ε. Whereas a nonvanishing λ is necessary for having a
finite range of the instability modes, the critical wave number kcr is barely sensitive to its magnitude
[see inset to Fig. 3(d)]. In Fig. 3(d) we also show that kcr is an increasing function of the interface
concentration p1, that obeys the power law kcr ∼ p1/4

1 for realistic p1,.
This complements our earlier observation, Ref. [1], that kcr is an increasing function of kC ,

obeying the power law kcr ∼ k1/2
C , Fig. 4(a), and, for a realistic range, a decreasing function of ε

following the power law kcr ∼ ε−1/2, Fig. 4(b). With these three dependencies at hand, we conclude
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(a) (b) (c)

(f)(e)(d)

FIG. 6. (a) Vertical component of the fluid velocity, W (y), vs. dimensionless distance from the electrode
surface, y, for p1 = 103, ε = 10−4, λ = 2 × 10−6, kC = 10, V = 1; κ = 0.5, k = kcr = 1289 [line (1)] and κ =
10, k = kcr = 397 [line (2)]. Inset to (a): Same plots for the vicinity of the interface; (b), (c) flow streamlines for
the same parameter values: κ = 0.5, k = kcr = 1289 (b) and κ = 10, k = kcr = 397 (c). The dashed black line
at the bottom marks the periodic electrode surface distortion. (d), (e) The dependencies of the convective flux
(d) and the diffusion/migration flux (e) components on the dimensionless distance from the electrode surface
for κ = 0.5, k = kcr = 1289 [line (1)], κ = 10, k = kcr = 397 [line (2)]; Inset to (e): the ratio of the convective
and the diffusion/migration flux components vs. y; (f) Critical wave number kcr vs. κ . Inset: The dependence
of the right edge, kright , of the instability interval 0 � k � kright on κ .

that the critical wave number kcr is a linear function of a single parameter:
√

kC
√

p1√
2ε

, Fig. 4(c). Thus,

its reciprocal is the typical length in the emerging dendrite which scales as
√ √

2ε
kC

√
p1

at the linear

stage. In dimensional units, this yields the length scale

L =
√

rd

(
Ka

Kc

c̃M

c0

)−1/2

· D

Kc
, (42)

which is the geometric average of the width of the highly charged portion of the EDL, typically up to
10% of the Debye length, rd (3–10 nm), and the reaction–diffusion length, D/KC (1 mm–10 mm).
This yields L in the range of 100 nm–10 µm, qualitatively compatible with experimental data [3,4].

We complete this part by evaluating the impact on the MI of the fluid flow generated solely by
the metal surface propagation. As we show in Figs. 5(a), 5(b) for large wave numbers, MI generates
two pairs of vortices. The first pair, adjacent to the interface, is dragged by the moving solid,
whereas the second pair emerges due to flow continuity having the intensity proportional to surface
curvature [k2, the second equation in (34j)]. This latter vortex pair exerts a stabilizing effect by
bringing the low concentration to the propagating protrusion and the high concentration to the cavity,
Fig. 5(b). However, for a dilute electrolyte, due to the slow propagation of the electrodeposition
front, its induced flow velocity is too low to have a significant effect on MI. This is illustrated in
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(a) (b)

FIG. 7. (a) Red lines: critical wave number kcr vs. voltage V for the set of control parameters cor-
responding to 100-µm wide layer of 10−2M aqueous solution of copper sulfate: p1 = 1.4 × 04, ε = 2 ×
10−5, kC = 0.02, λ = 2 × 10−6, κ = 0.15. (1) classical pointlike-ions model ν = 0, (2) intermediate steric
effect, ν = 0.001, corresponding to a 10 M maximum total ionic concentration for a ten-millimolar bulk
solution; (3) severe steric effect, ν = 0.01, corresponding to a 1 M maximum total ionic concentration for
a ten-millimolar bulk solution. Dashed black lines: same dependencies for the nonelectroconvective flow case,
κ = 0. Continuous black lines: neutral stability curves for the electroconvective instability alone: z0 = 0. Inset:
The dependence of the maximal growth rate, Smax, on voltage V for same values of parameters. (b) Dimen-
sional characteristic length, L = 2π

kcr
· l, l = 10−2 cm, on the dimensional applied voltage, Ṽ = V · RT

2F . The
parameters and notations are the same as for plot (a). Inset: The dependence of the electroconvective instability
voltage threshold, Vcr , on the steric constraint parameter, ν.

Figs. 5(c), 5(d) through comparison of the linearly perturbed normal convective, Jw = W c+
0 , and

diffusion/migration, Jdm = C+′ + c+
0 �′ + C+ϕ′

0, fluxes in the vicinity of the interface.
We conclude this section by addressing the effect of the electroconvective flow on the mode

selection in MI. We begin with analyzing the effect of the quasiequilibrium electroosmotic flow due
to nonflatness of the electrode surface produced by MI in the low-voltage regime, J = 1, V ∼ 2.
As we show in Fig. 6, electroosmosis dominates the fluid flow and drastically enhances the pair of
secondary vortices, Figs. 6(a)–6(c). The increase of the electroconvective coupling coefficient, κ ,
results in enhancing the electroconvective component of flux perturbation that forms in the bulk of
the EDL, Figs. 6(d), 6(e). This results in a considerable decrease of the critical wave number, kcr ,
Fig. 6(f), and in the elimination of growth of the short-wave perturbation modes, inset to Fig. 6(f).

Next, we address the realistic values of the control parameters, see Fig. 7, corresponding to
a 10−2 M aqueous solution of copper sulfate. We note that for the low to moderate voltage
regime the decrease of the critical wave number due to the quasiequilibrium electroosmotic flow
varies from few percent for an intermediate steric effect to 20% for a severe steric effect [see
black dashed lines and continuous red lines in Fig. 7(a)]. A further increase of voltage induces
increased depletion of the electrode/solution interface, formation of the extended space charge and
its related nonequilibrium electroosmotic flow as precursors of electroosmotic instability. As shown
in Fig. 7(a) with a nonequilibrium electroosmotic flow present, the critical wave number decreases
by at least one order of magnitude with the increase of voltage. At the threshold voltage, for which
the critical wave number attains its minimum value, the nonequilibrium electroosmotic instability
occurs, see Fig. 7(a). We note that the nonflatness of the electrode surface induced by MI lowers
the voltage threshold of the nonequilibrium electroosmotic instability by a few percent, compared to
the flat surface case. On the other hand, the occurrence of this instability fully dominates the flow, the
development of MI, and, subsequently, the growth of dendrites, Figs. 7(a), 7(b). Correspondingly,
the width of the diffusion layer becomes the dominant length scale for the flow and the development
of MI, Fig. 7(b). We also note a substantial effect of accounting for the finite ion size and the steric
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effect on the electroconvective instability voltage threshold, inset to Fig. 7(b). This results from the
EDL charge redistribution mentioned previously and the increase of the extended space charge in
the steric model compared to the classical one, Fig. 2. The nonlinear stage of the nonequilibrium
electroosmotic flow will be analyzed in our forthcoming paper taking into account finite ionic size.

V. CONCLUSIONS

(i) Finite cathodic reaction rate combined with a finite width of the Stern layer as an element
of the fine structure of the EDL selects a finite range of wave numbers of growing perturbation
modes, thus removing the short-wave catastrophe in MI. The steric correction has only a minor effect
on this mode selection. The selected fastest growing mode wavelength, in the range of 100 nm–
10 µm, scales with the geometric average of the reaction-diffusion length and the Debye width of
the densely charged inner part of the EDL.

(ii) The flow induced by the interface motion, as well as the equilibrium electroosmosis have
only a minor effect on the wavelength selection. In contrast, the development of the nonequilibrium
electroosmosis regime, related to the formation of the ESC, exerts a major effect resulting in
reduction of the wave number of the fastest-growing mode by more than one order of magnitude.

(iii) For a realistically high range of FCC, taking into account the finite ionic size, yields a
considerable reduction of the threshold for the nonequilibrium electroosmotic instability. Given the
low overall ionic concentration in the vicinity of the concentration minimum, this is a somewhat
unexpected result of the high sensitivity of this threshold to the value of the ESC.
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