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Diffusive and convective dissolution of carbon dioxide
in a vertical cylindrical cell
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The dissolution and subsequent mass transfer of carbon dioxide gas into liquid barriers
plays a vital role in many environmental and industrial applications. In this work, we
study the downward dissolution and propagation dynamics of CO2 into a vertical water
barrier confined to a narrow vertical glass cylinder, using both experiments and direct
numerical simulations. Initially, the dissolution of CO2 results in the formation of a
CO2-rich water layer, which is denser in comparison to pure water, at the top gas-liquid
interface. Continued dissolution of CO2 into the water barrier results in the layer becoming
gravitationally unstable, leading to the onset of buoyancy-driven convection and, conse-
quently, the shedding of a buoyant plume. By adding sodium fluorescein, a pH-sensitive
fluorophore, we directly visualize the dissolution and propagation of the CO2 across the
liquid barrier. Tracking the CO2 front propagation in time results in the discovery of two
distinct transport regimes, a purely diffusive regime and an enhanced diffusive regime.
Using direct numerical simulations, we are able to successfully explain the propagation
dynamics of these two transport regimes in this laterally strongly confined geometry,
namely by disentangling the contributions of diffusion and convection to the propagation
of the CO2 front.

DOI: 10.1103/PhysRevFluids.8.093501

I. INTRODUCTION

The dissolution and subsequent mass transfer of carbon dioxide gas into liquid barriers plays a
vital role in many environmental and industrial applications. In microfluidics for example, Taylor
flow, a segmented flow of alternating gas and liquid plugs, is utilized in microreactor designs to
increase heat and mass transfer rates, resulting in higher reactor performance [1–3]. On a larger
scale, carbon capture and sequestration is often based on injecting CO2 into deep saline aquifers,
trapping the CO2 between a layer of cap rock and a liquid reservoir, which results in the long term,
stable storage of CO2 in the aquifer [4–6].

Once the carbon dioxide starts to dissolve into the water layer, a CO2-rich water layer forms
at the interface, which is denser in comparison to pure water. While initially stable, the continued
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FIG. 1. (a) Schematic overview of the experimental setup. (b) Sketch of the cylinder containing the liquid-
air setup. The cylinder is placed inside the experimental chamber, which is subsequently flushed with CO2 gas.
(c) Schematic overview of the numerical setup.

dissolution of CO2 into the water layer results in the CO2-rich fluid layer becoming gravitationally
unstable, leading to the onset of buoyancy-driven convection and the formation of a buoyant plume,
which greatly enhances the mass transfer of CO2 in the water layer [7,8]. Furthermore, density-
driven. convection can also occur as a result of buoyancy generating chemical reactions [9–12],
droplet dissolution [13,14], and bubble growth [15,16].

In literature, studies investigating the dissolution and density-driven convection in the CO2-water
system have reported between two and four distinct transport regimes [17–19]. These regimes
are vaguely defined by their assumed dominant driving mechanism and thus referred to as, for
example, “purely diffusive,” “early convective,” or “late convective” [17]. Moreover, in the regimes
where convection is contributing to the mass transport, apparent diffusive behavior is observed,
albeit with a much higher effective diffusion coefficient. Depending on the experimental conditions,
this effective diffusion coefficient can be several orders of magnitude bigger in comparison to
the expected diffusive counterpart under similar experimental conditions [20–24]. However, little
explanation has been given as to what drives the different observed regimes, the transitions between
the regimes and why the system still appears to behave in a diffusive manner.

This is precisely the focus of our work. We study the dissolution and downward propagation of
CO2 into a vertical water barrier confined to a narrow cylindrical cell either above a trapped air
bubble, an alkane layer or directly on top of a solid silicon plate, as shown in Fig. 1. We replace the
ambient air atmosphere with a CO2 atmosphere at the same pressure and by adding sodium fluo-
rescein, a pH-sensitive fluorophore, to the liquid barrier, we can directly visualize the propagation
of CO2 [25–27]. We compare the experimental results to those obtained by three-dimensional (3D)
direct numerical simulations in order to elucidate the relevant transport mechanisms.

In a nutshell, our aim is to investigate the mass transport mechanisms in a laterally strongly
confined system after the dissolution of CO2 into a liquid barrier. We will identify two different
regimes, namely a purely diffusive regime and an enhanced diffusive regime. The direct numer-
ical simulations allow us to disentangle the contributions of the buoyancy-driven convection and
diffusion towards the front propagation velocity. We will show that the onset of convection leads
to a distortion of the propagation front surface, resulting in the increase of the concentration
gradients which in turn leads to enhanced diffusive fluxes. The overall behavior remains diffusive,
however, although with an increased diffusion coefficient. The diffusive propagation acts to flatten
the interfacial area, which over time leads to an equilibrium with the convective bulging of the front,
after which the front propagates at an almost constant velocity.

093501-2



DIFFUSIVE AND CONVECTIVE DISSOLUTION OF …

This paper is organized as follows. The experimental setup and procedure are described in Sec. II.
Section III presents the results of our visualization experiments. In Sec. IV the amount of CO2 in the
liquid barrier over time is investigated by first obtaining the intensity profiles from the visualization
experiments and subsequently converting them to concentration profiles. In Sec. V we study the
front propagation dynamics of the CO2 layer and identify two distinct propagation regimes. In
Sec. VI we provide the details on the numerical model we us to study the physics behind the front
propagation dynamics and provide a comparison between the numerical model and the experiments.
The paper ends with a summary of the main findings and an outlook in Sec. VII.

II. EXPERIMENTAL PROCEDURE

A schematic overview of our experimental setup is shown in Fig. 1(a). The experiments are
conducted inside a sealed chamber which can be flushed with CO2 gas. The inlet pressure is fixed to
1.0 bar using the pressure regulator PR1, whereas pressure regulator PR2 prevents overpressuriza-
tion of the experimental tank. A more detailed description of the experimental chamber and pressure
control system can be found elsewhere [28].

A single borosilicate glass (Duran) cylinder (28 mm in length, inner diameter d = 3.0 mm, outer
diameter of 5.0 mm) is attached on one end to a silicon wafer plate using Loctite 4305 (Farnell),
in an almost perfectly vertical manner, while the other end is left open. Before use, the cylinder is
rinsed using ethanol (Boom, technical grade) followed by Milli-Q water (resistivity = 18.2 M� cm)
and finally dried in a nitrogen stream.

We prepare the cylinder in one of three different configurations, a liquid-solid, liquid-liquid, or a
liquid-air configuration, as depicted in Fig. 1(b). In all configurations, a layer of a 10−4 M aqueous
fluoroscein solution is injected into the cylinder, at a volume of V = 120 µl (or H ≈ 18 mm), which
acts as the liquid barrier. This solution is freshly prepared prior to the experiments by adding sodium
fluorescein salt (Fisher Scientific, general purpose grade) to Milli-Q water. Fluoroscein is a well-
known fluorophore often used in biological application, with its main absorbance peak at 490 nm
and main emission peak at 513 nm [25–27]. More importantly, the emission intensity of fluorescein
has a (nonlinear) dependency on the pH level of the liquid, allowing us to follow the dissolution
and propagation of the CO2 in the liquid. Furthermore, the presence of the sodium fluorescein in
the barrier does not affect the diffusive and convective behavior of the CO2, as we have ∼4.4 µg
sodium fluorescein in the 120-µl barrier to achieve the desired concentration.

For the liquid-air configuration, the fluorescein layer is placed in the cylinder such that a bubble
of arbitrary height spanning the entire width of the cylinder, is trapped underneath the liquid. The
liquid barrier remains in place due to a stable balance between the surface tension of the liquid-air
interface, the weight of the liquid barrier, and the differences in gas pressures. Since the surface
tensions of CO2 and air above water are almost identical, the force balance persists throughout our
experiments [29]. For the liquid-solid configuration, the fluoroscein solution is injected into the
cylinder such that no air is trapped between the liquid barrier and the silicon wafer plate. During
this process, special attention is paid to ensure no small bubbles are entrained at the liquid-solid
interface. Finally, for the liquid-liquid interface, 60 µl n-hexadecane (VWR, 99% purity) is injected
first into the cylinder. On top of this liquid layer, the fluorescein solution is carefully injected, again
to prevent the entrapment of bubbles. Despite the density of n-hexadecane being lower compared to
the density of water, this configuration remains stable during our experiments, again due to a stable
balance between the surface tensions at the interface and the weight of the top liquid column.

Inside the tank, an LED (Thorlabs, λcenter = 470 nm) is located to illuminate the cylinder, while
the pressure and temperature sensors in the chamber record the pressure P0 and temperature T in
time, respectively (1 acquisition per second). The average temperature during our experiments is
determined to be T = 22.3 ± 0.4 ◦C. We use a Nikon D850 camera in silent interval timer shooting
mode (1 fps) in combination with a Zeiss Makro Planar T 100-mm lens to achieve a mean optical
resolution of 10.4 µm/pixel. In the optical path between the cylinder and the camera, a bandpass
filter (Thorlabs, λcenter = 530 nm, BW = 43 nm) is located to block out the LED light.
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After preparation, the cylinder is placed inside the experimental chamber. The inlet pressure
is fixed to 1.0 bar using PR1 while valve V1 remains closed. Valve V2 is opened to allow the
experimental tank to be flushed during the flushing stage. The LED inside the chamber is turned
on and 5 s later the interval timer shooting mode on the camera is activated. Fifteen seconds after
camera activation, the pressure and temperature sensor data starts being recorded. Finally, 35 s after
turning on the LED inside the chamber, valve V1 is opened and the system is flushed with CO2 gas
in order to fully replace the ambient air inside the tank. The time at the start of the flushing stage
is t = 0 s and marks the start of the “experiment” stage. After flushing for 60 s, valves V1 and V2
are closed in quick succession, with the former being closed first to prevent pressurization of the
experimental tank. At the end of the experiment (typically at t = 15 min), the experimental tank
is opened and flushed using a nitrogen spray gun to prepare the experimental chamber for the next
experiment.

Based on the aforementioned experimental conditions, we can calculate the relevant dimen-
sionless numbers. Our Schmidt number is found to be Sc = ν/D = 515. Since the maximum
CO2 concentration difference in the barrier is �C = Csat, we find our maximum Rayleigh number
to be

RaH ≡ βCsatgH3

νD
, (1)

where g is the acceleration due to gravity, β = (8.2 ± 0.03) cm3/mol the solutal expansion coeffi-
cient of CO2; the saturation concentration Csat = kH P0, with kH = (3.53 ± 0.04) × 10−4 mol/m3Pa
and P0 = 1.0 bar; D = (1.85 ± 0.02) × 10−9 m2/s the diffusion coefficient of CO2 in water;
H = 17.6 ± 0.35 mm the height of the liquid barrier; and ν = 9.5 × 10−7 m2/s the kinematic
viscosity of water [8,30,31]. We obtain RaH ≈ (8.8 ± 0.5) × 106, which is well above the critical
Rayleigh number, RaH,c = 1.29 × 106, based on the minimal aspect ratio (�max = d/H = 0.17) of
our experimental setup [32].

III. EXPERIMENTAL OBSERVATIONS

We begin by analyzing a series of liquid-air experiments, (i), (iii), and (iv) in Fig. 2, and a liquid-
solid experiment, (ii) in Fig. 2. Videos of experiments (i)–(iv) can be found in the Supplemental
Material [33]. Moreover, snapshots of additional experiments can be found in the Supplemental
Material in Figs. S1 and S2. As the CO2 starts dissolving into the liquid barrier, the pH of the
CO2 imbued liquid starts to decrease. Since fluorescein is a pH-sensitive fluorophore in the range
5 � pH � 10, the emission intensity of the fluorescein dye starts to decrease, resulting in a color
change of the dye from bright green to black in the images [34].

At the beginning of the experiments, t = 0 s, we start replacing the air atmosphere with a CO2

atmosphere. Almost immediately, CO2 starts dissolving into the liquid barrier, forming a CO2-rich
water layer just below the gas-liquid interface. While initially stable, the continued dissolution of
CO2 into the water barrier results in the layer becoming gravitationally unstable, as the CO2-rich
water is denser in comparison to the pure water underneath. Once this happens, a convective plume is
shed from the CO2-rich boundary layer which starts propagating downwards into the liquid barrier.
In the experiments shown, the shedding of the buoyant plume occurs around t ∼ 1 minute.

After shedding the convective plume, differences in the CO2 front propagation dynamics can
be observed. In (i) and (ii) the front appears to propagate axisymmetrically throughout the water
barrier. As a result, the CO2 front does not quite reach the lower liquid-gas, (i), or liquid-solid,
(ii), interface. In contrast, the apparent axisymmetry observed in (i) and (ii) is seemingly broken
in (iii) and (iv) at t = 5 min and t = 12 min, respectively. In (iv) the shedding of a lateral buoyant
upwelling plume can be observed at the right side of the cylinder at the interface of the denser
CO2-rich liquid and the pure bulk liquid. In (iii), the plume appears visually centered due to the
planar visualization of the 3D system. Regardless, in both cases the CO2 front accelerates towards
a higher velocity, leading to the front reaching the bottom liquid-air interface around t ∼ 10 min in
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FIG. 2. Fluorescence images of the initial dissolution process of CO2 in a vertical liquid column within a
cylindrical cell. The fluorescence intensity decays with pH or increasing CO2 concentration. At t = 0, the upper
interface is exposed to a CO2 gas ambient. Subsequently, a CO2-containing layer (dark region) propagates
downwards. The bottom liquid interface for (i), (iii), and (iv) is liquid-air; for (ii) it is liquid-solid. The type
of boundary has no impact on the propagation dynamics of the CO2 front. In (i) and (ii) the front propagates
axisymmetrically throughout the entire water depth. In (iv), axisymmetry is broken at t ≈ 12 min with the
shedding of a lateral buoyant upwelling plume. A similar symmetry-breaking upwelling plume occurs in (iii)
at t ≈ 5 min, yet the plume appears visually centered due to the planar visualization of the 3D system. Such an
event causes the front to accelerate towards a higher velocity. Coordinate z denotes the depth from the apex of
the top meniscus; the horizontal ticks are 2 mm apart.
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FIG. 3. (a) Propagation of the projected front surface for experiments (i)–(iv) shown in Fig. 2 during 0 <

t < 15 min. The front is defined as the isoconcentration contour z f = z f (x, t ) corresponding to a normalized
intensity I∗(x, z, t ) value of 60%. The front is computed from the vertical intensity profiles computed across
20 equispaced positions in x. The time step between contour lines is �t = 20 s. In (iii) and (iv), the arrows
denote the front positions at which lateral plume shedding occurs, i.e., when the axisymmetric propagation is
broken.

experiment (iii) and t ∼ 15 min in experiment (iv). However, no significant amount of CO2 exsolves
from the interface, which would result in the growth of the trapped air bubble. This is expected
given that in our earlier work we studied this exact system and showed that, for much shorter water
barriers, bubble growth did not occur during the 15 min after the flushing stage [35]. It therefore
appears that the type of bottom boundary does not affect the CO2 propagation dynamics, but the
occurrence of the shedding of a secondary plume does.

To further study the propagation dynamics, we track the progression of the CO2 front in the
liquid barrier over time. We define 20 equispaced bins along the cylinders diameter for which the
vertical intensity profiles are calculated. The obtained intensity profiles are normalized with respect
to the intensity profiles at t = 0 s in order to account for variations in illumination. The CO2 front
is defined as the isoconcentration contour z f = z f (x, t ) corresponding to a normalized intensity
I∗(x, z, t ) value of 60%. For experiments (i)–(iv), the obtained projected front surfaces are shown
in Fig. 3. The time step between the contour lines is �t = 20 s. The front profiles of the additional
experiments can be found in the Supplemental Material in Figs. S3 and S4 [33].

The shown front contours emphasize that the initial behavior for the four experiments is very
similar. After the shedding of the buoyant plume by the diffusive boundary layer, the front initially
rapidly accelerates and then slows down again as time progresses. As mentioned, in experiments (i)
and (ii), the front reaches a stable velocity, indicated by the front contours becoming equidistant in
space. For experiments (iii) and (iv), the arrows indicate the depth at which we observe the shedding
of a lateral buoyant plume. After this event, the spatial distance between the lines increases again,
indicating the acceleration of the front to a higher velocity. This is very similar to the initial shedding
event observed from the diffusive boundary layer. The secondary plume shedding is not observed
in all cases and is therefore likely related to uncontrolled noise in the experiments, such as small,
local deviations in CO2 concentration or the small inclination of the cylinder with respect to the
base plate.
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FIG. 4. (a) Normalized intensity profiles for experiments (i)–(iv) from Figs. 2 and 3. The intensity profiles
have been been horizontally averaged over the entire cell diameter (−d/2 < x < d/2) at every depth z. The
time step between consecutive profiles is �t = 20 s for 0 < t < 15 min. (b) Tentative concentration profiles
directly obtained from I

∗
after calibration; Csat refers to the saturation concentration. Concentration values

close to the boundaries of the liquid column are tainted by the presence of a meniscus (or a solid interface)
and are limited to C/Csat < 0.6, which corresponds to the lower bound of the pH-sensitive range of sodium
fluorescein. The vertical dotted lines indicate the depth of the top (z = 0) and bottom boundaries of the liquid
barrier.

IV. INTENSITY AND CONCENTRATION PROFILES

We continue our analysis by investigating the amount of CO2 absorbed in the liquid barrier over
time. In order to do so, we first have to obtain the intensity profiles of the fluorescein solution in
the barrier and convert these to the corresponding CO2 concentration profiles. Therefore, we start
by computing the horizontally averaged intensities G(z, t ) which are then a function of depth z
and time t only. We normalize the obtained intensities with respect to the initial intensity profile in
order to account for spatial inhomogeneity of the LED lighting, defined as the normalized intensity
I = G(z, t )/G(z, 0). Additionally, we correct these intensity profiles for the decay in intensity
due to photobleaching of the fluoroscein solution. This is achieved by measuring the decay due
to photobleaching over time in a by CO2 unaffected segment of the cylinder and correcting the
measured intensities correspondingly. Finally, we once more normalize the obtained intensities by
the maximum and minimum obtained intensities of the experiment which are found to be quite close
for all experiments, resulting in I

∗
(z, t ).

For experiments (i)–(iv), the obtained intensity profiles are shown in Fig. 4(a). As before, the time
step between consecutive profiles is �t = 20s and the profiles are shown for the entire experiment,
i.e., between 0 < t < 15 min. The vertical dotted lines indicate the depth of the top (z = 0)
and bottom boundaries of the liquid barrier. For experiments (i) and (ii), the steady propagation
discussed before is clearly reflected in the intensity profiles. As the front propagates through the
barrier, the intensity drops rapidly, as expected based on the snapshots from Fig. 2. Moreover, the
decrease in propagation velocity is again reflected in the intensity profiles, as the spacing between
the profiles decreases as time progresses. For experiments (iii) and (iv), the shedding of the lateral
buoyant upwelling plume causes the intensity at certain depth to increase, resulting in overlapping
intensity profiles.
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As mentioned before, the emission intensity of fluorescein has a nonlinear dependency on the
pH level of the liquid. Therefore, we need to obtain a calibration curve before we can convert the
measured intensities to the CO2 concentration in the barrier. To achieve this, we performed a set
of experiments in which the cylinder is placed in an inverted configuration, with the top sealed and
bottom open to the CO2 atmosphere. When inverted, the CO2-liquid mixture is stably stratified and
therefore the CO2 can only be transported up the barrier by diffusion. We obtain the intensity profiles
of these experiments and use these to obtain a calibration function C/Csat = F (1 − I∗), linking the
dimensionless concentration in the barrier to a measured intensity by means of the self-similar
solution of the pure diffusion problem. A more detailed description of this process can be found in
the Appendix.

Figure 4(b) shows the resulting CO2 concentration profiles for experiments (i)–(iv). Similarly,
for experiments (v)–(xii), the intensity and concentration profiles can be found in the Supplemental
Material in Figs. S5 and S6 [33]. Note that we show the CO2 concentration C(z, t ) as a fraction of
the saturation concentration Csat, with C/Csat < 0.6, which corresponds to the lower bound of the
pH-sensitive range of sodium fluorescein. As a result, we cannot differentiate concentration levels
C/Csat > 0.6. The concentration values close to the boundaries of the liquid column are tainted by
the presence of a meniscus (or a solid interface).

As expected, the concentration profiles of experiments (i) and (ii) show a steady progression of
the CO2 concentration in the liquid barrier. In experiments (iii) and (iv), the shedding of the lateral
buoyant upwelling plume causes additional CO2-rich liquid to be propagated downwards, while
additional pure liquid is propagated upward by the plume. This is reflected by the concentration
profiles, as we observe a sudden increase in concentration near the bottom of the cylinder, while
the concentration decreases sharply at the top. Furthermore, an increase in mass transfer can also be
observed after the shedding event, as the spatial spacing between the profile increases after shedding
the buoyant plume.

Finally, we use the obtained CO2 concentration profiles to calculate the total mass m of CO2

absorbed by the liquid barrier as a fraction of the maximum dissolution capacity. We obtain the
dissolution fraction from the CO2 concentration profiles as

m(t )

CsatV
= H−1

∫ H

0
C(z, t )/Csat dz, (2)

where m(t ) is the total mass of CO2 in the liquid phase, Csat the saturation concentration of CO2

in water, and V ≡ πd2H/4 the volume of the liquid barrier. As mentioned before, we can only
measure the concentration up to C/Csat < 0.6, as higher concentrations are outside the pH sensitive
range of the fluorescein. Figure 5 shows the obtained dissolution fraction m(t )/(CsatV ) versus time,
averaged over all 12 experiments. The wide error bars reflect the variability among experiments,
such as the occurrence of the shedding of a lateral buoyant upwelling plume, and the uncertainties
in the concentration calibration. Initially, the dissolution curve follows the self-similar solution for
pure diffusion (dotted line), where m = 2CsatA

√
Dt/π and A = πd2/4. However, after the onset of

convection, the curve deviates, resulting in m = 2CsatA
√

Dc(t − tc)/π (dashed line) to be the best
fit, with an effective diffusion coefficient of Dc = 30D and tc = 160 s as the virtual time origin.
Compared to other authors, who report finding Dc/D ∼ 102 or 103 for experiments conducted
in varying PVT or Hele-Shaw cells, this seems reasonable as variations in experimental condi-
tions and cell configuration differences appear to severely affect the obtained effective diffusion
coefficients [20–24].

V. FRONT PROPAGATION DYNAMICS

We carry on our analysis by focusing on the propagation dynamics of the CO2 front in the liquid
barrier. We define the position of the CO2 front, z f (t ), which we arbitrarily set to the 60%-intensity
threshold of the horizontally averaged intensity profiles, I

∗
(z f , t ) = 0.6 (cf. Fig. 4). Tracing this

position in time yields Fig. 6, which shows the front trajectories of all 12 experiments versus time.

093501-8



DIFFUSIVE AND CONVECTIVE DISSOLUTION OF …

FIG. 5. Mass m of CO2 absorbed by the liquid column as a function of time, averaged across all 12
experiments; m is normalized by the maximum dissolution capacity CsatV , where V ≡ πd2H/4 is the liquid
volume and Csat the saturation density (or concentration) of CO2 in water. The dissolution fraction is estimated
from the 1D axial concentration profiles as m(t )/(CsatV ) = H−1

∫ H
0 C(z, t )/Csat dz. The wide error bars

reflect the variability between experiments and the uncertainties in concentration calibration. The dissolution
curve initially follows the self-similar solution for pure diffusion (dotted line): m = 2CsatA

√
Dt/π , where

A = πd2/4. At the onset of convection it starts to deviate from the purely diffusive behavior due to the
contribution of convection. In that regime the curve can be described by an effective diffusive behavior
m = 2CsatA

√
Dc(t − tc )/π (dashed line), with the fit Dc = 30D as the effective diffusion coefficient and

tc = 160 s as the virtual time origin.
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FIG. 6. Front trajectory z f (t ) corresponding to the 60%-intensity threshold of the horizontally averaged
intensity profiles (cf. Fig. 4), namely I

∗
(z f , t ) = 0.6. The front trajectory of all 12 experiments is plotted,

which are color coded based on the absence (greens) or the occurrence (reds) of the shedding of the upwelling
plume. The time t and front position z f (the latter defined as the distance to the apex of the top meniscus) have
been offset by the (fitted) virtual origin of the diffusive regime (t0 = 5.5 ± 2.2 s and z0 = −0.3 ± 0.06 mm),
which absorb the influence of the finite curvature of the top meniscus and the typical flushing response time
required for full exposure to the CO2 ambient. Initially, z f (t ) follows the self-similar solution for pure diffusion
(dotted line), taking Kf ≡ 2erfc−1(Cf /Csat ) = 4.27 corresponding to Cf /Csat = 2.5 × 10−3 (I∗ = 0.6). The
onset of the convective instability (diamond markers) occurs at t = t1, z1 = z f (t1), when the front acceleration
(d2z f /dt2) is maximum. A zoom-in is provided in the inset, which highlights the reproducibility of the time
onset: t1 − t0 = 67.6 ± 2.4 s. Thereafter, z f (t ) evolves in an enhanced diffusive manner (dashed line), with an
effective fitted diffusivity Deff = 8.25D, which implies that the convective velocity of the front decays in time.
At approximately t = t2 (circular markers), when d2z f /dt2 = 0 for the first time, the front velocity stabilizes
and the front propagates as expected for late stage enhanced diffusive behavior. For experiments in which a
upwelling plume is shed, t = t2 marks this moment and the velocity shoots off towards a higher velocity.

093501-9



DANIËL P. FAASEN et al.

(a) (b)

z f –
 z 0

 [m
m

]

z f –
 z 1

 [
m

m
]

t – t
0
 [s] t – t

1
 [s]

100

101

100

101

101 102 100 102

t – t 0

~

t – t 1

~

FIG. 7. Double logarithmic plot of the two distinct regimes observed for the 12 front trajectories plotted
in Fig. 6: (a) the purely diffusive regime for t < t1 and (b) the enhanced diffusive regime for t1 < t . In (b),
the convective virtual origin (t1, z1) is off-scale and has been fitted accordingly, given that the front behavior
around t1 is transitioning (during a transition period of ∼10 s) and consequently does not offer a suitable virtual
origin of the convective-decay regime.

The trajectories are offset by the (fitted) virtual origin z0 = −0.3 ± 0.06 mm and t0 = 5.5 ± 2.2 s
of the diffusive regime. Correcting for the virtual origin absorbs the influence of the finite curvature
of the top meniscus and the typical flushing response time required for full exposure to the CO2.
Furthermore, the front trajectories in Fig. 6 have been color coded based on the absence (green) or
the occurrence (red) of the shedding of an upwelling plume.

As explained before, the dissolution of CO2 into the liquid barrier results in the formation of a
boundary layer at the top interface. The mass transport in this layer is driven purely by diffusion and
it is therefore unsurprising that the propagation of the front z f (t ) follows the self-similar solution
for pure diffusion:

C(z, t )

Csat
= erfc

[
z − z0√

4D(t − t0)

]
. (3)

The front trajectory associated to concentration Cf is thus

z f − z0 = Kf

√
D(t − t0), (4)

where growth prefactor Kf depends on the concentration

Kf ≡ 2erfc−1(Cf /Csat ). (5)

In Fig. 6, the dotted line follows from Eqs. (4) and (5), taking Kf ≡ 2erfc−1(Cf /Csat ) = 4.27
corresponding to Cf /Csat = 2.5 × 10−3 (I∗ = 0.6). We see that z f (t ) follows the self-similar solu-
tion up to time t1. We therefore define this first regime between t0 < t < t1 as the purely diffusive
regime. In Fig. 7(a), we show a rescaled plot of the purely diffusive regime on a double logarithmic
scale, magnifying the z f (t ) ∼ √

t − t0 scaling relation.
At time t1, we observe a sharp acceleration of the CO2 front position, due to the onset of the

convective instability. Therefore, we can find t1 and correspondingly z f (t1) = z1 by finding the point
in time at which the front acceleration, d2z f /dt2, is maximum, indicated in Fig. 6 with the diamond
markers. The inset shows a zoom-in around t1 to show the reproducibility of the onset time t1 − t0 =
67.6 ± 2.4 s, and corresponding front depth z1 = 1.26 ± 0.08 mm.

At the onset of convection, the Rayleigh number based on the thickness δ(t ) of the boundary
layer is given by

Raδ (t ) ≡ βCsatgδ3(t )

νD
. (6)
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The height of the liquid barrier H does not influence the onset. Taking the boundary layer
thickness equal to the position of the front at the time we observe the onset of convection, i.e.,
δ = z f (t1) = z1, we obtain a critical value of Raz1 = (3.30 ± 0.6) × 103 by taking the average
critical value for the 12 experiments shown in Fig. 6. We compare this value to the critical Rayleigh
number from Ahlers et al. for Rayleigh-Bénard convection in a cylinder with adiabatic sidewalls,
which we believe to be the closest available approximation to our system [32]:

Rac ≡ 1708

[
1 + 1.49

�(t1)2

]2

, (7)

where the local aspect ratio is defined as �(t1) = d/z f (t1). However, we have to emphasize the
differences between our system and the systems usually described in Rayleigh-Bénard convection
studies, for which (with constant �) Eq. (7) holds. First, in those systems, it is assumed that at the
onset of convection, a linear concentration (or temperature) profile exists as the base state which
subsequently becomes unstable. Second, Rayleigh-Bénard setups have reached a steady state (or
are very close to such), while in our experiment the system has not and never will reach a steady
state during our experimental time frame. Finally, a constant aspect ratio is assumed, while in our
experiment the aspect ratio continuously decreases with time, since the front position z f (t ) increases
in time.

In our experiments, it is clear from Fig. 4(b) that we have nonlinear concentration profiles
in the boundary layer. As a result, the thickness of the self-similar diffusion boundary layer is
not easy to define. If we use δ to denote the effective thickness of the boundary layer, then
δ = Kδ

√
D(t − t0), where the growth prefactor Kδ ≡ 2erfc−1(Cδ/Csat ) depends on the choice of the

concentration cutoff Cδ , and hence δ may differ from the depth z f = Kf
√

D(t − t0) of our chosen
isoconcentration contour Cf /Csat = 2.5 × 10−3. For example, when we calculate Rac from Eq. (7),
using �(t1) = d/z f (t1) ≈ 2.4, we find Rac = 2.71 × 103, which is smaller than Raz1 . The value of δ

that satisfies Raδ = Rac, i.e., for which Eqs. (6) and (7) intersect, is exactly δ = δ∗ = 1.13 mm,
which is reasonably close to z1, with a corresponding Raδ∗ = Rac = 2.51 × 103. This further
emphasises the difficulty in defining the thickness for the self-similar diffusion boundary layer,
as by selecting a lower intensity threshold, and thus higher concentration cutoff Cδ , we could have
reproduced the prediction from Ahlers et al. [32].

In addition, we compared our findings with the work of Tan and Thorpe, who also studied the
dissolution of CO2 in water [36,37] and transient heat conduction in deep fluids [38]. In their
works, they try to account for the nonlinear profile in the boundary layer within a theoretical
framework which is compared with the experimental data. Using a PVT cell, they report an onset
time of t = 100 s for CO2 dissolution in water. Deriving an expression for the maximum transient
Rayleigh number, Ramax, and taking Rac = 1100 (which holds for Rayleigh-Bénard setups with
a linear profile and upper free-surface [39]), yielded the transition times with close agreement
with experiments [36]. When we enter the onset time obtained from our experiments, we find
Ramax = 336. This Ramax is much lower than Rac = 1100, even though their setup is significantly
wider than ours (d = 90 mm compared to our d = 3 mm), which suggests that our critical Rayleigh
number should be even higher than 1100.

We conclude that applying the method from Refs. [36,37] to obtain the onset time leads to a
severe and unrealistic overestimation for our experiments, which could be connected to the fact
that in Refs. [36,37] the pressure response of the system was studied instead of directly comparing
to the concentration profile. The plot reporting the onset time in Ref. [36] comes with significant
uncertainty. We note that adopting t = 64 s instead of t = 100 s, which still seems consistent with
the data in Ref. [36], would result in similar findings to ours. Reference [36], however, does indicate
that it is quite difficult to define a precise critical Rayleigh number for experiments with a nonlinear
profile, as we also discussed above. We therefore conclude that our method of finding the critical
critical Rayleigh number using Eq. (6) and the boundary layer thickness at the onset gives the best
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approximation of the critical Rayleigh number for the chosen isoconcentration contour, which in
our case is Cf /Csat = 2.5 × 10−3.

After the onset of convection, the front propagates seemingly in a diffusive manner, however,
with an increased effective diffusion coefficient. By fitting all 12 experiments (dashed line in
Fig. 6) we find that z f (t ) evolves with an effective fitted diffusivity Deff = 8.25D. For comparison,
Karimaie and Lindeberg report Deff = 5.8D for transport of CO2 in water confined in porous media
[21]. Moreover, Fig. 7(b) shows the same regime on a double logarithmic scale, highlighting the
z f (t ) − z1 ∼ √

t − t1 scaling relation. As a result, we define this regime as the enhanced diffusive
regime.

Eventually, the system appears to stabilize, leading to the front propagating at a seemingly stable
terminal velocity. This moment, defined as the first time at which d2z f /dt2 = 0, is referred to as
t = t2, marked with circular markers in Fig. 6(b). While one could see this as a separate regime, it
is in fact the late-stage behavior of the second regime. A more detailed explanation will be given
in the next section. For experiments in which the shedding of an upwelling plume occurs, t = t2
also happens to mark the moment at which this shoot off occurs. As mentioned before, if this
event occurs, then the front accelerates and propagates with a higher velocity in comparison to
the experiments in which axisymmetry is not broken. As a result, curves with a second shedding
event shoot off in Fig. 6 (red curves), although their scaling behavior remains consistent with the
experiments in which the shedding of the upwelling plume does not occur.

VI. NUMERICAL MODEL

A. Setup and governing equations

We continue our analysis by employing direct numerical simulations to unravel the physics gov-
erning the plume dynamics observed in the experiments. The numerical setup, shown in Fig. 1(b),
is a single-phase buoyancy-driven flow confined in a cylinder with an adiabatic sidewall and
free-shear surfaces at top and bottom. The system is subjected to constant saturation concentration
of carbon dioxide at the upper plate and zero concentration at the bottom, in order to mimic the
liquid-gas system. By varying the domain height numerically, we confirmed the independence
of the propagation dynamics on the bottom boundary conditions. The dimensionless form of
the advection-diffusion equation coupled with the three-dimensional Navier-Stokes equations are
employed under the incomprehensibility condition and the Oberbeck-Boussinesq approximation [in
order to account for buoyancy forces caused by the (small) density variations],

∂C̃

∂ t̃
+ ũ · ∇C̃ = 1√

RaSc
∇2C̃, (8a)

∂ũ
∂ t̃

+ ũ · ∇ũ = −∇P̃ +
√

Sc

Ra
∇2ũ + C̃êg · êk, (8b)

∇ · ũ = 0. (8c)

Here C̃, ũ, and P̃ denote the dimensionless concentration, velocity, and pressure, respectively.
The height of the cylinder H , the carbon dioxide saturation concentration Cs, and the free fall
velocity

√
gβCsH have been used for normalization of the equations, where g is the gravitational

acceleration and β the (isobaric and isothermal) volumetric concentration expansion coefficient. ∇
is the gradient operator in cylindrical coordinates, êg is the unit normal vector in direction of the
gravitational acceleration, and êk (k = z, r, θ ) are the unit normal vectors pointing toward the axial,
radial, or azimuthal directions as shown in Fig. 1(c). The control parameters of the numerical model
are the Rayleigh number RaH and the Schmidt number Sc as defined in Sec. III.

The governing equations (8) have been solved using a second-order accurate finite-difference
scheme on a staggered grid and a fractional-step time-marching approach, the detail of which can
be found in Ref. [40]. Introducing a disturbance to the system is necessary to trigger the instabilities
arising from the buoyancy-driven convection. Hence, three different sources of disturbance are
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FIG. 8. Front trajectory z f (t ) corresponding to C(z)/Csat = 2.5 × 10−3 obtained via numerical simulations
performed under different conditions, namely cases (A)–(C) as explained in the main text. The analytical
solution of the purely diffusive problem (dotted black line) and the experimentally averaged trajectory after the
onset of convection (dashed black line) have been provided for comparison.

tested in the numerical simulations in order to find the most appropriate setup which reasonably
replicates the experimental observation. These are

(A) a perturbed initial concentration field with a random positive noise throughout the system,
whose amplitude varies between zero and 1% of the carbon dioxide saturation concentration;

(B) a meniscus liquid-gas interface at the top rather than a flat interfacial boundary. The
meniscus shape was approximated by a cosine profile with a maximum depth of 0.01H at the center
of the domain. Saturation concentration and no-slip velocity conditions are enforced at the interface
using an immersed boundary method based on linear interpolations as developed in Ref. [41];

(C) a slight tilt of the container relative to the direction of gravity, see Fig. 1(c). The tilting has
been performed by rotating the gravitational acceleration vector g by the angle of φ with respect to
the negative axial direction in θ = 0 plane. The inclination angles of φ = 0.5◦, 1◦, 1.5◦, and 2◦ have
been tested in the numerical simulations.

Simulations have been conducted for the aforementioned cases (A)–(C) with different sources
of disturbance. The grid resolution of 32 × 192 × 256 in radial, azimuthal, and axial directions,
respectively, similarly to that of confined-rotating Rayleigh-Bénard convection [42], has been used
after a grid independence check has been performed. Time marching has been achieved with
variable times steps with a maximum of dt̃ = 2 × 10−3 and CFL = 5 × 10−1. The input of the
simulations are the aspect ratio of the setup � = d/H , the height-based Rayleigh number RaH , and
the Schmidt number Sc which have been chosen as 0.1704, 8.8 × 106, and 515, in accordance with
the experiments.

B. Numerical results

The vertical location of the front corresponding to C(z)/Csat = 2.5 × 10−3, consistent with the
analysis of the experimental results, has been plotted as a function of time in Fig. 8 and compared to
the experiments. The front location follows that of the pure diffusion problem in all cases up to the
moment when convection sets in. Looking into the transition time, a remarkable discrepancy exists
between the experiments and case (A) where the initial concentration field is perturbed. On the other
hand, the agreement is reasonable for cases (B) and (C). For case (B), in which the top interface is
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FIG. 9. Time evolution of carbon dioxide concentration obtained by numerical simulations for case (C)
with inclination angle of φ = 1.5◦. The setup has been tilted in the θ = 0◦ plane from which the snapshots
have been taken. The white contour lines show the front profile associated with Cf /Csat = 2.5 × 10−3. Vectors
denote the velocity field, the scaling of which has been provided in the figure.

modelled as a meniscus, it can be seen that, despite an accurate prediction of the onset time, the
front velocity after the onset of convection is underestimated. Only the simulations from case (C),
in which the setup is tilted and the shedding of the plume is therefore asymmetric, can reproduce
the transient front location obtained in the experiments reasonably well. On this basis, we conclude
that the dynamics are very sensitive to small tilt angles and that likely such a small misalignment
also exists in the present experiments. Accordingly, we continue by analyzing the results obtained
by numerical modeling for case (C), specifically with an inclination angle of φ = 1.5◦, which shows
the best agreement with the experiments. For reference, the carbon dioxide concentration profile for
case (B) with the meniscus interface can be found in the Supplemental Material [33].

Figure 9 shows the simulation snapshots for the carbon dioxide concentration profile superim-
posed with the front isocontour corresponding to Cf /Csat = 2.5 × 10−3 and vectors representing the
velocity field. The shown slices correspond to the inclination plane θ = 0, the plane in which also
the gravity vector is tilted. Initially, the front isocontour propagates as a horizontal line, following
the analytical solution of the pure diffusion problem as shown in Fig. 8. Around t ∼ 1 minute, as
observed in Fig. 8, convection sets in and as a result a vortex forms above the front whose direction
is clockwise and consistent with the tilting direction of the setup. Therefore, the front shape gets
distorted complying with the flow structure forming behind. The generated convective flow remains
active behind the front during its entire evolution from top to the lower boundary of the setup and its
deformed shape at very low concentrations suggests a complex concentration field in the solution.
Remarkable asymmetry in the front profile, particularly at the transition time, is observed from
the simulations result as opposed to the experimental measurements. However, this also strongly
depends on the angle of the view. The shape evolution of the front isocontour, shown in Fig. 10 for
two different two-dimensional slices corresponding to θ = 0◦ and θ = 90◦, indicates axisymmetric
or asymmetric profiles depending on the frame of reference chosen. The 3D shape of the front
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FIG. 10. Propagation of the front isosurface obtained from numerical simulations for case (C) with incli-
nation angle of φ = 1.5◦. The front isosurfaces correspond to Cf /Csat = 2.5 × 10−3 and have been taken at
(a) θ = 0, i.e., the inclination plane of gravity and (b) θ = 90◦ plane. Note that the propagation appears to be
axisymmetric in the latter.

isosurface has also been plotted in time in Fig. 12, which will be discussed in more detail in the next
section in order to clarify the physical mechanisms governing the interface dynamics.

C. Front local propagation velocity

Next, we consider the propagation of the front in more detail. As shown schematically in Fig. 11,
the velocity (uiso) of an interface element dA of the front can be decomposed into a component due
to the advection of the underlying fluid element and a propagation relative to the latter (V), such
that uiso = u f + V. By definition, the interface propagation is normal to the isosurface such that
V = vnn̂, with the surface unit normal vector n̂ = ∇C/ | ∇C |. Following an approach previously
employed for enstrophy isosurfaces in turbulent flows [43,44], isoscalar surfaces in turbulent scalar
mixing with chemical reactions [45], and flame propagation in combustion problems [46], we can
derive an expression for the interface propagation velocity vn by noting that in a frame of reference
moving with the isosurface element, the total rate of change of concentration is zero. This leads to

DsC

Dst
= ∂C

∂t
+ uiso · ∇C = ∂C

∂t
+ (vnn̂ + u f ) · ∇C = 0, (9)

FIG. 11. Graphical representation of the local propagation velocity of the front isosurface.
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FIG. 12. Three-dimensional plot of the front isosurface evolving in time for case (C) with inclination
angle of φ = 1.5◦. The isosurfaces correspond to Cf /Csat = 2.5 × 10−3. The color map indicates the local
propagation velocity of the front vn normal to the isosurface calculated according to Eq. (10).

which can be solved for vn to yield

vn = −
∂C
∂t + u f · ∇C

|∇C| = −
DC
Dt

|∇C| = −D∇2C

|∇C| . (10)

Given the incompressibility of the fluid, advection does not affect the mean interface position.
The front propagation is therefore solely related to vn and therefore diffusive in nature at all times.
A quantitative relation can be obtained by equating the volume flux across the convoluted interface
to that through the mean interface according to [47,48]

Q ≡
∫

Aiso

vndA = A0
dzm

dt
, (11)

where the integration is over the surface area Aiso of the isocontour. Using an average of vn across
Aiso denoted by the overbar, this leads to

dzm

dt
= Aiso

A0
vn, (12)

which now expresses the mean front propagation as diffusive propagation (vn) amplified by interface
convolutions. Note that here we use zm to denote the mean position of the isosurface instead of z f

in order to distinguish the volume average implied by Eq. (11) from the 2D average used for z f .
Figure 12 shows the front corresponding to the isosurface at C/Csat = 2.5 × 10−3 at different

moments in time and color coded with the local magnitude of vn. From these snapshots it becomes
clear how convection significantly enhances the interfacial surface area, which is then decreased
again as a result of the interface propagation. Convection is also seen to increase vn locally, in
particular around t = 100s, which is due to a steepening of the scalar gradients close to the front
(see also Fig. 9). Here it should be noted that n̂ = ∇C/ | ∇C | always points toward the region with
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FIG. 13. (a) Volumetric flux Q of the local propagation velocity vn across the front isosurface, compared
to the rate of change in the mean volume above the isosurface, A0dzm/dt . (b) Front propagation velocity
computed from the time evolution of the cross-sectional average of the 3D isosurface, dzm/dt , and from the
product of the relative surface area and averaged local propagation velocity. dz f /dt is provided where z f is
the front trajectory obtained from the horizontally averaged concentration profile in 2D slices, in accordance
with the front tracking approach in experiments. (c) Relative surface area of the isosurface with respect to
the cross sectional area of the cylinder, A0. (d) Temporal evolution of the averaged local propagation velocity,
vn, of the isosurface, compared to the pure diffusive case, vn,d , where it equals the front propagation velocity
dzm/dt = Kf [D(t − t0 )]−1/2, with Kf defined in Eq. (5). The ratio vn/vn,d , is shown in the inset.

higher concentrations, i.e., the region above the front isosurface, such that negative values of vn

correspond to an outward propagation of the interface.
Results for computing the volume flux across the interface from integrating vn (Q) and based

on evaluating A0dzm/dt are compared in Fig. 13(a). As can be seen the agreement is very good as
expected, apart from a short period around t ≈ 150 s. During this time, the wall-parallel part of the
isosurface reaches the wall (see Fig. 12), leading to a sudden decrease in the front surface area as
well as in its mean location, which is not captured sufficiently accurately by our method to extract
the isosurface.

The panel in Fig. 13(b) presents the same data as Fig. 13(a), only this time expressed as effective
mean front velocities according to (12). This form enables a direct comparison to the front velocity
based on z f , previously shown in Fig. 8. For most times the agreement between dz f /dt and dzm/dt
is good, but a significant difference arises for the peak following the onset of convection. This
highlights that especially during this period (70 � t � 200) it is important to account for the three-
dimensionality of the flow.
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The volumetric fluxes and propagation velocity of the front are similarly calculated for the
simulations in case (B), where the top boundary is modelled with the meniscus interface, and are
compared in Figs. S8(a) and S8(b) in the Supplemental Material [33]. The agreement at the times
when the isosurface attains its maximum surface area is better for that case, due to less interaction
of the isosurface with the wall (see Fig. S7 in the Supplemental Material [33]).

For a closer analysis we disentangle the effects leading to diffusion enhancement, followed by
faster propagation of the front after transition to convection. Equation (12) encompasses the two key
parameters contributing to the front dynamics; the relative area of the isosurface, Aiso/A0, multiplied
by the averaged local propagation velocity, vn, which together define the rate of diffusive transport
across the front interface. Any changes in the front surface area or the concentration gradients
(diffusive fluxes) in its vicinity can ultimately alter the diffusion rate across the front isosurface
and impact the propagation velocity. Therefore, we plot the time evolution of Aiso/A0 and vn in
Figs. 13(c) and 13(d), respectively. The front velocity in the pure diffusion problem, which is solely
equivalent to vn [the front remains always flat and thus the relative surface area is unity in Eq. (12)],
has analytically been obtained from Eq. (4) as vn,d = Kf D(t − t0)−1/2 and plotted in Fig. 13(d). The
relative local propagation velocity of the front with respect to that of the pure diffusion problem,
i.e., vn/vn,d , is also shown in the inset.

Up to transition time, the front isosurface remains flat, meaning that the relative surface area
does not change in this period and thus remains equal to unity. Similarly, the local propagation
velocity follows that of the pure diffusion problem as they are essentially the same before the onset
of convection, which leads to a relative local propagation velocity equal to unity, as indicated in the
inset. The value of vn decreases within this period, complying to the front dynamics governed by
diffusion regime, i.e., dzm/dt ∼ t−1/2.

Once convection sets in, the underlying flow field distorts the front intensely, as demonstrated in
Figs. 9 and 12 around t ≈ 1 min. This leads to a significant increase in the surface area of the front,
see Fig. 13(c), as well as the adjacent concentration gradients, ∇C. The latter is reflected in local
propagation velocity when it increases after t ≈ 1 min in Fig. 13(d) (vn ∼ ∇2C and ∇2C is higher
in the vicinity of a stretched interface since ∇C has nonzero components in lateral directions).
Shown in the inset is that the onset of convection effectively doubles the relative propagation
velocity. As a result, lateral diffusive fluxes across the interface intensify, which act against the
further convolution of the front and lead to a reflattening process, once a maximum surface area is
reached. Consequently, the front surface area and local propagation velocity drop after the maximum
distortion until a “steady state” is reached [Figs. 13(c) and 13(d)]. They determine the trend of the
total propagation velocity shown in Fig. 13(b). At this point, the advective fluxes causing the front
distortion approximately equal the lateral diffusive fluxes across the interface which leads to much
lower temporal variations afterwards.

The equilibrium state is even more evident in the simulations for case (B), with the meniscus
interface at the top boundary. In these simulations, the distortion of the front is less pronounced
and therefore the front interface has enough time to almost completely go through the reflattening
process, as shown in Fig. S7 at t = 1737 s. Moreover, the relative front surface area and local
propagation velocity, depicted in Figs. S8(c) and S8(d), approach the values close to unity, meaning
that the dynamics pertinent to the pure-diffusion regime are almost recovered and the front interface
propagates with a nearly constant velocity at late times.

Therefore, although the emerged flow field after the onset of convection does not directly
impact the mean location of the front, it does play a significant role in amplifying the carbon
dioxide diffusion rate across the front interface through increasing the front interface surface area
and local concentration gradients. The front isosurface accelerates remarkably after the onset of
convection and the front trajectory after the onset can still be described approximately with a
relation similar to the analytical solution of a pure-diffusion problem as described in Eq. (4), albeit
with an effective diffusion constant Deff, which accounts for the enhanced diffusion observed in the
convective regime. For the case specifically studied here, the post-transition front trajectory, namely
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the enhanced diffusive regime, can be approximated with Deff = 8.25D, plotted for comparison with
the data obtained via experiments and numerical simulations in Figs. 6 and 8, respectively.

VII. CONCLUSIONS

We have investigated the dissolution and subsequent propagation dynamics of carbon dioxide
gas into a liquid barrier confined to a vertical glass cylinder, both experimentally and through
direct numerical simulations. Replacing the ambient air above the cylinder with a CO2 atmosphere,
induces the dissolution of CO2 into the liquid barrier. Initially, the dissolution of CO2 results in
the formation of a CO2-rich water layer, which is denser in comparison to pure water, at the top
gas-liquid interface. While initially stable, continued dissolution of CO2 into the water barrier results
in the layer becoming gravitationally unstable, leading to the onset of buoyancy-driven convection
and, consequently, the shedding of a buoyant plume. By adding sodium fluorescein, a pH-sensitive
fluorophore, we directly visualize the dissolution and propagation of the CO2 across the liquid
barrier. Tracking the CO2 front propagation in time allows us to define two clear propagation
regimes.

At first, before the onset of convection, the growth dynamics of the boundary layer are purely
governed by diffusion (the diffusive regime). The Rayleigh number continues to increase until it
reaches the critical value of our system of Raz1 = (3.30 ± 0.6) × 103 and convection starts. After
the onset of convection, the propagation dynamics of the CO2 front appear to also behave diffusively,
albeit with an effective diffusion coefficient 8.5 times larger than expected for CO2 in water. This
enhanced diffusive regime remains throughout the experiments, until the system either reaches a
“steady state,” at which point the front propagates at a constant velocity until it reaches the bottom
interface, or becomes unstable, leading to the shedding of an upwelling plume and accelerating
towards a higher velocity.

Using direct numerical simulations, we have uncovered the roots of the observed propagation
mechanics. Initially, before the onset of convection, the simulations show that the relative surface
area of the CO2 front does not increase and the local propagation velocity follows the expected
trend for a purely diffusive problem. After the onset of convection, first the relative surface area
and local concentration gradients incorporated in the averaged local propagation velocity on the
front, vn, concurrently increase due to the emerging local fluid flow. The diffusive transport rate
across the front interface is remarkably amplified, leading to much faster propagation velocity of
the CO2 front. In the meantime, increased lateral diffusive fluxes across the distorted interface
act as a competing mechanism against the advective fluxes and further convolution of the front.
This triggers the reflattening process of the CO2 front as a result of which the front surface
area and local propagation velocity drop and a “steady state” is reached. At this point, the
advective effects causing the front distortion approximately equal the diffusive flattening of the
interface, resulting in the front propagating at a seemingly constant velocity. The front trajectory
after the onset can still be described with a relation similar to the analytical solution of a pure-
diffusion problem, albeit with an effective diffusion 8.5 times higher than expected for CO2 in
water.

Our findings offer insight into the mass-transfer effects encountered in laterally confined CO2

sequestration operations, as well as microfluidic or microreactor devices comprising segmented
gas-liquid systems or density-changing solutes. Such a better understanding of the formation and
propagation dynamics of the convective plume can uncover previously undiscovered mechanics
pertaining to the dissolution and mixing off chemical species in a variety of applications. An
interesting and relevant route to follow is the extension of our work to vessels with larger lateral
extension (larger aspect ratio), where many plumes drive the downwards transport of the flow.
Based on the results of Shishkina [49], we expect a strong increase of the transport with increas-
ing aspect ratio. For very large aspect ratios, the unconfined limit of CO2 sequestration will be
approximated [6].
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APPENDIX: INTENSITY PROFILE NORMALIZATION AND CONCENTRATION CALIBRATION

The grayvalue (green channel value) profile G(z, t ) of the raw fluorescence images is first
normalized by the initial profile, i.e., without significant amounts of CO2 present in the liquid,
to correct for the spatial inhomogeneity of the LED lighting. Thus, I = G(z, t )/G(z, 0) is the
normalized apparent intensity. However, I decays exponentially in time due to photobleaching. We
assume that rate of change of the I is the sum of the rate of change due to CO2 quenching (pH
change) and the rate of change imposed by photobleaching:

dI

dt
= dÎ

dt
− β Î, (A1)

where Î denotes the true intensity (corrected for photobleaching) and β is the photobleaching
rate constant. It follows that β is in fact pH dependent, i.e., β = β(Î∗). We approximate the
dependence to be linear as β = aÎ + b, where coefficients a and b are obtained experimentally,
e.g., from the intensity decay rate within the CO2-free region in the water column in combina-
tion with measurements from purely diffusive experiments (where the cell is inverted). We find
a = −5.0 ± 0.2 × 10−4 s−1 and b = 6.8 ± 0.3 × 10−4 s−1 across the 12 experiments. The corrected

C
Csat

1 − I*

FIG. 14. Calibration curve (dotted line), which relates the normalized intensity I∗ to the dimensionless
concentration, C/Csat under our particular experimental conditions. The blue data points are measurements of
the self-similar intensity profile I∗(η) of the calibration (pure diffusion) experiment, for which C(η)/Csat =
erfc(η). Inset: Same calibration curve plotted in semi-logarithmic axes.

093501-20



DIFFUSIVE AND CONVECTIVE DISSOLUTION OF …

intensity at any location z can be solved for iteratively by linearising Eq. (A1) as follows:

Î (z)n+1 − Î (z)n = In+1(z) − In(z) + βn(z)În(z)�t, (A2)

where subscript n refers to the current time step or image frame and �t is the time difference
between consecutive time steps. Finally, the corrected intensity is then renormalized by the maxi-
mum and minimum intensity values (within the central region far from the shadowing effect of the
meniscii or solid boundaries). Thus,

I∗(z, t ) = Î (z, t ) − min(Î )

max(Î ) − min(Î )
, (A3)

keeping in mind that max(Î ) ≈ 1.0 and min(Î ) ≈ 0.4 are quite close (ideally identical) for all
experiments.

For the concentration calibration, we relate the intensity profile of a diffusive experiment to
the self-similar profile C/Csat = erfc(η), with η = z/

√
4Dt . Consequently, the intensity profiles

evolves self-similarly, too: I∗(z, t ) collapse into the same curve I∗(η). Thus, the calibration function
C/Csat = F (1 − I∗) can be obtained by a monotonic fit on a plot of erfc(η) vs 1 − I∗(η), which is
provided in Fig. 14.
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