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Force balances in strong-field magnetoconvection simulations
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Convection and strong magnetic fields interact in the Sun’s envelope and produce
many magnetic features. In sunspots, the most intense of these structures, magnetic fields
are strong enough to inhibit convection. In this work, we study simulations of magne-
tohydrodynamic Rayleigh-Bénard convection (RBC) using the Dedalus pseudospectral
framework. We perform a suite of two- and three-dimensional simulations in which we
vary the strength of the background magnetic field and the strength of convective driving
(quantified, respectively, by the Chandrasekhar number, Q, and the Rayleigh number,
Ra). We directly measure and report force balances between the Lorentz, buoyancy, and
inertial forces to quantify magnetic constraint. In addition, we measure the solenoidal
portion of the force by removing contributions to the pressure gradient to directly study the
acceleration responsible for modifying the fluid velocity. We find three simulation regimes:
a “constrained” regime where the background magnetic field dominates, a “magnetically
influenced” regime where nonlinear Lorentz and inertial forces balance, and a transitional
regime between the two. We find the constrained regime only becomes turbulent for
large Q � 1010. Magnetic field fluctuations scale as B ∝ RaQ−7/6 in constrained regimes
and scale as B ∝ Ra7/16Q−1/2 in the magnetically influenced regime. The efficiency of
convection quantified by the Nusselt number scales as the expected Nu ∝ Ra in the
constrained regime, but a classical hydrodynamic RBC scaling of Nu ∝ Ra2/7 is found
in the magnetically influenced regime even when the nonlinear Lorentz force heavily
influences dynamics.

DOI: 10.1103/PhysRevFluids.8.093503

I. INTRODUCTION

Convection is ubiquitous in magnetized astrophysical and geophysical environments including
the surface of low-mass stars, cores of high-mass stars, supernova explosions, accretion disks,
and planetary cores [1–5]. In stars, magnetic fields are often generated by a convectively driven
dynamo [6]. These dynamogenerated fields interact with surface convection in stars like the
Sun and produces a rich variety of observable magnetic structures [7–10]. In the quiet (weakly
magnetized) Sun, convective motions sweep and concentrate the magnetic field into cool inter-
granular lanes in a process known as magnetic flux expulsion [11]. This results in locally strong

Published by the American Physical Society under the terms of the Creative Commons Attribution
4.0 International license. Further distribution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

2469-990X/2023/8(9)/093503(22) 093503-1 Published by the American Physical Society

https://orcid.org/0000-0002-4538-7320
https://orcid.org/0000-0002-3433-4733
https://orcid.org/0000-0001-8935-219X
https://orcid.org/0000-0001-8531-6570
https://orcid.org/0000-0002-8902-5030
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.8.093503&domain=pdf&date_stamp=2023-09-14
https://doi.org/10.1103/PhysRevFluids.8.093503
https://creativecommons.org/licenses/by/4.0/


IMOGEN G. CRESSWELL et al.

magnetic flux tubes that act like fiber optic cables, decreasing the optical depth compared to the
surroundings and manifesting as bright points in the dark intergranular lanes [12,13]. The largest
and most intense magnetic flux tubes manifest as sunspots where the magnetic fields are strong
enough to inhibit convection causing them to appear dark [14,15]. Despite this, heat transport in
sunspots is still convective in nature, as observed brightness is too high to be due to radiative
transport alone [16]. Small bright features called umbral dots are a signature of strong-field
magnetoconvection transporting energy inside sunspots [17,18]. Understanding the behavior of
convection in the presence of strong magnetic fields is crucial to understanding these solar magnetic
structures.

Numerical simulations of magnetoconvection provide deeper understanding into the physical
processes involved; either through multiphysics simulations that include the effects of ionization
and radiative transfer [19], or idealized models which neglect these effects in favor of a more
fundamental understanding of magnetoconvection [20,21]. Multiphysics simulations of sunspots
have shown convective energy transport is dominated by narrow, constrained, convective patterns
and identify bright features that can be compared to umbral dot observations [17,22]. Idealized
models in both Boussinesq [11,23] and fully compressible systems [7,24,25] have identified dif-
ferent regimes of convective patterns that depend on magnetic field strength. When the background
field is large, convection is constrained to follow field lines. Reducing the strength of the background
field results in more vigorous convection that can concentrate the magnetic flux to the sides of the
cells.

Strong magnetic fields constrain convection in a manner similar to rapid rotation. “Uncon-
strained” hydrodynamic convection is characterized by flows which are driven by buoyant heating
or cooling and nonlinearly deflected by advection. An invariant external process like planetary
rotation or a strong magnetic field can impose a strong force on the fluid, and when this force is
sufficiently strong, we call the convection “constrained.” In a constrained state, the primary force
balance between advection and buoyancy is altered and the convective flow morphologies change
significantly (e.g., becoming long, skinny columns in rotating convection [26,27]). In rotating
convection, force balances between the inertial, buoyancy, and Coriolis forces lead to distinct
emergent phenomena in the rotationally constrained and unconstrained regimes [26]. Scaling laws
for heat transport (Nusselt number) and turbulence (Reynolds number) have been theoretically de-
rived and experimentally verified for rotating convection [28–30]. However, the parameter space of
magnetoconvection is less well-understood, especially in regimes relevant to astrophysical systems.
Laboratory [31–34] and numerical experiments [23,35,36] have studied flow regimes and devised
scaling laws for heat transport, but are limited to field strengths that are much smaller than those
found in active regions of the Sun. Dynamical regimes of quasistatic magnetoconvection have been
quantified by the scaling of heat transport with the buoyancy forcing, the physical structure, and the
relative sizes of the forces within the momentum equation [37,38]. The quasistatic approximation
assumes the magnetic Reynolds number, Rm, is vanishingly small such that magnetic fluctuations
are negligible compared to the external field [39]. However, in many astrophysical environments,
e.g., stars, this approximation breaks down due to large magnetic Reynolds number [40]. The
regime of nonzero magnetic Reynolds number has been studied frequently in dynamo simulations
where the seed magnetic field is weak [41], but it has not been well-studied for the strong-field
case.

In this work at finite Rm, we generate and analyze a suite of MHD convection simulations under
the Boussinesq approximation. We directly measure the first-order and second-order force balances
present in the simulations and define distinct regimes based on leading-order solenoidal force
balances. The leading-order balance contains the pressure gradient, and we retrieve the second-order
balance by removing the pressure-gradient-like terms to get the solenoidal portions of the forces.
Solenoidal forces can be extracted by taking the curl of the momentum equation or projecting
the force onto its solenoidal part [42,43]. We largely restrict our studies to 2D to span a wider
range of parameter space than would be available in 3D, but we verify our results using select 3D
simulations. Our 2D focus allows us to reach Rayleigh (Ra) numbers of 1012 and Chandrasehkar
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(Q) numbers of 1010, much closer to realistic sunspot values of O(1016)1 than previous studies. We
study a broad swathe of the Ra-Q parameter space to understand how these input parameters change
magnetoconvection regimes.

We measure the degree of magnetic constraint using the ratio of the linear magnetic force
(linearized about the strong background field) and nonlinear magnetic force. We identify three
regimes in parameter space: a magnetically constrained regime dominated by the linear magnetic
force and characterized by highly constrained flows, a magnetically influenced regime where a
balance between nonlinear inertial and Lorentz forces emerges, and a transitional regime where
the linear and nonlinear Lorentz force are in balance. We find that to simultaneously achieve
magnetic constraint and turbulence, simulations require Q � 1010. We find the output magnetic field
strength scales with the Alfvénic Mach number, MA ∝ √

Ra/Q, in both regimes. The traditional
hydrodynamic flow regime is not achieved at high Ra due to the nonlinear Lorentz force. Despite
this, magnetically influenced simulations asymptote to hydrodynamic Nu versus Ra scalings.

This paper is organized as follows. In Sec. II we outline the magnetohydrodynamic equations,
numerical methods, and the simulation details. In Sec. III we discuss the dynamical regimes, force
balances, and scaling laws. In Sec. IV we discuss the implications of this work and outline future
work.

II. EQUATIONS AND METHODOLOGY

We solve the magnetohydrodynamic (MHD) equations nondimensionalized with respect to the
freefall velocity,

∇· u = 0, (1)

∂u
∂t

+ ∇� +
√

Pr

Ra
∇ × ω − T ẑ = u × ω + 1

M2
A

J × B, (2)

∂T

∂t
− 1√

RaPr
∇2T = −(u·∇)T, (3)

∇· A = 0, (4)

∂A
∂t

+ ∇φ +
√

Pr

RaPm2 J = u × B, (5)

where u is the fluid velocity vector, � is the reduced pressure, B the magnetic field, A is the vector
potential and satisfies B = ∇ × A, J = ∇ × B is the current density, φ is the electrostatic potential,
T is temperature, and ω = ∇ × u is the vorticity. We impose a background magnetic field B0ẑ,
where B0 is the strength of the magnetic field. The nondimensional variables Rayleigh number (Ra),
magnetic Prandtl number (Pm), Chandrasekhar number (Q), and Prandtl number (Pr) are defined as

Ra ≡ αg�T L3

νκ
, Pm ≡ ν

η
, Q ≡ B2

0L2

ρνημ0
, and Pr ≡ ν

κ
, (6)

where α is the thermal expansion coefficient, g is the acceleration due to gravity, �T is the
temperature difference across the domain, L is the depth of the domain, ν is the viscosity, κ the

1To estimate the value of Q in a sunspot, we substitute µ0 = 1 in CGS units and eliminate viscosity in

Eq. (6), using Pm to give Q = B2
0L2

(ρη2 )
Pm. Using B0 = 3000G and L = 5 × 109 cm from Ref. [44], Pm ≈10−5

and η ≈ 106cm2/s from Ref. [45], and ρ0 ≈ 1.74 × 10−7g cm−3 from Ref. [46], we estimate Q ≈ 1.5 × 1016

in a sunspot.
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thermal diffusivity, and η the magnetic resistivity. The square Alfvénic Mach number is

M2
A = u2

ff

v2
A

= RaPm

Q Pr
. (7)

We hold Pr = 0.25 and Pm = 0.5 fixed such that ξ = Pr/Pm < 1 causing the onset of convection
to be oscillatory, which is the relevant regime for the solar photosphere [47].

A. Force balances and solenoidal forces

To study the primary and secondary force balances, we measure each of the acceleration terms in
the momentum equation. Under the Boussinesq approximation, ρ0 is constant, so acceleration is the
same as the forces. Separating the Lorentz term into its linear and nonlinear components, we define
the momentum equation in terms of the forces,

∂u
∂t

+ ∇� = −
√

Pr

Ra
∇ × ω

︸ ︷︷ ︸
fv

+ T ẑ
︸︷︷︸

fb

+ 1

M2
A

J × B0︸ ︷︷ ︸
fml

+ u × ω

︸ ︷︷ ︸
fi

+ 1

M2
A

J × B1︸ ︷︷ ︸
fmn

, (8)

where fv is the viscous force, fb is the buoyancy force, fml is the linear magnetic force, fi is the
inertial force, and fmn is the nonlinear magnetic force. The Lorentz force is split into a linear
(fml = 1

M2
A
J × B0) and a nonlinear (fmn = 1

M2
A
J × B1) component, where B1 is the perturbation

around the background field B0 = 1ẑ. The force balances provide insight into the dynamics of the
fluid. When convection is constrained by a strong background magnetic field or global rotation, the
first-order force balance is expected to be between the constraining force and the pressure gradient.
For example, in constrained rotating convection, the primary geostrophic balance is between the
Coriolis force and the pressure gradient [26], while for constrained magnetoconvection it is between
the magnetic (Lorentz) force and the pressure gradient. In an incompressible flow, any portion of
the force that has a divergence must be immediately balanced by pressure to enforce the divergence
constraint (∇ · u = 0). The gradient component of each force only contributes to the pressure
gradient, thus is not dynamically relevant [42,43]. By removing this first-order balance involving
the pressure gradient, the force balance that directly affects the dynamics can be identified.

In this work, we break these forces up into portions that are solenoidal (divergence-free) and
those that are not. Dividing the momentum equation by density allows the forces to be written as
acceleration, thus Eq. (8) becomes

∂t u + ∇� = av + ab + aml + ai + amn =
∑

j

aj =
∑

j

aj,S + aj,NS, (9)

where we have split aj = aj,S + aj,NS into its solenoidal (aj,S) and nonsolenoidal (aj,NS) components.
Taking the divergence of Eq. (9) gives

∂t (∇· u) + ∇2� =
∑

j

∇· aj,S + ∇· aj,NS ⇒ ∇2� =
∑

j

∇· aj,NS, (10)

where we have used the incompressibility constraint (∇· u = 0) and that the solenoidal portion of
the acceleration is divergenceless (∇· a j,S = 0). Thus, Eq. (10) shows that the pressure gradient
is composed of the nonsolenoidal portion of the acceleration. Therefore, the solenoidal forces are
directly responsible for the acceleration of the fluid,

∂t u =
∑

j

aj,S. (11)
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We decompose the pressure into partial pressures (as in Eq. (4) of Ref. [48]), and remove the
pressure gradient portion of each force to retrieve the solenoidal forces,

a = −sv + sb + sml + si + smn. (12)

Equation (12) is the statement that the solenoidal forces are the portions of each force that
directly contribute to the fluid acceleration. The solenoidal forces are analogous to the torques
in the vorticity equation, because both have the nonsolenoidal portion of the force removed by
construction. Since the nonsolenoidal portion can be expressed as a pressure gradient, and the curl
of a gradient is zero, the only component left in the vorticity equation is the solenoidal portion. We
choose to examine the solenoidal forces in this work because they lack the additional complexity
introduced by taking a curl, allowing us to easily disentangle force components aligned with the
background field from those which are not. A more detailed comparison between the two methods
can be found in Ref. [42]. The nonsolenoidal portion of the forces are not dynamically relevant due
to the incompressibility constraint, thus this decomposition only holds for Boussinesq fluids. While
it may be possible to decompose the forces in this way for low Mach number compressible flows
(e.g., in the anelastic regime where an alternate divergence constant holds), this method does not
work when solving the fully compressible continuity equation. See Appendix A for more details on
how the solenoidal forces are formed and how they relate to the second-order balance. We output
the volume-averaged magnitude of the vector force at each timestep, then report the time-averaged
mean once the simulation has reached a steady state. We average over the last half of the simulation
by simulation time, which only includes data in the statistically stationary state. We run most
simulations for many hundreds of freefall times, so our averages are also taken over many hundreds
of freefall times. Due to the computational expense of our most extreme simulations (for Q = 1010),
that simulation was only evolved for 100 freefall times, so we average over 50 freefall times, and
verified by eye that the simulation was in a statistically stationary state and that the computed mean
described the data well.

B. Numerics and parameter space

We evolve Eqs. (1)–(5) in time using the pseudospectral code Dedalus [49] using a third-order,
four-step, implicit-explicit Runge-Kutta timestepping scheme RK443 [50]. We control our timestep
size using both a velocity CFL and a magnetic CFL due to the presence of Alfvén waves which can
arise in the nonlinear Lorentz force, details of which can be found in Appendix B. The simulation
is bounded above and below by impenetrable, no-slip, fixed temperature, magnetically conducting
boundaries. Magnetically conducting boundary conditions require Bz = Jy = Jx = 0. In the vector
potential formulation setting Ax = Ay = 0 will enforce Bz = 0. This results in the current density
boundary conditions being Jx = −∂xφ and Jy = −∂yφ, thus we set φ = 0. The final set of boundary
conditions is

w = u = T1 = Ax = Ay = φ = 0 at z = {0, Lz}, (13)

while the horizontal domain is periodic. Variables are represented as spectral expansions of nx

(and ny in 3D) horizontal Fourier coefficients and nz vertical Chebyshev coefficients. To avoid
aliasing errors, we use the 3/2 dealiasing rule in all directions. We add random noise temperature
perturbations of magnitude 10−6 to the background temperature field to start the simulation.

We performed a linear stability analysis using eigentools [51]. The results of this analysis are
shown in Fig. 1, where the critical Rayleigh number is Racrit = π2Q. The wave number of the fastest
growing linearly unstable convective mode scales as kx ∝ Q1/6 for Q � 1, which is consistent with
Refs. [47,52]. This means that the horizontal scale of convection decreases with increasing magnetic
field strength and convective cells become narrower [23].

We set the domain aspect ratio � = Lx/Lz = 5 × 2π
kx

(and Ly/Lz = 5 × 2π
ky

in 3D), which is five

times larger than the onset length scale ( 2π
kx

) and so should allow the convection to develop multiple
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FIG. 1. Plots showing where each simulation lies in parameter space (left) and the aspect ratio dependency
on Q (right). Each simulation studied in this work is denoted as a circular marker in the Ra vs Q parameter
space, the diamond markers represent simulations shown in Figs. 2 and 4, and starred markers are 3D runs.
The line Rac = π 2Q is plotted in black; the gray shaded area below the line is linearly stable to convective
instabilities. The aspect ratio decreases with Q resulting in tall skinny boxes in the high-Q limit. The red
dashed line represents the expected high-Q scaling of � ∝ Q−1/6.

structures on its preferred length scale. This is shown in Fig. 1, where the aspect ratio � ∝ Q−1/6.
We observe the onset of convection is oscillatory, as expected [53].

Figure 1 shows the span of parameter space that we studied. The colorbar denotes the super-
criticality of a given (Ra, Q). Full details of the simulation parameters, resolution, and aspect
ratio can be found in Appendix C and the Supplemental Material [54]. Our simulations span from
Ra = 1.2 × 105 at Q = 104 to Ra = 1012 at Q = 1010 in 2D, and we study select 3D runs at Q = 106

with a Ra range of 1.2 × 107 to 109. The scripts used to run these simulations are publicly available
at [55].

III. RESULTS

A. Dynamical regimes

Figure 2 shows the vertical magnetic field in different dynamical regimes for both 2D (top) and
3D (bottom) simulations. The left visualizations are from simulations where the Rayleigh number
is just above critical, thus the convective plumes follow the vertical background magnetic field lines
with no deviation or turbulence. As the Rayleigh number is increased the system becomes more
turbulent and less constrained by the background field, smaller scales emerge, and the magnetic field
concentrates along upflows and downflows. This is seen in the right-hand-side visualizations where
the high-supercriticality convective driving is sufficient to sweep the field lines to the convective
cell boundaries. Boussinesq systems exhibit an up-down symmetry, which means the pattern of
convective cells at the top and bottom boundaries are complementary [23]. Strong regions of positive
vertical magnetic field are found in the plume launching sites (hot regions on the lower boundary
or cold regions on the upper boundary). As these plumes buoyantly rise or fall, the magnetic field
becomes less intense and changes sign before impacting on the far boundary.

In nature, convective flows can be simultaneously highly magnetically constrained and more
turbulent than those shown on the left side of Fig. 2, so our goal is to determine where in parameter
space simulations are both constrained and turbulent. We measure the degree of magnetic constraint
using the ratio of the linear magnetic force fml and the nonlinear magnetic force fmn. When the
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FIG. 2. The vertical component of the full magnetic field (B0 + B1) is visualized for select 2D (top) and
3D (bottom) simulations. The 2D simulations are at Q = 109 with Ra = 3 × 1010 (left) and Ra = 3.55 × 1011

(right). The 3D simulations are at Q = 106 with Ra = 3 × 107 (left) and Ra = 109 (right). The characteristic
magnetic Reynolds numbers Rm of the simulations are as follows: 3730.4 (top left), 21065.5 (top right), 131.6
(bottom left), and 2641.6 (bottom right). As the Rayleigh number increases, flows become more turbulent and
degree of constraint decreases. At low supercriticality (left), magnetic field lines and flows are columnated
along the background field. At high supercriticality (right), the magnetic field lines are swept and concentrated
by the flow.

linear Lorentz force is dominant (fml > fmn), the flow is constrained to follow the field lines (Fig. 2,
left) thus we call this regime the constrained regime. When the nonlinear Lorentz force dominates
(fmn > fml), depicted on the right of Fig. 2, the system is not constrained but exhibits turbulent
flow that is distinctly different from hydrodynamical Rayleigh-Bernard convection (RBC). Thus,
we call this regime magnetically influenced, because magnetic nonlinearities appreciably influence
the observed dynamics. We measured the ratio of the vertical velocity and the horizontal velocity
< w > / < u > in the bulk for both regimes. We found that the average ratio was approximately
an order of magnitude higher in the constrained regime (Fig. 2, left) where it was 98.4, than in
the magnetically influenced regime (Fig. 2, right) where it was 18.2, indicating that more of the
flow is in the direction of the imposed field in the constrained regime. We measured the average
angle between the velocity vectors, tan−1(|u|/|w|) in the bulk for the constrained and magnetically
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FIG. 3. Parameter space maps of supercriticality vs Q where color denotes (left) the ratio of the linear
magnetic force to the nonlinear magnetic force, and (right) the ratio of the inertial force to the viscous force. The
circles are simulation data and the background color is an interpolation of the data. As Q increases the range of
supercriticality for which the system is magnetically constrained (orange, left) increases in size. Furthermore,
as Q increases, simulations become turbulent (yellow, right) at a lower supercriticality.

influenced regimes. In the constrained regime, the average angle was closer to 0◦ inclination from
the vertical, and thus more aligned with the imposed field than the magnetically influenced regime.

We find that the transition from the constrained to magnetically influenced regime depends on
both the Chandrasekhar number, Q, and the Rayleigh number, Ra. Figure 3 demonstrates that the
range of supercriticalities for which a simulation is magnetically constrained increases with the
Chandrasekhar number, Q. The color scale represents the degree of magnetic constraint, fmn/fml
(left plot) with the orange band being constrained (fml dominates) and the purple band being
magnetically influenced (fmn dominates). The white band represents simulations where fml ∼ fmn,
i.e., the transition point between the regimes. We see a clear trend where the supercriticality at
which a simulation transitions from constrained (orange) to influenced (purple) increases with Q.
The supercriticality at which the transition occurs increases with Q is given by Ra/Rac = 0.1Q1/4,
shown by the gray dashed line in Fig. 3.

Interestingly, the simulations in the far right of the orange band are also relatively turbulent. This
is shown on the right-hand-side plot, where the color bar represents the ratio of the inertial force fi
and the viscous force fv, which is a direct measure of the Reynolds number. Yellow regions of this
plot are turbulent and blue regions are laminar. The Reynolds number increases both with increasing
supercriticality and increasing Q; the highest Reynolds number simulation in our study coincides
with the magnetically constrained regime at Q = 1010 and Ra/Rac ≈ 5. At this supercriticality for
smaller Q, the convection is no longer constrained or turbulent. Convection can be achieved at a large
Q and moderate supercriticality. Therefore, if it were possible to simulate values of Q comparable
to those in sunspots (where Q ≈ 1016), there would be a turbulent constrained regime. This plot also
shows that supercriticality is not a good measure of constraint, because the regime transition does
not stay constant as Q increases. The high Re flows at large Q look quite different from those in
turbulent hydrodynamical RBC, because the ohmic dissipation strongly laminarizes the flow. While
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FIG. 4. Shown are the volume-averaged magnitudes of the full forces (left) and the solenoidal portions
of the forces (right) as a function of the supercriticality for Q = 107. The pressure gradient (blue crosses,
left) balances the linear magnetic force (green circles) at low supercriticality and the nonlinear magnetic
force (orange squares) at higher supercriticalities. For the solenoidal forces (right), at low supercriticality,
the linear magnetic force (green circle) balances the buoyancy force (yellow crosses). The nonlinear magnetic
force (orange square) and inertial force (purple diamonds) increase with increasing supercriticality. At high
supercriticalities a balance between the nonlinear magnetic force and the inertial force occurs. The color change
from green to orange shows the point where the nonlinear Lorentz force becomes dominant.

plumes are not strictly confined to the field lines, they are still guided along the vertical field, and
there are no small scale vortices (e.g., Ref. [56], Fig. 2).

B. Force balances

We demonstrated in Figs. 2 and 3 that increasing Ra at constant Q changes the leading force
balance and thus the system’s magnetic constraint or turbulence. We examine the solenoidal force
balances as a function of supercriticality at Q = 107 in Fig. 4, which shows the volume averaged
value of the inertial (purple diamonds), nonlinear magnetic (orange squares), linear magnetic (green
circles), viscous (pink stars), and buoyancy (yellow crosses) forces for both the full forces (left)
and the solenoidal forces (right). The full force plot also includes the pressure gradient (blue
crosses) to demonstrate the first-order balances. The pressure gradient is always balanced by the
Lorentz force, with the first-order balance being the linear portion in the magnetically constrained
regime and the nonlinear portion in the magnetically influenced regime. Focusing on the right
plot, at low supercriticality, the solenoidal portion of the linear magnetic force (green circles)
dominates and is initially in balance with the buoyancy solenoidal force (yellow crosses). At
supercriticalities Ra/Rac � 10, shown by the orange shaded region in Fig. 4, the nonlinear magnetic
force dominates and comes into balance with the inertial (purple diamonds) force. The green shaded
region where the linear magnetic solenoidal force dominates is the magnetically constrained regime,
while the orange shaded region is where the nonlinear magnetic solenoidal force dominates and is
the magnetically influenced regime. There is also a transitional regime where all the forces (other
than viscous) are roughly in balance. At the highest supercriticality, we observe the force balance
smn ≈ si > sb, which is very different from sb ≈ si in standard bulk dynamics in Rayleigh Bérnard
convection (RBC). Even when it is not constrained by the background field, the nonlinear nature of
magnetoconvection is fundamentally different from hydrodynamical RBC. The nonlinear feedback
between the inertial and Lorentz forces causes this, and this may be reminiscent of dynamo action,
though we note that dynamos cannot occur in 2D or even in 3D when you have a DC field [15].
The presence of this fully nonlinear force balance is why we refer to this regime as “magnetically
influenced” and not “magnetically unconstrained,” because magnetism is still very much important
even if the initial background field does not dominate the dynamics. We find that the trend with
increasing Ra changes more drastically for fml than other forces when comparing the full forces
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FIG. 5. Shown are the volume-averaged magnitudes of the solenoidal portions of the forces normalized by
the magnitude of the solenoidal buoyancy force as a function of the supercriticality at Q = 106 for both 2D
(left) and 3D (right). The supercritiality at which the transition from constrained to magnetically influenced
occurs is lower in 3D, and the linear Lorentz force increases in magnitude less steeply.

(Fig. 4, left) versus the solenoidal forces (right), and suspect this is due to its large contribu-
tion to the pressure gradient. Interestingly, the transition from the constrained regime appears to
occur at Ra/Rac � 6 when using the full forces, which is slightly lower than in the solenoidal
forces.

We ran select three-dimensional simulations at Q = 106 for comparison with our 2D results.
We compare the solenoidal force balance from 2D (left) and 3D (right) simulations in Fig 5. We
find the same pattern in 2D and 3D; the linear magnetic force dominates for low supercriticality
with flow structures being laminar and constrained, and as supercriticality is increased the nonlinear
force becomes dominant, and flow structures become more turbulent. The transition between these
regimes occurs at lower supercriticality in 3D than in 2D. The nonlinear Lorentz (orange squares)
and inertial (purple diamonds) forces behave similarly both in 2D and 3D, however the linear
Lorentz force increases in magnitude less steeply in 3D than in 2D. The linear Lorentz force is
a measure of horizontal currents, and this discrepancy may be due to the different morphology of
current sheets surrounding the upflows and downflows (regions of strong Bz) in 3D (where they are
arbitrary two-dimensional manifolds) than in 2D (where they are planes). While the forces appear
to behave in a similar manner, we acknowledge that RBC differs in 2D and 3D, especially scaling
laws [57], and thus we focus our remaining discussion on the 2D cases.

The change in the dominant force from linear magnetic to nonlinear magnetic can be explained
using dimensional analysis. Just above onset the system is very constrained, therefore the linear
magnetic force dominates. This is because the linear magnetic force scales as

sml = 1

M2
A

J × ẑ = 1

M2
A

(∇ × B) × ẑ ≈ 1

M2
A

B

l
. (14)

Conversely, the nonlinear magnetic force scales as

smn = 1

M2
A

J × B = 1

M2
A

(∇ × B) × B ≈ 1

M2
A

B2

l
, (15)

which differs from the linear magnetic force by a factor of B. When the magnetic field fluctuations
are smaller than 1 (the nondimensional magnitude of the background field), as is the case when the
system is constrained, then smn/sml ∼ B < 1. As Ra is increased, the degree of constraint decreases,
and the system transitions from being constrained to being magnetically influenced because B � 1.

Examining the solenoidal force balances across the whole parameter space allows different
regimes to be identified. While Fig. 4 shows how the solenoidal force balances change for fixed Q,
Fig. 6 shows the solenoidal force balances change for all values of Q. Shown are the linear (left) and
nonlinear (right) magnetic solenoidal forces versus the buoyancy solenoidal force, both normalized

093503-10



FORCE BALANCES IN STRONG-FIELD …

FIG. 6. Shown is the solenoidal force balance parameter space, depicting how the solenoidal linear mag-
netic force sml (left) and solenoidal nonlinear magnetic force smn (right) scale vs the solenoidal buoyancy force
sb; both axes are normalized by the solenoidal inertial force si. The color scale shows the solenoidal Reynolds
number where the yellower points are more turbulent, such that blue points are in the constrained regime while
yellow points are in the magnetically influenced regime. The green line shows where sm = sb, the orange line
shows where sm = si, and the orange band shows where smn ≈ si.

by the inertial solenoidal force. The color denotes the solenoidal Reynolds number (si/sv), which is
a measure of turbulence, where the yellower points are more turbulent. The color scale here shows
a maximum value of the solenoidal Reynolds number to be 101.5, which is orders of magnitude
lower than the traditionally measured bulk Reynolds number (uL/ν) as seen in Fig. 7 (right). This
also explains why the flow dynamics appear more laminar compared to turbulent RBC at similar
traditional Re values.

In Fig. 6 the green line shows where the magnetic force (sm) balances the buoyancy force (sb).
The top right corner of each plot is where the laminar magnetically constrained regime lies. In this
regime, the linear magnetic force (left plot) balance follows this relationship closely allowing the
following force balance to be defined,

sml

si
≈ sb

si
−→ sml ≈ sb � si, (16)

the linear magnetic force balances the buoyancy force, and inertial forces are small.
The orange horizontal line shows where the magnetic force equals the inertial force. The

linear Lorentz force (left) continues to roughly balance the buoyancy force (green line) even as
simulations transition to the magnetically constrained regime and become more turbulent (yellow).
The inertial force now becomes large in this regime, especially for large Q; instead of scaling
with the buoyancy force, the nonlinear magnetic force (right) comes into balance with the inertial
force which corresponds to the population of simulations in the orange band on the right-hand plot.
Since Ra must be large to overcome the linear Lorentz force for high Q, this results in the inertial
force being large once the system transitions to the magnetically influenced regime. In Fig. 6 it can
be seen that the nonlinear magnetic force (right, circles) is larger than the linear magnetic force (left,
squares) with smn/si ≈ 1 and smn > sb. Therefore, in the magnetically influenced regime the force
balance is

smn ≈ si > sb, (17)

which is quite different from the expected hydrodynamical balance sb ≈ si. This is also shown in
Fig. 4 for one Q, while in Fig. 6 it is shown for a full suite at many different Q’s.
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FIG. 7. Scalings derived for the vertical magnetic field Bz (top), the efficiency of heat transport Nusselt
number Nu (bottom, left), and the Reynolds number Re (bottom, right). The constrained systems (orange) are
characterized by a scaling of Bz ∝ M2

AQ1/6 (top, left), Nu ∝ Ra, and Re ∝ Ra, both shown by the orange dashed
lines. As simulations become magnetically influenced (purple), they follow the classical RBC scaling where
the magnetic field scales as Bz ∝ MARa−1/16 (top, right), Nu ∝ Ra2/7, and have a Reynolds number scaling of
Re = 1.42 Ra0.386.

There does exist a regime where all four forces are roughly in balance. Here, smn ≈ sml ≈ si ≈
sb, and we call this regime the transitional regime. This is reminiscent of—but still different from—
the coriolis-archimedian-inertial (CAI) triple balance seen in rotationally constrained convection
where si ≈ sb ≈ sc (where sc is the coriolis force [26]), the difference is due to the presence of
the dominant nonlinear magnetic force. The description of force balances in transitional regimes
remains challenging even for rotationally constrained convection [26]; deducing the proper scaling
laws within this regime is beyond the scope of this work.

C. Scaling laws

Since the solenoidal forces describe the acceleration felt by the fluid, the previously defined
balances can be used to find how parameters scale in each regime. Taking the balance defined in
Eq. (16) we perform dimensional analysis which gives us an estimate for the relationship between
input parameters and the evolved variables.

We expect strong-field magnetoconvection to behave like rapidly rotating convection where an
unstable mean temperature gradient is sustained [see, e.g., Eq. (26) of Ref. [26]]. However, in
our simulations we find that the bulk fluid is generally isothermalized by the convection, so we

093503-12



FORCE BALANCES IN STRONG-FIELD …

approximate the buoyancy force as

sb = T1 ≈ 1, (18)

where we assume the temperature fluctuations have a magnitude T1 ≈ 1 which is the nondimen-
sional temperature difference between our fixed temperature boundary conditions. Substituting this
and the definition of the linear magnetic force [Eq. (14)] into Eq. (16) gives

sml = 1

M2
A

B

l
= T1 = sb ≈ 1 ⇒ B ≈ M2

Al, (19)

meaning the magnetic field fluctuations scale with the Alfvénic Mach number multiplied by the
representative length scale. We measured a length scale using |u|/|ω| in the bulk of our magnetically
constrained regime domains and found that � ≈ 0.3Q−1/6 Ra

Rac

−1/4
describes our simulation data well,

so in the small supercriticality limit where flows are strongly constrained the Q−1/6 approximation
here is valid. Assuming l ∝ Q−1/6, we arrive at

B ≈ M2
AQ−1/6 (20)

for the magnetically constrained regime. In Fig. 7 (top left) we show the scaling for the vertical
magnetic field Bz in the magnetically constrained regime. The color bar shows the ratio of the
nonlinear magnetic force to the linear magnetic force with yellow points being in the constrained
regime and purple points being in the magnetically influenced regime. We see that the derived
relationship holds well for strongly constrained points, but soon deviates as the system becomes
less constrained. This is expected, as the linear magnetic force and buoyancy force are only truly in
balance for very low supercriticality as seen in Fig. 6.

In the magnetically influenced regime, we take Eq. (17) and again perform dimensional analysis
using the definition for the nonlinear magnetic force defined in Eq. (15),

si ≈ smn ⇒ u2

l
≈ 1

M2
A

B2

l
⇒ B ≈

√
uM2

A, (21)

which implies that the magnetic field sets the velocity magnitude. To find how the velocity scales,
we assume a balance between magnetic resivity and induction. We balance the solenoidal terms in
the induction equation [Eq. (5)], √

Pr

RaPm2 J ≈ u × B. (22)

Using dimensional analysis on the current gives√
Pr

RaPm2

B
�

≈ |u||B| ⇒ u ≈ 1

�

√
Pr

RaPm2 . (23)

Empirically, we measure � ∝ Ra−3/8 in the magnetically influenced regime. We see that the
turbulent length scale of flows follows a different scaling than the onset scaling, as in rotating
convection [58], but a detailed derivation of this length scale is beyond the scope of the present
study. Thus, at fixed Pr and Pm we find the velocity scales as u ≈ Ra−1/8. Substituting this into
Eq. (21), we find

Bz ≈ MARa−1/16 (24)

for the magnetically influenced regime. This scaling is shown in Fig. 7 (top right) where we find the
magnetically influenced points (purple) fit the derived relationship well.

The efficiency of convection is typically measured by the Nusselt number (Nu),

Nu = 1 + (Ra Pr)1/2

〈
wT

〈−�T 〉
〉
, (25)
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TABLE I. Table containing scaling equations for each Q in the magnetically constrained regimes.

Q αNuγ βReχ

106 α = 1.1 × 10−8 γ = 1.17 β = 2.29 × 10−10 χ = 1.65
107 α = 5.54 × 10−8 γ = 0.962 β = 4.95 × 10−8 χ = 1.23
108 α = 1.68 × 10−9 γ = 1.17 β = 1.07 × 10−6 χ = 1.00
109 α = 4.15 × 10−10 γ = 1.04 β = 2.38 × 10−6 χ = 0.91
1010 α = 1.04 × 10−8 γ = 0.815 β = 8.41 × 10−7 χ = 0.895

where T = T0 + T1 and 〈·〉 represents a volume average. Convective efficiency is determined by
where in the domain (boundary or bulk) the thermal and viscous energy is dissipated [57]. We
plot Nu versus Ra in Fig. 7 (bottom left) where the color scale shows the degree of constraint in
the system according to the ratio of the nonlinear to linear portions of the Lorentz force. We find
that in the magnetically constrained regime (orange points), Nu increases rapidly with increasing
supercriticality and has a Nu ∝ Ra dependency, shown by the orange dashed lines. Table I shows
scaling exponents for Nu and Re for each Q in the magnetically constrained regime. Numerical
simulations in the quasistatic regime by Yan et al. [37] and scaling law arguments presented by
Plumbley and Julien [29] also confirm this Nu ∝ Ra in regimes with large Q and low supercrit-
icality. Interestingly, once the nonlinear magnetic force strongly dominates, the classical RBC
scaling of Nu ∝ Ra2/7 emerges. A fit to Nu versus Ra for simulations with fmn/ fml �

√
2 yields

Nu = (0.087 ± 0.04)Ra0.272±0.008. We choose these simulations as this corresponds to a fluctuating
magnetic field energy that is two times greater than the background magnetic field energy, meaning
these simulations sit comfortably in the magnetically influenced regime. As shown in Figs. 4 and
6, the magnetically influenced regime (purple points) have a very different force balance to that
of traditional RBC. Despite this, these points follow the same scaling as hydrodynamical RBC.
Yan et al. [37] also finds that Nu tends to this scaling for the most turbulent of the simulations in
their parameter suite. A similar result was found by Julien et al. [59] for turbulent rapidly rotating
systems, where an increase in Ra lead to a scaling of Nu = (0.144 ± 0.006)Ra0.288±0.003, the larger
prefactor is due to a difference in Pr. At higher Ra these constrained rapidly rotating systems
transition to turbulence and behave much like the magnetically influenced regime we have discussed.
The emergence of the hydrodynamic RBC scaling suggests that heat transport is dominated in the
boundary layer by sheared regions between plume sites [60,61].

We show how the traditional Reynolds number, Re = √
Ra/ Pr|u|, scales with Ra in Fig. 7 (bot-

tom right). We find that Re in the magnetically constrained regime (orange points) increases rapidly
with Ra resulting in a Re ∝ Ra scaling law. In the magnetically influenced regime (purple points) we
find the scaling law Re = (1.42 ± 0.027)Re0.386±0.008. This is consistent with our measured velocity
scaling as substituting u ≈ Ra−1/8 into Re = u

√
Ra/Pr gives Re ∝ Ra−3/8.

IV. DISCUSSION AND FUTURE WORK

In this work, we present and analyze a suite of 2D and 3D simulations of strong-field, Rayleigh-
Bénard magnetoconvection. Our 2D suite extends to a state-of-the-art value of Q = 1010; for
comparison, previous 3D simulations have achieved a maximal Q = 108 under the quasistatic
approximation [37] and Q = 106 with nonlinear Lorentz forces [23]. The contributing forces
in the momentum equation were measured directly. We derived and solved equations for the
solenoidal forces, which allowed us to directly measure the acceleration that is felt by the fluid. We
demonstrated that at low supercriticality the flow is laminar and dominated by the linear magnetic
force, which is in balance with the buoyancy force. As supercriticality is increased the dominant
force balance changes, with the inertial and nonlinear magnetic force both becoming dynamically
important. We find a similar result in 3D, with the exception that the transition from constrained
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to magnetically influenced occurs at a lower supercriticality. We directly measure the degree of
constraint on the system as determined by the ratio of the linear magnetic force and the nonlinear
magnetic force. The range of supercriticalities for which the constrained regime exists increases
with Q. Thus, as Q approaches larger values, there exists a regime where the flow is constrained but
also turbulent. We categorized three regimes based on the leading-order solenoidal force balance:

(1) The constrained regime characterized by laminar flows following the field lines, where the
linear magnetic force and the buoyancy force are in balance sml ≈ sb.

(2) The transitional regime which is the most dynamically interesting with constrained yet
turbulent convection, where the force balance is a complicated relationship between all nonviscous
forces sml ≈ smn ≈ si ≈ sb.

(3) The magnetically influenced regime which is reminiscent of hydrodynamical RBC but
displays different dynamics due to the large nonlinear Lorentz force balancing the inertial force
smn ≈ si.

We argue that this differs greatly from the analogous problem of rotational convection described
in, e.g., Ref. [26] due to the nonlinear magnetic force remaining dominant even as the system
becomes turbulent. A similar result has been found under QSA where extremely large Rayleigh
numbers would be required for the Lorentz force to play a negligible role [37]. Future work should
further explore appropriate scaling laws to characterize this regime.

In the magnetically constrained regime, the magnetic field fluctuations scale as B ∝ M2
AQ−1/6,

while in the magnetically influenced regime they scale roughly as B ∝
√

M2
AQ−1/6 . In the con-

strained regime, the Nusselt number increases as Nu ∝ Ra, consistent with previous work [29,37].
In the magnetically constrained regime, a classical hydrodynamic scaling of Nu ∝ Ra2/7 is seen,
despite drastically different dynamics from RBC. The derived scaling laws work well for the con-
strained regime, but the magnetically influenced regime requires a deeper theoretical exploration,
which is beyond the scope of this work.

This work demonstrates the challenge of simulating regimes found in magnetically constrained
astrophysical systems. We have shown that strong-field magnetoconvection is not analogous to
rotating convection when the quasistatic approximation is relaxed. We do not find a regime in our
simulations which resembles hydrodynamical RBC due to the dominance of the nonlinear Lorentz
force. While we simulated high Q regimes, we were still orders of magnitude away from those in the
most magnetized solar environments like sunspots. While many open questions remain, our results
suggest that state-of-the-art simulations at high-Q and moderate supercriticality should reproduce
the constrained-but-turbulent regime of natural environments like sunspots.
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APPENDIX A: DERIVATION OF SOLENOIDAL FORCES

As discussed in Sec. II, solenoidal forces are the divergence free portion of forces and con-
tribute directly to the fluid acceleration. It can be shown that the pressure gradient is set by the
nonsolenoidal forces. Dividing the momentum equation by density allows the forces to be written as
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accelerations. Acceleration can be decomposed into the solenoidal and nonsolenoidal components,

�a = �aS + �aNS. (A1)

Taking the divergence gives

∇ · �a = ∇ · �aS + ∇ · �aNS = ∇· �aNS, (A2)

since, by definition, ∇ · �aS = 0. Equation (8) can be written as

∂t �u + ∇� =
∑

i

�ai. (A3)

Taking the divergence of this, knowing that the fluid is incompressible (∇ · u = 0) gives

∇2� =
∑

i

∇ · �ai, (A4)

which, due to Eq. (A2), gives

∇2� =
∑

i

∇· �ai,NS. (A5)

This means that the pressure gradient is set by the nonsolenoidal part of the acceleration. Thus,

∂t �u =
∑

i

�ai,S, (A6)

the solenoidal forces are equal to the acceleration of the fluid and directly control the dynamics.
Equation (A5) can be decomposed into a partial pressure for each force i,

∇2�i = ∇ · �ai,NS, (A7)

which when solved with impenetrable, no-slip, fixed temperature, magnetically conducting bound-
ary conditions,

fi = ∂z�i at z = {0, Lz} (A8)

gives �aNS for each force.
The total acceleration �a is measured directly, so subtracting the nonsolenoidal acceleration �aNS

gives

�aS = �a − �aNS. (A9)

APPENDIX B: DERIVATION OF MAGNETIC CFL CONDITION

Here, we derive a new CFL condition by finding a frequency associated with the nonlinear
Lorentz force. This is done by finding the dispersion relation for the linearized momentum equation,
temperature equation, and the magnetic induction equation (in its original form). We begin with the
linearized momentum, temperature, and induction equation in the freefall nondimensionalisation,

∂u
∂t

+ ∇P − T1ẑ − 1

M2
A

J × B0ẑ = 0, (B1)

∂B
∂t

− ∇ × (u × B) = 0, (B2)

∂T
∂t

− (u · ∇)T0 = 0, (B3)

∇ · u = 0, (B4)

J − ∇ × B = 0, (B5)
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where u = (u, v,w), MA is the freefall Alfvénic Mach number, T0 is the background temperature
field, and T1 is the perturbations about the background.

Substituting ∂t = iω and ∇ = i(kxx̂ + kyŷ + kzẑ) gives

iωu + ikxP − 1

M2
A

JyB0 = 0, (B6)

iωv + ikyP + 1

M2
A

JxB0 = 0, (B7)

iωw + ikzP − T = 0, (B8)

iωBx − ikzB0u = 0, (B9)

iωBy − ikzB0v = 0, (B10)

iωBz + ikxB0u + ikyB0v = 0, (B11)

iωT − wT0z = 0, (B12)

ikxu + ikyv + ikzw = 0, (B13)

Jx + ikzBy − ikyBz = 0, (B14)

Jy + ikxBz − ikzBx = 0, (B15)

Jz + ikyBx − ikxBy = 0, (B16)

where Eqs. (B6)–(B16) have been split into each directional component.
The dispersion relation is obtained by constructing a matrix system Āx = 0, where x is the vector

of state variables, taking Eqs. (B6)– (B16) and setting the determinant equal to zero, Det(Ā) = 0.
This gives

ω4 + ω2
(
2 f 2

A − ξN2
) − f 2

AξN2 + f 4
A = 0, (B17)

where the Brunt-Vaisala frequency is N2 = T0z, and ξ = k⊥/k2, and the Alfvénic frequency fA =
B0kz/MA. This is the frequency associated with waves propagating along the background magnetic
field; our timesteps are constrained by waves propagating along the instantaneous fluctuations
around the background magnetic field. We estimate the frequency of these waves by replacing B0

with the magnitude of these perturbations |B|. So the characteristic frequency for the magnetic field
fluctuations is

fA = |B|kz

MA
= |B|kz

√
QPr

Ra Pm
. (B18)

To implement this in Dedalus, a timestep was calculated for both the magnetic CFL and traditional
advective CFL and the smallest of the two was used.

APPENDIX C: TABLES OF RUNS

Tables II–IX give details of the simulation suite, each table is at a fixed Q and �. As Q and
Ra get larger, the simulations become more difficult, so we use a method called bootstrapping. We
take the steady state of a lower Ra as initial conditions and increase the Ra. This skips the onset of
convection, which is often the most difficult part of the simulation to resolve.
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TABLE II. Run information for all runs at Q = 104, � = 3.63.

Ra Nx × Nz Bootstrapped sml smn si sb sv Nu Re Brms

2.4 × 105 128 × 256 — 0.06 0.033 0.0034 0.075 0.019 2.46 64.1 0.67
3 × 105 128 × 256 — 0.064 0.047 0.0089 0.079 0.021 3.13 89.0 0.84
3.55 × 105 128 × 256 — 0.068 0.054 0.0277 0.07 0.023 3.35 114.7 0.89
5 × 105 128 × 256 — 0.078 0.067 0.0393 0.071 0.022 3.82 144.5 1.28
7 × 105 128 × 256 — 0.077 0.073 0.0509 0.067 0.021 4.25 185.1 1.6
5 × 106 128 × 256 — 0.045 0.082 0.0978 0.045 0.016 6.68 689.8 4.55
7 × 106 128 × 256 — 0.04 0.092 0.1168 0.043 0.017 7.9 851.0 4.98
1 × 107 128 × 256 — 0.037 0.069 0.1139 0.044 0.016 8.8 917.2 5.92

TABLE III. Run information for all runs at Q = 105, � = 2.44.

Ra Nx × Nz Bootstrapped sml smn si sb sv Nu Re Brms

2.4 × 106 128 × 256 — 0.085 0.057 0.0195 0.068 0.011 3.32 177.0 0.76
3 × 106 128 × 256 — 0.091 0.072 0.0306 0.065 0.013 4.21 241.0 0.87
3.55 × 106 128 × 256 — 0.089 0.074 0.0329 0.062 0.014 4.68 262.6 0.94
5 × 106 128 × 256 — 0.093 0.085 0.0442 0.061 0.015 5.9 345.6 1.18
7 × 106 128 × 256 — 0.094 0.092 0.0551 0.058 0.015 6.8 447.2 1.46
1 × 107 128 × 256 — 0.092 0.092 0.0647 0.054 0.015 7.62 576.9 1.78
3.55 × 107 256 × 512 — 0.065 0.086 0.0887 0.044 0.014 11.42 1116.4 3.46
5 × 107 256 × 512 — 0.059 0.085 0.0992 0.042 0.014 12.97 1395.6 3.93
7 × 107 256 × 512 — 0.052 0.082 0.1033 0.04 0.013 14.04 1647.2 4.56

TABLE IV. Run information for all runs at Q = 106, � = 1.64.

Ra Nx × Nz Bootstrapped sml smn si sb sv Nu Re Brms

1.67 × 107 128 × 256 — 0.048 0.023 0.0013 0.047 0.004 2.98 226.5 0.42
2.36 × 107 128 × 256 — 0.046 0.027 0.0025 0.045 0.005 4.09 302.9 0.5
3.55 × 107 128 × 256 — 0.087 0.072 0.0277 0.053 0.008 6.9 674.1 0.85
5 × 107 128 × 256 3.55 × 107 0.098 0.089 0.0445 0.05 0.01 9.3 930.5 1.04
7 × 107 128 × 256 3.55 × 107 0.102 0.096 0.0542 0.048 0.011 11.58 1150.3 1.23
1 × 108 256 × 512 3.55 × 107 0.101 0.099 0.0673 0.043 0.011 12.68 1430.7 1.49
1.2 × 108 256 × 512 3.55 × 107 0.101 0.104 0.0696 0.043 0.011 13.66 1576.9 1.68
2 × 108 256 × 512 1 × 108 0.094 0.103 0.0821 0.04 0.01 15.9 2083.4 2.25
3.55 × 108 256 × 512 1 × 108 0.086 0.103 0.0994 0.038 0.01 20.21 2811.2 2.93
1.2 × 109 512 × 512 3.55 × 107 0.055 0.085 0.1023 0.029 0.009 27.25 4734.1 4.96
3.55 × 109 512 × 512 1.2 × 108 0.039 0.113 0.1413 0.026 0.009 49.38 8574.9 8.45
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TABLE V. Run information for all runs at Q = 107, � = 1.1.

Ra Nx × Nz Bootstrapped sml smn si sb sv Nu Re Brms

1.67 × 108 128 × 256 1 × 107 (Q = 106) 0.04 0.018 0.0025 0.035 0.002 4.21 631.8 0.34
2.36 × 108 128× 256 1.67 × 108 0.042 0.025 0.003 0.036 0.002 5.75 787.9 0.43
3 × 108 256 × 512 1.67 × 108 0.061 0.047 0.0128 0.039 0.004 8.4 1239.5 0.58
3.55 × 108 256 × 512 1.67 × 108 0.079 0.065 0.0235 0.043 0.005 9.94 1705.1 0.72
5 × 108 256× 512 3.55 × 108 0.087 0.075 0.0343 0.04 0.005 12.55 2280.2 0.88
7 × 108 256 × 512 3.55 × 108 0.098 0.091 0.0508 0.037 0.007 17.4 3006.2 1.04
1 × 109 512 × 512 3.55 × 108 0.103 0.1 0.0592 0.034 0.007 18.64 3593.3 1.25
1.2 × 109 512 × 512 1 × 109 0.104 0.103 0.0653 0.033 0.007 20.72 4045.4 1.35
2 × 109 512 × 512 1 × 109 0.101 0.111 0.08 0.031 0.007 24.5 4909.2 1.78
3 × 109 512 × 512 1 × 109 0.097 0.123 0.0914 0.029 0.007 29.28 6127.5 2.17
3.55 × 109 512 × 512 1 × 109 0.095 0.147 0.0986 0.027 0.007 31.49 6854.4 2.33
5 × 109 512 × 512 1 × 109 0.08 0.117 0.0966 0.024 0.007 33.35 7814.5 2.43
7 × 109 512 × 512 1 × 109 0.076 0.149 0.1194 0.026 0.007 44.69 9656.8 3.35
1 × 1010 1024 × 1024 1.2 × 109 0.064 0.147 0.1125 0.022 0.006 37.98 10413.7 4.01
1.2 × 1010 1024 × 1024 1.2 × 109 0.061 0.187 0.1368 0.021 0.006 38.37 11309.0 3.82

TABLE VI. Run information for all runs at Q = 108, � = 0.74.

Ra Nx × Nz Bootstrapped sml smn si sb sv Nu Re Brms

1.67 × 109 256× 512 3.55 × 108 (Q = 107) 0.035 0.016 0.0035 0.025 0.001 5.75 1780.8 0.29
2.36 × 109 256× 512 1.67 × 109 0.04 0.025 0.0048 0.027 0.002 8.37 2428.0 0.38
3 × 109 256× 512 1.67 × 109 0.046 0.034 0.0058 0.03 0.002 10.66 3076.3 0.48
3.55 × 109 256× 512 1.67 × 109 0.053 0.042 0.0112 0.028 0.002 13.7 3583.1 0.52
5 × 109 256× 512 3.55 × 109 0.074 0.064 0.0245 0.028 0.004 21.13 5823.9 0.71
7 × 109 256× 512 3.55 × 109 0.083 0.076 0.0345 0.027 0.004 26.31 7208.2 0.82
1 × 1010 512× 512 7 × 109 0.097 0.093 0.053 0.026 0.005 32.46 9057.4 1.0
1.2 × 1010 512× 512 1 × 1010 0.098 0.102 0.0559 0.025 0.005 33.69 9632.2 1.06
2 × 1010 512× 512 1 × 1010 0.104 0.148 0.0773 0.023 0.006 43.96 12455.4 1.34
3 × 1010 512× 512 2 × 1010 0.104 0.209 0.1067 0.021 0.006 46.95 16509.9 1.73
3.55 × 1010 512 × 512 2 × 1010 0.101 0.244 0.1124 0.021 0.006 51.7 16211.1 1.75
1 × 1011 512× 512 3.55 × 1010 0.087 0.279 0.1408 0.019 0.006 97.73 25587.8 2.69

TABLE VII. Run information for all runs at Q = 109, � = 0.5.

Ra Nx × Nz Bootstrapped sml smn si sb sv Nu Re Brms

1.67 × 1010 256× 512 3.55 × 109 (Q = 108) 0.029 0.013 0.0038 0.018 0.001 7.79 4667.9 0.23
2.36 × 1010 256× 512 1.67 × 1010 0.033 0.02 0.0045 0.02 0.001 11.4 6260.2 0.31
3 × 1010 256× 512 1.67 × 1010 0.037 0.025 0.0054 0.021 0.001 14.66 7460.9 0.37
3.55 × 1010 256× 512 1.67 × 1010 0.04 0.031 0.008 0.021 0.001 17.29 8632.3 0.42
5 × 1010 512× 512 3.55 × 1010 0.055 0.048 0.0169 0.021 0.002 27.93 12719.9 0.55
1 × 1011 512 × 512 5 × 1010 0.086 0.106 0.0442 0.019 0.003 50.53 22861.0 0.81
1.5 × 1011 512× 1024 1 × 1011 0.098 0.107 0.0577 0.017 0.004 61.34 28750.0 0.95
2 × 1011 1024× 1024 1.5 × 1011 0.103 0.191 0.074 0.017 0.004 69.11 31694.4 1.09
2.5 × 1011 1024× 1024 2 × 1011 0.111 0.2 0.0892 0.017 0.004 91.3 37940.6 1.26
3 × 1011 1024× 1024 2.5 × 1011 0.112 0.225 0.0885 0.016 0.004 94.07 41269.6 1.3
3.55 × 1011 1024× 1024 3 × 1011 0.117 0.225 0.1158 0.015 0.004 83.51 42131.1 1.42
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TABLE VIII. Run information for all runs at Q = 1010, � = 0.33.

Ra Nx × Nz Bootstrapped sml smn si sb sv Nu Re Brms

1.67 × 1011 256 × 512 3.55 × 1010 (Q = 109) 0.024 0.014 0.0044 0.012 0.0 10.21 9716.4 0.16
2.36 × 1011 256 × 512 1.67 × 1011 0.024 0.015 0.0038 0.012 0.0 11.47 10229.1 0.18
3 × 1011 256 × 512 1.67 × 1011 0.034 0.026 0.0055 0.014 0.001 21.68 15087.2 0.29
3.55 × 1011 512 × 512 1.67 × 1011 0.036 0.029 0.0064 0.014 0.001 27.43 17114.3 0.33
5 × 1011 512 × 1024 3.55 × 1011 0.048 0.043 0.017 0.014 0.001 39.27 26520.8 0.41
7 × 1011 512 × 1024 5 × 1011 0.06 0.064 0.0214 0.015 0.001 60.44 33605.0 0.55
1 × 1012 1024 × 2048 7 × 1011 0.076 0.074 0.0274 0.015 0.002 54.08 45429.6 0.69

TABLE IX. Run information for all 3D runs at Q = 106, � = 1.64.

Ra Nx × Ny × Nz Bootstrapped sml smn si sb sv Nu Re Brms

1.67 × 107 64 × 64 × 128 — 0.056 0.031 0.0086 0.045 0.005 3.38 263.3 0.43
3.55 × 107 64 × 64 × 128 1.67 × 107 0.063 0.083 0.0461 0.04 0.012 7.95 527.2 0.59
7 × 107 64 × 64 × 128 3.55 × 107 0.092 0.172 0.1267 0.044 0.021 16.14 1281.3 1.04
1 × 109 512 × 512 × 512 7 × 107 0.088 0.242 0.3096 0.022 0.027 13.72 5283.2 3.47
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