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Underlying physics of mixing efficiency for shear-forced,
stratified turbulence
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We study three types of homogeneous, shear-forced, stably stratified turbulence in a
triply periodic domain over a wide range of stratification strengths. The shear forcings
correspond to three different turbulence generation scenarios: (i) vertically sheared mean
horizontal flow, (ii) horizontally sheared mean vertical flow, and (iii) horizontally sheared
mean horizontal flow. At all stratification strengths, i.e., from weak to strong, we observe
a persistent ordering of the mixing coefficient � values such that the second set of
simulations exhibit the largest values and the third set of simulations exhibit the smallest
values, implying that the turbulence generation mechanism has a significant effect on
�. For very strong stratification, we observe that � begins to decrease, and this shift is
associated with the difference between the vertical component of turbulent kinetic energy
and turbulent potential energy becoming negative and the pressure scrambling term in-
creasing in magnitude to keep the vertical buoyancy flux positive. Our findings demonstrate
that the turbulence generation mechanism strongly affects the mixing characteristics of
stably stratified turbulence and parametrizations of � for climate applications will need to
distinguish how the turbulence is generated, which will require knowing more information
than just the buoyancy Reynolds number Reb and the turbulent Froude number Frk .

DOI: 10.1103/PhysRevFluids.8.084803

I. INTRODUCTION

The fluid motions of earth’s oceans are characterized by a large range of spatial and temporal
scales [1,2]. Because it is simply not possible to resolve all these scales, global ocean simulations of-
ten rely on downgradient closures to represent subgrid-scale (unresolved) turbulent momentum and
scalar fluxes [3,4]. Unfortunately, the vertical density distribution and meridional transport of large-
scale ocean simulations are sensitive to the choice of subgrid-scale models [5–9]. In particular, ver-
tical buoyancy fluxes for large-scale ocean simulations are often calculated from a flux parametriza-
tion using a turbulent diffusivity following Ref. [10]. A nondimensional form from Ref. [11] is
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where DT and D are the turbulent and molecular diffusivities of the stratifying scalar, respectively;
Ri f is the mixing efficiency (also known as the flux Richardson number), generally representing
the fraction of the energy input that is used to irreversibly mix the stratifying scalar field; � =
Ri f /(1 − Ri f ) is the mixing coefficient (also known as the flux coefficient); εk is the dissipation
rate of turbulent kinetic energy; ν is the kinematic viscosity of the fluid; N2 = −(g/ρ0)dzρ is
the vertical background stratification; Reb = εk/νN2 is the buoyancy Reynolds number, which is a
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FIG. 1. Mixing efficiency Ri f as a function of buoyancy Reynolds number Reb from Monismith et al. [18].
The legend specifies the denotations for data from the following sources: (i) (Profiler dataset) measurements
from the NATRE, BBTRE96/97, SPAM1/2, MIXET2, EXITS1, and GRAVILUCK campaigns that were
accessed via the NSF supported microstructure database curated by Dr. Amy Waterhouse and Prof. Jennifer
MacKinnon [19]; (ii) (Covariance dataset) measurements presented in Refs. [20–23]; and (iii) Refs. [11,24–
33]. (The figure has been reproduced in agreement with AGU permissions policy for republication in academic
works.)

measure of the intensity of a stratified turbulent flow; and Pr = ν/D is the molecular Prandtl number.
While several definitions of the flux Richardson number exist, we will mainly use the reversible
and irreversible definitions in our analyses, i.e., Ri f ,r = B/Pk and Ri f = εp/(εk + εp), respectively,
where εp is the dissipation rate of turbulent potential energy, B is the vertical buoyancy flux, and Pk is
the rate of production of turbulent kinetic energy. For statistically stationary and homogeneous tur-
bulence, these two definitions are equivalent since B = εp and Pk = εk + εp under these conditions,
but there are important differences between the two definitions when the turbulent flow is unsteady
and inhomogeneous. Reference [12] provides further discussion and quantitative comparisons of the
different definitions of the flux Richardson number and Ref. [13] introduces a generalized definition
of the mixing efficiency for unsteady, inhomogeneous, stably stratified turbulent flows.

Given that the molecular Prandtl number is known and the buoyancy Reynolds number can be
calculated from parameters measurable in the field, the main challenge of using Eq. (1) is estimating
� in terms of easily accessible quantities. This task has been summarized well in Refs. [14–17].
Here we provide a brief sketch of more recent efforts to estimate �. Reference [18] analyzed
the relationship between Ri f and Reb using a large collection of laboratory experiments, field
measurements, and numerical simulations of different types of stably stratified turbulent flows. The
study found that most data sets exhibited a constant value of Ri f for Reb < 100 and Ri f ∼ Re−1/2

b
for Reb > 100 with some data sets exhibiting this transition at values of Reb much larger than 100
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(see Fig. 1, reproduced from Ref. [18]). Another set of efforts to address this challenge has involved
studying the relationship between � and the turbulent Froude number Frk = εk/Nk, where k is the
turbulent kinetic energy (TKE). While Reb accounts for the strength of the background stratification
through N , the same value of Reb can be achieved by both weakly and strongly stratified conditions
with the appropriate turbulence levels. By considering that the buoyancy Reynolds number can
be rewritten as Reb = ReLFr2

k , where ReL = k2/νεk is the large-eddy Reynolds number, Ref. [34]
importantly showed that � depends primarily on Frk and exhibits a weaker dependence on the
Reynolds number. Reference [35] also observed this primary dependence on Frk for sheared,
stably stratified turbulence, where � ≈ const was found as Reb was increased across approximately
two orders of magnitude. Other recent work [36–40] has also demonstrated a strong relationship
between � and Frk . Furthermore, Ref. [41] extended this Frk-based description of � in Ref. [36]
to explicitly account for the effects of mean shear through a nondimensional shear parameter
S∗ = Sk/εk .

While obtaining field estimates of k is challenging, estimating � using Frk does seem to alleviate
the issue of nonunique regime transitions when considering � = f (Reb) (see, e.g., Figs. 14 and
6 of Ref. [38]). Nevertheless, there still remains the question of how the turbulence generation
mechanism affects the magnitude of � for fixed values of Frk . Considering Fig. 2 of Ref. [18] once
more (see Fig. 1), perhaps some of the differences for Reb < 100 could be explained by the fact that
different turbulence generation mechanisms are at play. Additionally, Fig. 1 of Ref. [36] also exhibits
a lack of complete collapse between the sheared and unsheared data sets, further suggesting the
importance of distinguishing different turbulence generation mechanisms. For example, Ref. [37]
found � values varying by roughly 30% at Frk ≈ 10−2, and this type of forcing sensitivity has been
observed too in sheared stably stratified turbulence (see, e.g., Ref. [41] for a homogeneous example
and Ref. [42] for an inhomogeneous example contrasting Kelvin-Helmholtz and Holmboe systems).
Finally, when considering buoyancy-driven systems (another type of stratified flow) very efficient
mixing is expected (see, e.g., Ref. [43,44]) relative to mechanically driven systems at similar values
of Frk , further illustrating the importance of the turbulence generation mechanism.

To explore the relationship between turbulence generation mechanisms and the values of the
mixing efficiency, we extend the work of Ref. [40] by considering shear-forced, stably stratified
turbulence given that turbulent oceanic processes generally involve the combined effects of shear
and stratification. Reference [40] studied forced (unsheared), stably stratified turbulence, where the
shape of the mixing coefficient curve as a function of Frk was connected to important changes in the
Reynolds stress and buoyancy flux budgets, in particular to (i) when the pressure-strain correlations
became the dominant generation mechanism for the vertical Reynolds stresses and (ii) the pressure
scrambling term, which involves correlation between the pressure fluctuations and vertical gradient
of the density fluctuations, switched signs.

Generally, the shear production term associated with the TKE equation can be written as
Pk = −u′

iu
′
j∂ jui, where k denotes that this quantity is associated with TKE and is not a tensor

index. In this expression, i, j = 1, 2, 3 are the tensor indices and repeated indices imply summation.
Here we consider three shear forcing scenarios with respect to a vertical background stratification:
(i) vertical shear of mean streamwise velocity (Pk = −u′w′∂zu), (ii) streamwise shear of mean verti-
cal velocity (Pk = −w′u′∂xw), and (iii) lateral shear of mean streamwise velocity (Pk = −u′v′∂yu).
A schematic of these three scenarios is shown in Fig. 2, where the colored shading represents the
stable background stratification and the arrows indicate the mean profiles associated with each type
of shear forcing.

Without vertical stratification, these three cases could be made equivalent under appropriate co-
ordinate transformations, but they become distinct when there is vertical stratification. For example,
while the first and third scenarios directly generate the streamwise Reynolds stresses (u′u′) and the
second scenario directly generates the vertical Reynolds stresses (w′w′), all three of these scenarios
convert the vertical Reynolds stresses into turbulent potential energy via the vertical buoyancy flux
(gw′ρ ′/ρ0). The first type of shear forcing is connected to turbulence associated with shear layers
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FIG. 2. Schematic of the three types of shear-forced, stably stratified turbulence scenarios. (a) Set 1: dzu
( fx = −w′dzu), vertical shear of mean streamwise velocity. (b) Set 2: dxw ( fz = −u′dxw), streamwise shear
of mean vertical velocity. (c) Set 3: dyu ( fx = −v′dyu), lateral shear of mean streamwise velocity. The colored
shading represents the stable background stratification.

and stratified channel flows [8,26,38,42,45–57]. The second type of shear forcing is connected to
turbulence associated with inclined gravity currents, obliquely propagating internal gravity waves,
and turbulent plumes [58–63]. The third type of shear forcing is connected to turbulence associated
with lateral shear [64–71]. The numerous shear-driven turbulent mixing processes in the global
oceans (see, e.g., Fig. 5 of Ref. [72] and Fig. 1 of Ref. [73]) are likely represented by some
combination of these three scenarios.

Here we conduct a set of direct numerical simulations (DNSs) of these three different types
of shear-forced, stably stratified, homogeneous turbulence with the goal of studying the Reynolds
stress and scalar flux dynamics as a function of the relative importance of mean shear and strat-
ification. Our goals are twofold: (i) study how the different shear configurations (i.e., large-scale
forcing) affect the mixing coefficient as a function of increasing stratification and (ii) explain
the differences in the mixing coefficient for the three forcing scenarios by identifying the driving
physical mechanisms for the Reynolds stresses and scalar fluxes.

This paper is organized as follows. Governing equations, related second-moment equations,
and solution methodology are discussed in Sec. II. Simulation results as a function of Frk and
an alternative formulation of Ri f with some remarks on Reynolds-number effects are presented
in Sec. III. A summary and a discussion of our results are provided in Sec. IV.

II. PROBLEM SETUP AND METHODOLOGY

A. Equations of motion and second-moment budgets

In this study we use the incompressible Navier-Stokes equations under the Boussinesq approxi-
mation with linear velocity forcing [74]

∂u j

∂x j
= 0, (2)

∂u j

∂t
+ um

∂u j

∂xm
= − 1

ρ0

∂ p

∂x j
− g

ρ0
ρδ j3 + ν

∂2u j

∂xm∂xm
+ f j, (3)

∂ρ

∂t
+ um

∂ρ

∂xm
= −w

dρ

dz
+ D

∂2ρ

∂xm∂xm
, (4)

where u j , p, and ρ represent velocity, pressure, and density fluctuations, respectively; ρ(z) is the
stable, linearly varying, background density field (dzρ < 0); g is the gravitational acceleration; ρ0

is the reference density; ν is the kinematic viscosity of the fluid; D is the molecular diffusivity of
density; and f j = Ajmum is a forcing term that depends linearly on the velocity based on a second-
rank tensor Ajm, whose entries are constant in time and uniform in space. Tensor indices 1, 2, and 3
correspond to spatial directions x, y, and z and velocity fields u, v, and w, respectively, with gravity
acting along the z axis. Repeated indices imply summation.
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The turbulent kinetic energy k = 1
2 u ju j , turbulent potential energy (TPE) kp = 1

2α2ρρ, Reynolds
stress (RS) uiu j , and density flux (DF) u jρ equations associated with (2)–(4) are (BF denotes
buoyancy flux)

dk

dt
= u j f j︸︷︷︸

TKE production

− g

ρ0
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BF

− ν
∂u j

∂xm

∂u j

∂xm︸ ︷︷ ︸
TKE dissipation

= Pk − B − εk, (5)

dkp

dt
= g

ρ0
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BF

− Dα2 ∂ρ

∂xm

∂ρ

∂xm︸ ︷︷ ︸
TPE dissipation

= B − εp, (6)

duiu j

dt
= (ui f j + u j fi )︸ ︷︷ ︸

RS production

+ 2

ρ0
psi j︸ ︷︷ ︸

pressure strain

− g

ρ0
(uiρδ j3 + u jρδi3)︸ ︷︷ ︸

RS source or sink due to BF

− 2ν
∂ui

∂xm

∂u j

∂xm︸ ︷︷ ︸
RS dissipation

= Pi j + Ri j − Bi j − εi j, (7)

du jρ

dt
= f jρ︸︷︷︸

DF production

+ 1

ρ0
p

∂ρ

∂x j︸ ︷︷ ︸
pressure scrambling

−u jw
dρ

dz
− g

ρ0
ρρδ j3︸ ︷︷ ︸

DF source or sink due to RS and TPE

− (ν + D)
∂u j

∂xm

∂ρ

∂xm︸ ︷︷ ︸
DF dissipation

, (8)

where si j = 1
2 (∂ jui + ∂iu j ) is the rate-of-strain tensor associated with the velocity fluctuations and

α = g/ρ0N is a constant and uniform dimensional factor (N is also constant and uniform) needed
to convert the dimensions of density to those of velocity. In (5) and (6), Pk is the rate of production
of TKE from linear forcing, B is the buoyancy flux, and εk and εp are the dissipation rates of TKE
and TPE, respectively. We note that the subscripts k and p indicate quantities associated with TKE
and TPE, respectively, and do not indicate tensor indices. In (7), Pi j is the rate of production of the
Reynolds stresses from linear forcing, Ri j represents the pressure-strain correlations, Bi j is a term
associated with the buoyancy flux, and εi j represents the dissipation rates of the Reynolds stresses.
In (8), the first term on the right-hand side (RHS) is a production term associated with the linear
forcing. The second term on the RHS represents correlations between the pressure and the density
gradient and is often referred to as the pressure scrambling term in analogy to the pressure-strain
correlations that redistribute or scramble the diagonal Reynolds stresses [75,76]. Physically, for
passive scalar fluxes, the pressure scrambling term has been shown to be the primary mechanism
that balances the terms involving the mean shear and mean scalar gradients [77]. The third and
fourth terms on the RHS represent sources and sinks due to the Reynolds stresses and TPE, and
the final term on the RHS is a dissipation term. We use overlines to denote volume averaging, and
because our flow is statistically homogeneous in all three spatial directions, the transport terms are
exactly zero, leaving only the volume-averaged source and sink terms in (5)–(8).

To study the three distinct shear-forcing scenarios as illustrated in Fig. 2, we consider these three
choices of the linear forcing term: f j = A13wδ j1 = −wdzuδ j1 for the first case, f j = A31uδ j3 =
−udxwδ j3 for the second case, and f j = A12vδ j1 = −vdyuδ j1 for the third case. In the subsequent
sections, we denote all three forcing rates A13, A31, and A12 by −S, but we highlight their differences
in Table I by summarizing the volume-averaged terms involving f j in (5)–(8). In Sec. III we
evaluate the terms on the RHSs of (5)–(8) as a function of the turbulent Froude number for each
of the three shear-forcing scenarios. This allows us to explore how different turbulence generation
mechanisms lead to different large-scale anisotropy based on how energy is transferred between
the three components of TKE and TPE and, as a result, how this leads to differences in the mixing
coefficient values across the three scenarios.

Before moving to the methods, we note that Eqs. (2)–(4) do not involve any mean advection
terms. To distinguish this system from the classical homogeneous shear turbulence that does include
mean advection, we will refer to it as the shear-forced model problem. If mean advection terms were
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TABLE I. Summary of terms involving the forcing in Eqs. (5)–(8).

Term Set 1 (dzu) Set 2 (dxw) Set 3 (dyu)

Forcing
f j = Ajmum f1 = A13w = −wdzu f3 = A31u = −udxw f1 = A12v = −vdyu

TKE production
Pk = uj f j Pk = u1 f1 = −uwdzu Pk = u3 f3 = −wudxw Pk = u1 f1 = −uvdyu

Diagonal Reynolds stress
production
Pi j = ui f j + uj fi P11 = 2Pk = −2uwdzu P33 = 2Pk = −2wudxw P11 = 2Pk = −2uvdyu
(for i = j)

Reynolds shear stress
production
Pi j = ui f j + uj fi P13 = P31 = −wwdzu P13 = P31 = −uudxw P12 = P21 = −vvdyu
(for i �= j)

present, the second forcing scenario would require a source term in Eq. (4) to counteract the tilt of
the mean vertical stratification similarly as in Ref. [78]. Furthermore, when the mean advection
terms are missing, there is a modified prefactor in the Poisson equation for the pressure fluctua-
tions, which affects the volume-averaged pressure-strain correlations and consequently changes the
relative magnitudes of the Reynolds stresses compared to their classical counterparts (see Tables 1
and 2 of Ref. [74]). While the two systems will also differ in how flow features are deformed and
their transition to turbulence (see, e.g., Refs. [47–49]), Ref. [41] demonstrated that both model
problems exhibit similar power-law scaling relationships between � and turbulence parameters just
with different proportionality constants. This is likely due to the volume-averaged Reynolds stress
and buoyancy flux equations being the same for the two systems. As a first consideration, we believe
the study of these three shear-forced systems reveals important insights regarding the relationship
between the turbulence generation mechanism and the mixing coefficient that will extend to systems
with mean advection.

B. Numerical solution procedure and nondimensional parameters

We solved Eqs. (2)–(4) for a triply periodic cubic domain of length L = 2π using our own
Fourier pseudospectral solver with a fourth-order Runge-Kutta time-stepping scheme. We verified
the fourth-order temporal accuracy and nonlinear advection terms by comparing our numerical
solutions with the analytical solutions of a decaying Taylor-Green vortex in two dimensions [79].
We also dealiased the nonlinear terms exactly by zero padding [80]. Finally, we implicitly verified
the linear shear forcing and density coupling by observing that our simulations obeyed the volume-
and time-averaged turbulence budgets shown in Eqs. (5)–(8) (see Figs. 4, 7, 8, 12, and 13). A series
of rectangular domain simulations with Lx = 2Ly = 2Lz = 4π was carried out for the first type of
forcing (vertical shear of mean horizontal flow) to explore domain size effects for shear-forced,
stably stratified turbulence simulations, which were found to be insignificant for the quantities
of interest in this study [41]. Therefore, the remaining simulations (i.e., second and third forcing
scenarios) were conducted just using cubic domains of length L = 2π . Additional information about
the three sets of simulations is provided in Table II.

The nondimensional input parameters of our system are N/S, SL2/ν, and Pr = ν/D, where
N is the mean buoyancy frequency and S is the rate of shear forcing (they are both constant
in time and uniform in space). For our simulations, we prescribed a molecular Prandtl number
of unity and we primarily varied N/S to study the effects of increasing stable stratification
relative to momentum forcing. Because the value of S varied across our simulations, our input
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TABLE II. Global input parameters for the numerical simulations. Simulations S1C1–S1C6, S1R16,
S2C19–S2C23, and S3C21–S3C28 (see Tables III–V) used 
t = 1.25 × 10−3 s for numerical stability (C
denotes cubic and R rectangular).

Domain Lx, Ly, Lz (m) Nx, Ny, Nz 
t (s) ν (m2/s) κ (m2/s) g (m2/s) ρ0 (kg/m3)

Set 1
Cubic 2π, 2π, 2π 64, 64, 64 2.5 × 10−3 5 × 10−2 5 × 10−2 9.8 1
Rectangular 4π, 2π, 2π 128, 64, 64 2.5 × 10−3 5 × 10−2 5 × 10−2 9.8 1

Set 2
Cubic 2π, 2π, 2π 64, 64, 64 2.5 × 10−3 5 × 10−2 5 × 10−2 9.8 1

Set 3
Cubic 2π, 2π, 2π 64, 64, 64 2.5 × 10−3 5 × 10−2 5 × 10−2 9.8 1

Reynolds number SL2/ν also varied. The nondimensional output parameters of interest of our
system are Reb = εk/νN2 = (lO/ηk )4/3, ReS = εk/νS2 = (lC/ηk )4/3, ReL = k2/νεk = (lL/ηk )4/3,
Frk = εk/Nk = (lL/lO)−2/3, S∗ = Sk/εk = (lL/lC )2/3, and � = εp/εk , where lL = k3/2/εk , lO =
(εk/N3)1/2, lC = (εk/S3)1/2, and ηk = (ν3/εk )1/4 are the large-eddy, Ozmidov, Corrsin, and Kol-
mogorov scales, respectively. The first five nondimensional parameters are the buoyancy Reynolds
number, the shear Reynolds number, the large-eddy Reynolds number, the turbulent Froude number,
and the nondimensional shear parameter and they can be interpreted as the ratio of turbulence
length scales. We report the values of these parameters from our simulations as a function of the
gradient Richardson number (Rig = N2/S2) in Tables III–V. We also provide the values of SL2/ν

as a function of Rig for all simulations. For the rectangular domain simulations of the first type of
shear forcing, we have used Lx = 4π instead of L = 2π to compute the input Reynolds number.

III. RESULTS

A. Parameter space and total energy budget

We first study the nondimensional total energy budget by combining (5) and (6) under statistically
stationary conditions. For the three forcing scenarios, we arrive at the following expressions:

N

S
= − 2b13

Frk (1 + �)
, (9a)

N

S
= − 2b31

Frk (1 + �)
, (9b)

N

S
= − 2b12

Frk (1 + �)
. (9c)

Equations (9a)–(9c) are one particular manifestation of the nondimensional total energy budget
that relates the input parameter N/S to output parameters b13, b31, b12, Frk , and �, where bi j =
uiu j/2k − δi j/3 is the Reynolds stress anisotropy tensor. Because bi j is symmetric, b13 = b31, but
we have distinguished them in Eqs. (9a) and (9b) to indicate that the expressions correspond to
two different types of shear forcing. In Fig. 3(a) we plot the terms on the RHSs of Eqs. (9a)–(9c)
as a function of the gradient Richardson number (Rig = N2/S2). Each symbol represents volume-
and time-averaged values, and each color and symbol combination corresponds to one of the three
forcing strategies: type 1 (red squares), type 2 (blue triangles), and type 3 (orange circles). The
dashed lines represent y = 2x1/2 (red), y = 4x1/2 (blue), and y = x1/2 (orange). The fact that all of
the points lie close to the dashed lines indicates statistically stationary turbulence.

Next we focus on the relationship between Rig, which is prescribed in our simulations, and the
turbulent Froude number Frk and the nondimensional shear parameter S∗, which are outcomes of our
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TABLE III. Nondimensional parameters for the set of DNSs with the first type of shear forcing.

Simulation Rig SL2
x /ν Frk

a S∗a ReL
a Reb

a ReS
a κmaxη

a

S1C1 1/1024 2368.71 13.43 2.38 183.64 37274.87 36.40 1.65
S1C2 1/512 2368.71 9.48 2.39 186.85 18711.79 36.55 1.65
S1C3 1/256 2368.71 6.66 2.40 177.25 8722.92 34.07 1.68
S1C4 1/128 2368.71 4.62 2.45 173.90 4164.84 32.54 1.70
S1C5 1/64 2368.71 3.21 2.49 175.48 1990.71 31.10 1.71
S1C6 1/32 4466.47 2.14 2.64 307.28 1540.23 48.13 1.12
S1C7 1/16 3158.27 1.42 2.81 189.00 418.93 26.18 1.55
S1C8 3/32 2578.72 1.10 2.97 115.02 154.08 14.44 1.99
S1C9 3/32 3947.84 1.09 2.98 191.37 262.72 24.63 1.41
S1C10 1/8 2233.24 0.89 3.18 92.77 83.66 10.46 2.33
S1C11 1/8 3947.84 0.87 3.24 159.27 134.44 16.81 1.55
S1C12 5/32 1997.47 0.75 3.39 64.05 39.77 6.21 2.79
S1C13 5/32 3947.84 0.72 3.52 135.54 76.01 11.88 1.68
S1C14 3/16 1823.43 0.66 3.48 49.70 24.44 4.58 3.15
S1C15 3/16 3947.84 0.62 3.70 120.99 49.93 9.36 1.78
S1C16 1/4 1579.14 0.54 3.72 34.67 11.65 2.91 3.81
S1C17 1/4 4737.41 0.50 3.99 117.78 32.14 8.03 1.70
S1C18 9/32 4466.47 0.46 4.10 117.38 26.70 7.51 1.78
S1C19 5/16 4237.27 0.42 4.23 101.56 20.02 6.26 1.91
S1C20 49/144 4737.41 0.39 4.35 122.23 21.00 7.15 1.75
S1C21 11/32 4040.08 0.39 4.36 103.74 17.20 5.91 1.98
S1C22 4/9 4737.41 0.32 4.72 121.60 13.55 6.02 1.83
S1C23 9/16 4737.41 0.27 4.91 132.94 11.47 6.45 1.81
S1C24 25/36 4737.41 0.23 5.31 148.50 8.83 6.13 1.85
S1R1 1/32 9474.82 2.20 2.57 252.15 1328.70 41.52 1.59
S1R2 1/16 9474.82 1.47 2.72 241.68 591.55 36.97 1.65
S1R3 3/32 11053.96 1.15 2.85 266.03 404.39 37.91 1.52
S1R4 1/8 11053.96 0.94 3.00 239.78 263.91 32.99 1.59
S1R5 5/32 11053.96 0.79 3.21 252.72 184.76 28.87 1.63
S1R6 3/16 12633.09 0.68 3.41 261.39 147.58 27.67 1.55
S1R7 1/4 12633.09 0.54 3.71 242.97 90.89 22.72 1.64
S1R8 9/32 12633.09 0.48 3.89 251.13 67.81 19.07 1.69
S1R9 5/16 14212.23 0.46 3.87 264.60 67.68 21.15 1.56
S1R10 11/32 14212.23 0.44 3.90 279.17 62.88 21.61 1.55
S1R11 4/9 14212.23 0.36 4.11 275.51 44.00 19.56 1.59
S1R12 9/16 15791.37 0.32 4.17 351.94 40.49 22.78 1.44
S1R13 25/36 18949.64 0.26 4.53 454.80 35.28 24.50 1.29
S1R14 121/144 18949.64 0.18 6.15 546.12 18.76 15.76 1.46
S1R15b 17/20 18949.64 0.20 5.53 538.81 22.43 19.07 1.38

0.18 6.05 524.70 19.03 16.18 1.46
S1R16b 7/8 18949.64 0.18 5.99 532.85 17.85 15.62 1.44

0.16 6.60 636.29 17.82 15.59 1.47
S1R17 9/10 18949.64 0.12 8.98 700.77 10.64 9.57 1.68
S1R18b 1 18949.64 0.17 5.84 575.35 18.26 18.26 1.40

0.14 6.90 673.25 16.21 16.21 1.51
0.082 12.23 958.02 6.54 6.54 1.82
0.058 17.12 1250.12 4.37 4.37 1.99

aValues are volume and time averaged.
bTime averaging has been carried out over multiple segments to avoid times when Reb < 1.
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TABLE IV. Nondimensional parameters for the set of DNSs with the second type of shear forcing.

Simulation Rig SL2/ν Frk
a S∗a ReL

a Reb
a ReS

a κmaxη
a

S2C1 1/1024 2368.71 13.20 2.42 186.23 35647.58 34.81 1.67
S2C2 1/512 2368.71 9.45 2.39 190.00 18902.92 36.92 1.65
S2C3 1/256 2368.71 6.65 2.41 185.52 9063.70 35.41 1.66
S2C4 1/128 2368.71 4.66 2.43 176.26 4257.34 33.26 1.69
S2C5 1/64 2368.71 3.27 2.45 193.66 2338.15 36.53 1.66
S2C6 1/32 2977.65 2.20 2.58 226.47 1245.96 38.94 1.45
S2C7 1/16 3158.27 1.50 2.67 234.66 613.88 38.37 1.42
S2C8 3/32 3223.40 1.17 2.78 242.54 416.19 39.02 1.41
S2C9 1/8 2791.55 0.97 2.93 190.37 229.48 28.69 1.64
S2C10 5/32 2996.20 0.79 3.21 207.15 156.99 24.53 1.63
S2C11 3/16 2735.15 0.71 3.27 154.50 101.91 19.11 1.84
S2C12 1/4 3158.27 0.55 3.61 168.34 66.16 16.54 1.76
S2C13 9/32 2977.65 0.52 3.62 162.52 52.79 14.85 1.86
S2C14 5/16 2824.85 0.48 3.75 126.87 36.34 11.36 2.05
S2C15 11/32 2693.38 0.46 3.72 123.32 32.71 11.24 2.10
S2C16 4/9 3553.06 0.37 4.04 151.67 24.24 10.77 1.83
S2C17 9/16 3947.84 0.31 4.28 168.83 19.39 10.91 1.74
S2C18 5/8 4737.41 0.27 4.74 193.28 16.28 10.17 1.62
S2C19 25/36 3947.84 0.19 6.23 157.83 7.67 5.33 2.16
S2C20 3/4 4737.41 0.22 5.17 199.40 11.98 8.99 1.69
S2C21 4/5 5132.19 0.16 6.97 230.45 7.00 5.60 1.83
S2C22 17/20 5132.19 0.17 6.28 241.34 8.48 7.21 1.74
S2C23 1 5132.19 0.16 6.12 248.63 7.94 7.94 1.69

aValues are volume and time averaged.

simulations. Because N and S are both prescribed, the variations of Frk and S∗ with Rig are entirely
due to changes in k and εk . We can interpret the two outcome variables using timescale ratios such
that Frk ∼ τB/τL and S∗ ∼ τL/τS , where τL ∼ k/εk is the large-eddy timescale, τB ∼ 1/N is the
buoyancy timescale, and τS ∼ 1/S is the shear timescale. Since τL adjusts relative to τB and τS to
achieve statistical stationarity, the changes to Frk and S∗ can be understood as representing shifts
in the strengths of mean stratification and mean shear relative to turbulence. In Fig. 3(b) we plot
the volume- and time-averaged values of Frk and S∗ with values of Rig shown in color such that
Rig = 1/4 is shown in light gray. Once again, the symbols indicate the shear forcing strategy: type
1 (squares), type 2 (triangles), and type 3 (circles). Generally, we observe that S∗ is insensitive to
increasing Rig for Frk > 1. Physically, this indicates that the mean shear strength needed to sustain
turbulence is not really affected by the background stratification. For Frk < 1, however, we observe
large changes in S∗ with respect to Frk as Rig is increased, indicating that stronger levels of mean
shear are needed to sustain turbulence with increasing stratification. We also note that the first two
types of forcing (squares and triangles) have similar values of S∗ for any given value of Frk , but
for Rig > 1/4 the third type of forcing (circles) typically has smaller values of S∗ at a given Frk ,
suggesting that turbulence can be sustained at weaker levels of mean shear compared to the first two
types of forcing.

B. The TKE and TPE budgets

We now turn to the steady-state and volume- and time-averaged TKE and TPE budgets, i.e.,
Eqs. (5) and (6). For all three types of forcing, the TKE budget (not shown) exhibits a balance
between TKE production and the two sink terms (vertical buoyancy flux and dissipation) for all
turbulent Froude numbers. Similarly, for all three types of forcing, the TPE budget (not shown)

084803-9



YOUNG R. YI AND JEFFREY R. KOSEFF

TABLE V. Nondimensional parameters for the set of DNSs with the third type of shear forcing.

Simulation Rig SL2/ν Frk
a S∗a ReL

a Reb
a ReS

a κmaxη
a

S3C1 1/1024 1973.92 13.46 2.38 157.86 30980.61 30.25 1.89
S3C2 1/512 1973.92 9.56 2.37 147.61 15080.82 29.45 1.91
S3C3 1/256 1973.92 6.59 2.43 156.74 7392.60 28.88 1.91
S3C4 1/128 1973.92 4.71 2.40 157.97 3845.45 30.04 1.89
S3C5 1/64 1973.92 3.36 2.38 151.56 1897.69 29.65 1.90
S3C6 1/32 2368.71 2.30 2.45 180.65 1042.01 32.56 1.69
S3C7 1/16 2368.71 1.61 2.48 192.67 544.34 34.02 1.67
S3C8 3/32 2368.71 1.29 2.54 160.00 291.34 27.31 1.77
S3C9 1/8 3158.27 1.09 2.60 243.01 322.33 40.29 1.40
S3C10 3/16 3158.27 0.90 2.57 256.64 227.93 42.74 1.37
S3C11 1/4 3158.27 0.76 2.63 244.57 157.39 39.35 1.40
S3C12 3/8 3158.27 0.56 2.90 293.85 101.59 38.10 1.41
S3C13 1/2 3553.06 0.46 3.06 392.34 87.84 43.92 1.28
S3C14 5/8 3553.06 0.42 3.01 369.65 69.98 43.74 1.28
S3C15 3/4 3553.06 0.32 3.56 512.16 57.29 42.97 1.29
S3C16 7/8 3553.06 0.31 3.40 488.00 52.07 45.56 1.27
S3C17 1 3553.06 0.25 4.05 766.12 50.02 50.02 1.24
S3C18 9/8 3553.06 0.22 4.29 833.30 44.92 50.54 1.24
S3C19 5/4 3553.06 0.21 4.27 887.49 40.72 50.89 1.23
S3C20 3/2 3553.06 0.18 4.61 1028.29 35.19 52.79 1.22
S3C21 2 3553.06 0.14 5.22 1643.16 31.14 62.28 1.17
S3C22 5/2 3553.06 0.10 6.13 2176.53 24.04 60.10 1.18
S3C23 3 3553.06 0.090 6.42 2482.04 20.78 62.35 1.17
S3C24 4 3553.06 0.069 7.24 3732.01 18.03 72.12 1.13
S3C25 5 3553.06 0.052 8.58 4185.39 12.10 60.51 1.19
S3C26 6 3553.06 0.078 5.22 997.14 7.31 43.84 1.29
S3C27 7 3553.06 0.052 7.23 2540.65 9.12 63.87 1.17
S3C28 8 3553.06 0.034 10.50 4894.69 7.35 58.78 1.20

aValues are volume and time averaged.

FIG. 3. (a) Plot of the RHSs of Eqs. (9a)–(9c) as a function of the gradient Richardson number Rig for the
three forcing strategies: type 1 (red squares), type 2 (blue triangles), and type 3 (orange circles). The terms on
the y axis have been calculated using volume- and time-averaged values. Data that lie along the dashed lines
indicate statistically stationary turbulence. (b) Plot of the nondimensional shear parameter S∗ as a function
of the turbulent Froude number Frk with Rig shown in color such that Rig = 1/4 is shown in light gray. The
symbol convention is the same as in (a).
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FIG. 4. Volume- and time-averaged values of the normalized buoyancy flux B (closed symbols) and TKE
dissipation rate εk (open symbols). The color and symbol combinations correspond to the three shear forcing
scenarios: type 1 (red squares), type 2 (blue triangles), and type 3 (orange circles).

exhibits a balance between the vertical buoyancy flux and TPE dissipation at all values of the
turbulent Froude numbers. More interesting are the sink terms of the TKE budget (i.e., vertical
buoyancy flux and TKE dissipation), which we plot as a function of the turbulent Froude number in
Fig. 4 for the three types of forcing. The terms have been normalized by the TKE production so that
they scale between values of 0 and 1. The vertical buoyancy flux is shown by closed symbols and
the TKE dissipation is shown by open symbols.

First, we note that the two sink terms do in fact sum to unity, as expected for statistically
stationary conditions. Second, we see that the peak magnitudes of the normalized vertical buoyancy
fluxes are ordered such that the second (closed triangles) and third types of forcing (closed circles)
exhibit the largest and smallest values, respectively, and the first type of forcing (red squares)
exhibits intermediate values. This behavior will also be shown later by the peak magnitudes
of the normalized vertical buoyancy flux for the three forcing types in Figs. 6(a2)–6(c2). The
values of the normalized vertical buoyancy flux B/Pk can essentially be interpreted as representing
the irreversible mixing efficiency Ri f = εp/(εk + εp) given that B = εp and Pk = εk + εp under
statistically stationary conditions. Therefore, we observe that at a given value of Frk , the second
type of forcing (blue) is most efficient (Ri f ,max ≈ 0.5) and the third type of forcing (orange) is least
efficient (Ri f ,max ≈ 0.2) at irreversibly mixing the background density field. Finally, we note that all
three types of forcing exhibit a range of turbulent Froude numbers over which the maximum value
of B/Pk persists, but then at stronger stratifications (Frk < 0.2 for first and third forcing types and
Frk < 0.3 for second forcing type), they all begin to exhibit less efficient mixing.

C. Characterization of turbulence anisotropy

In this section we focus on characterizing the turbulence anisotropy of the three different types
of shear-forced, stably stratified turbulence. Additionally, we study the energetics that lead to the
different large-scale anisotropy and connect our findings to the ordering of the mixing efficiency
observed in Fig. 4.

1. Energy exchange diagrams

One way to think about the three types of shear-forced, stably stratified turbulence is to con-
sider how turbulence is generated and eventually dissipated in the system. There are two sources
of large-scale anisotropy: (i) shear forcing and (ii) buoyancy. For these three types of flows,
the shear forcing directly produces only one component of TKE, which then leads to nonzero
pressure correlations that drive indirect generation of the remaining two components. Next, because
buoyancy force only acts in the vertical direction, the vertical component of TKE (kw = ww/2)
is further differentiated from the horizontal components (ku = uu/2 and kv = vv/2) by the fact
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FIG. 5. Energy exchange diagrams corresponding to the three types of shear forcing: (a) first and third
types of shear forcing and (b) second type of shear forcing. Ingoing arrows indicate sources and outgoing
arrows indicate sinks of each of the four energy buckets under statistically stationary conditions. Black arrows
indicate direct production by the forcing term. Blue arrows indicate the pressure-strain terms. Orange arrows
indicate the buoyancy flux. Red arrows indicate the dissipation terms.

that the buoyancy flux directly converts kw into kp. The buoyancy force also indirectly affects the
two horizontal components of TKE through the pressure-strain correlations since it modifies the
pressure field via the pressure Poisson equation, which can be reached by taking the divergence
of the momentum equations (3). In summary, shear forcing and buoyancy both directly affect the
turbulence energetics through the production and buoyancy flux terms, respectively, and indirectly
as well through the pressure-strain correlations.

We consider these ideas further by looking at the budgets for the streamwise, spanwise, and
vertical components of the TKE (ku, kv , and kw), which are given by the budgets for half of the
diagonal Reynolds stresses [i.e., i = j = 1, 2, 3 components of Eq. (7)]. These budgets along with
the budget for the vertical density flux [wρ, the j = 3 component of Eq. (8)] are provided below
and they will be analyzed in greater detail in the following sections:

dku

dt
= u f1 + 1

ρ0
ps11 − ν

∂u

∂xm

∂u

∂xm
= Pu + Ru − εu, (10)

dkv

dt
= v f2 + 1

ρ0
ps22 − ν

∂v

∂xm

∂v

∂xm
= Pv + Rv − εv, (11)

dkw

dt
= w f3 + 1

ρ0
ps33 − g

ρ0
wρ − ν

∂w

∂xm

∂w

∂xm
= Pw + Rw − B − εw, (12)

dwρ

dt
= f3ρ + 1

ρ0
p
∂ρ

∂z
− ww

dρ

dz
− g

ρ0
ρρ − (ν + D)

∂w

∂xm

∂ρ

∂xm
. (13)

In Eqs. (10)–(12) the subscripts u, v, and w indicate quantities associated with the streamwise,
spanwise, and vertical components of TKE, respectively, and do not indicate tensor indices. The
production terms are denoted by Pu, Pv , and Pw; the pressure-strain correlations are denoted by Ru,
Rv , and Rw; and the dissipation terms are denoted by εu, εv , and εw.

Qualitatively, we can visualize the energy exchange in our systems under statistically stationary
conditions using the diagrams in Fig. 5. Ingoing arrows indicate sources and outgoing arrows
indicate sinks of each of the four energy buckets. For the first and third types of forcing, ku is
directly produced (black arrow labeled Pu), while for the second type of forcing, kw is directly
produced (black arrow labeled Pw). Next the pressure-strain correlation terms redistribute some of
this energy to the two components without direct generation mechanisms (i.e., kv and kw for types
1 and 3 and ku and kv for type 2), which are shown by the blue arrows labeled with Ru, Rv , and
Rw. Then, for all three forcing types, some of kw is transformed into kp through the buoyancy flux
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(orange arrow labeled B), and finally, dissipation acts as a sink for the three components of TKE
and TPE (red arrows labeled εu, εv , εw, and εp). Once again, we highlight that Ru, Rv , and Rw are
affected by the buoyancy field via the pressure Poisson equation and their net effect is to reduce the
anisotropy among the three components of TKE that are due to the shear forcing and buoyancy.

Recall from Fig. 4 that the values of the mixing efficiency B/Pk are ordered based on the type of
shear forcing with type 2 forcing having the largest values and type 3 forcing having the smallest.
Because the buoyancy flux directly connects kw and kp, we might expect type 2 forcing, which
involves direct production of kw, to be associated with the largest buoyancy fluxes. Next, while
both types 1 and 3 forcing have indirect generation of kw, we note that type 1 forcing couples
the streamwise and vertical directions through uw �= 0, whereas type 3 couples the streamwise
and spanwise directions through uv �= 0. Therefore, we suspect that type 1 forcing could be more
effective in generating kw and converting it to kp than type 3 forcing. We quantitatively explore these
ideas in the subsequent sections.

2. Normal Reynolds stresses

As the degree of stable stratification increases relative to the momentum forcing (larger N
relative to S), the turbulence becomes increasingly anisotropic due to the enhanced damping of
vertical velocity fluctuations. The three types of forcing, however, interact with the vertical back-
ground stratification differently. We quantify this in Figs. 6(a1)–6(c1) by plotting the mean-square
streamwise (circles), spanwise (squares), and vertical (triangles) velocity fluctuations versus the
turbulent Froude number for the three types of shear-forcing simulations. The overlines denote
volume and time averaging, and all three squared velocity components have been normalized by
twice the TKE.

First, we note that the streamwise component of TKE (circles) is directly generated for the first
and third types of forcing [Figs. 6(a1) and 6(c1)]. As a result, this component is the dominant
contributor to TKE. Analogously, the vertical component of TKE (triangles) is directly generated
for the second type of forcing [Fig. 6(b1)]. As a result, this component is largest for weak and
moderate stratification strengths, but surprisingly, the streamwise component (circles), which is
indirectly generated by pressure-strain correlations, becomes equally important at Frk ≈ 0.3 and
eventually surpasses the vertical component for Frk < 0.3.

While the relative magnitudes of the different components of TKE remain fairly constant for
weak stratification (Frk > 2), stratification effects begin to be experienced at increasing levels at
different values of Frk for each of the simulation types. For the first and second types of forcing
[Figs. 6(a1) and 6(b1)], there is an initial change at Frk ≈ 2 and then again at Frk ≈ 0.3. Moreover,
for the first type of forcing, there is rapid growth in uu/2k with increasing stratification for Frk <

0.3, and for the second type of forcing, the magnitude of uu/2k surpasses that of ww/2k at Frk = 0.3
as well. For the third type of forcing, there is a change at Frk ≈ 0.7, below which there is a rapid
increase in uu/2k with increasing stratification.

Finally, we observe that the smallest component of the TKE for all three types of forcing is the
one that is not associated with the nonzero Reynolds shear stress. For the first and second types of
forcing [Figs. 6(a1) and 6(b1)], this is the spanwise component (squares), and for the third type of
forcing [Fig. 6(c1)], this is the vertical component (triangles).

3. Reynolds shear stresses and turbulent buoyancy fluxes

We further quantify the turbulence anisotropy by considering the nonzero Reynolds shear stresses
and turbulent buoyancy fluxes as a function of the turbulent Froude number for the three types of
shear-forcing simulations [Figs. 6(a2)–6(c2)].

First, focusing on the Reynolds shear stresses (crosses) for the first and third types of forcing
[Figs. 6(a2) and 6(c2)], the normalized Reynolds shear stresses are approximately constant (about
−0.2) with increasing stratification until Frk ≈ 1, and with further increasing stratification, they
decrease towards zero for Frk < 1. For the second type of forcing [Fig. 6(b2)], the normalized
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FIG. 6. Normalized mean-square streamwise (circles), spanwise (squares), and vertical (triangles) velocity
fluctuations versus turbulent Froude number for the three forcing scenarios: (a1) type 1, (b1) type 2, and (c1)
type 3. Also shown are the normalized values of the nonzero Reynolds shear stresses (colored crosses) and
nonzero buoyancy flux vector components (triangles and circles) versus the turbulent Froude number for the
three forcing scenarios: (a2) type 1, (b2) type 2, and (c2) type 3. In panels (a1)-(c1), the nonzero horizontal
dashed line marks the value of 1/3, which is expected of homogeneous isotropic turbulence.

Reynolds shear stress is also initially approximately constant (about −0.2), but unlike the other
two types of forcing it increases in magnitude until Frk ≈ 0.7. With further increasing stratification,
however, the normalized Reynolds shear stress for this second type of forcing also begins to decrease
towards zero.

Next we consider the normalized vertical buoyancy flux (closed triangles), which has been
scaled to match the dimensions of TKE. Generally, for all three types of forcing, the normalized
vertical buoyancy flux is negligible at weak stratification (Frk � 1) and it increases until reaching
a peak around Frk ≈ 0.7. With further increases in stratification, the normalized vertical buoyancy
flux decreases towards zero. While there is this general agreement in the shape of the buoyancy
flux curves, the three types of shear-forced, stably stratified turbulence exhibit very different peak
magnitudes of the normalized vertical buoyancy fluxes: The second type [Fig. 6(b2)] exhibits
the largest values and the third type [Fig. 6(c2)] exhibits the smallest values. This behavior is in
agreement with the ordering of mixing efficiency B/Pk in Fig. 4. We explore this point further in
later sections that discuss the energetics and mixing coefficient values for the three types of forcing.

Finally, for the first two types forcing [Figs. 6(a2) and 6(b2)], the streamwise buoyancy flux
(closed circles) term is also significant. Broadly speaking, it is near zero for weak stratification
(Frk � 1), but it increases and reaches a maximum at about the same Frk where the normalized
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FIG. 7. Steady-state and volume- and time-averaged budgets of (a1)–(c1) ku = uu/2 [i, j = 1 in Eq. (7)]
and (a2)–(c2) kw = ww/2 [i, j = 3 in Eq. (7)] as a function of the turbulent Froude number for the three types
of forcing: (a) type 1, (b) type 2, and (c) type 3.

vertical buoyancy flux reaches its maximum (Frk ≈ 0.5 compared to Frk ≈ 0.7 for the vertical
component). For the first type of forcing, the streamwise buoyancy flux seems to remain large and
possibly even increases further for very strong stratifications (Frk ≈ 0.1), but for the second type of
forcing, the streamwise buoyancy flux begins to decrease for very strong stratifications (Frk < 0.2).

D. Normal Reynolds stress budgets

In this section we study the energetics of the three different types of shear-forced, stably
stratified turbulence that bring about the turbulence anisotropy as presented in Sec. III C 2. This
is the quantitative counterpart to the energy diagrams shown in Fig. 5. By decomposing the TKE
into its three components [Eqs. (10)–(12)], we explicitly quantify the intercomponent exchange of
TKE through the pressure-strain correlations and its relationship with the buoyancy flux to further
quantify the differences among the three types of forcing. Here we normalize all terms in each
budget by the sum of their respective production terms to keep all terms between ±1, and to match
Eqs. (10)–(12) the normalized dissipation rates and the buoyancy flux are plotted with minus signs.
Finally, we do not present the budgets of the spanwise component of TKE (kv = vv/2) since it
is simply characterized by an exact balance between the pressure-strain correlations and rate of
dissipation of kv at all turbulent Froude numbers.

We first consider the budget of the streamwise component of TKE (ku = uu/2) for the three
types of forcing [Figs. 7(a1)–7(c1)]. For the first and third types of forcing [Figs. 7(a1) and 7(c1)]
we note that there is direct production of ku (black triangles) and it is balanced by the pressure-strain
correlation (blue crosses) and dissipation (red triangles) terms at all turbulent Froude numbers. For
weak stratification (Frk > 2), the three terms maintain their relative importance. As stratification
increases, the pressure-strain correlation becomes a stronger sink of ku (especially for type 1) while
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dissipation becomes a weaker sink of ku. For strong stratification (Frk < 0.2 and Frk < 0.3 for the
first and third types of forcing, respectively), however, the pressure-strain correlation becomes a
weaker sink of ku while dissipation becomes the stronger sink of ku. For the first type of forcing,
this continues until the two terms become almost equal at Frk ≈ 0.06. For the third type of
forcing, this also continues until the two terms become equal at Frk ≈ 0.07, and for even stronger
stratification we observe that dissipation becomes a larger sink of ku compared to pressure-strain
correlation. For the second type of forcing, ku is indirectly generated by pressure-strain correlation
and there is a balance between pressure-strain correlation and dissipation at all turbulent Froude
numbers.

We next consider the budget of the vertical component of TKE (kw = ww/2) for the three types
of forcing [Figs. 7(a2)–7(c2)]. For the first and third types of forcing [Figs. 7(a2) and 7(c2)] we note
that kw is indirectly generated by pressure-strain correlation (blue crosses) and this production is
then balanced by buoyancy flux (orange stars) and dissipation (red triangles) at all turbulent Froude
numbers. For weak stratification (Frk > 2), the buoyancy flux is negligible and the dominant balance
is between the pressure-strain correlation and dissipation. As stratification increases, the buoyancy
flux increases in magnitude and becomes a stronger sink of kw while dissipation becomes a weaker
sink of kw. For the first type of forcing [Fig. 7(a2)], the buoyancy flux and dissipation become
equal in magnitude at Frk ≈ 0.8, and with further increases in stratification, the two terms remain
relatively constant with the buoyancy flux as a slightly higher sink of kw for Frk < 0.5. For the
third type of forcing [Fig. 7(c2)], the buoyancy flux and dissipation become equal in magnitude at
a stronger stratification (Frk ≈ 0.1) compared to the first type of forcing, and for Frk < 0.1, the two
sinks remain equally important sinks of kw. Broadly speaking, the kw budgets for the first and third
types of forcing are similar (indirect generation by pressure strain and losses due to buoyancy flux
and dissipation), but the first type of forcing is associated with the buoyancy flux playing a larger
role as a sink of kw [roughly 65%, with B/Rw ≈ −0.65 for Frk < 0.5 in Fig. 7(a2)] compared to the
third type of forcing [roughly 50%, with B/Rw ≈ −0.5 for Frk < 0.1 in Fig. 7(c2)]. Alternatively,
we can say that the first type of forcing is able to more efficiently convert kw into TPE, which is why
larger values of B/Pk are observed for the first type of forcing (red squares) compared to the third
type of forcing (orange circles) in Fig. 4.

For the second type of forcing [Fig. 7(b2)], we note that, unlike for the two other forcing types,
there is direct production of kw (black triangles). As a result, the pressure-strain correlation is
negative at all turbulent Froude numbers, indicating that kw is being transformed into ku rather than
the other way around as with the first and third types of forcing. For weak stratification (Frk > 2),
the buoyancy flux is negligible and kw is generated by direct production (black triangles) and lost via
pressure-strain correlation and dissipation with pressure-strain correlation being a larger sink of kw

relative to dissipation at all turbulent Froude numbers. As stratification increases, the buoyancy flux
increases in magnitude, becoming equally important as dissipation at Frk ≈ 1.2 and then equally
important as pressure-strain correlation at Frk ≈ 1. With further increases in stratification, the
buoyancy flux becomes the most important sink of kw and it (along with pressure-strain correlation
and dissipation) remains relatively constant for 0.3 < Frk < 0.5. For Frk < 0.3, the buoyancy flux
begins to decrease in magnitude while the pressure-strain correlation increases in magnitude,
implying that at these levels of stratification, converting kw into ku or kv seems to be relatively
easier than converting kw into TPE. Returning to the observation that the second type of forcing
(blue triangles) had the largest values of B/Pk , we note that this is likely due to the forcing directly
generating kw, which then can be transformed into TPE through the buoyancy flux. For the first
and third types of forcing, the forcing directly generates ku, some of which is then transformed
into kw through the pressure-strain correlation, which can then be transformed into TPE through
the buoyancy flux. This additional step of converting ku into kw, which mathematically can be
represented as Rw/Pk < 1, helps explain why, despite the magnitudes of B/Rw being large (0.65
and 0.5 in Figs. 7(a2) and 7(c2), respectively], the mixing efficiency values from the first and third
types of forcing (B/Pk = (B/Rw )(Rw/Pk )) still end up being smaller compared to those from the
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FIG. 8. Steady-state and volume- and time-averaged budgets of wρ [Eq. (13)] as a function of the turbulent
Froude number for the three types of forcing: (a) type 1, (b) type 2, and (c) type 3.

second type of forcing (see Fig. 4). We further explore this approach of rewriting B/Pk into its
different components in Sec. III F.

E. Vertical buoyancy flux budget

We now consider the steady-state and volume- and time-averaged budgets of the vertical density
flux wρ [Eq. (13)] as a function of the turbulent Froude number for the three types of shear forcing
in Figs. 8(a)–8(c). We note that the vertical density flux can be rewritten as the vertical buoyancy flux
by multiplying by g/ρ0. We also normalize all terms in each budget by the sum of their respective
production terms to keep all terms between ±1.

We first examine the vertical buoyancy flux budget for the first and third types of forcing
[Figs. 8(a) and 8(c)]. For weak stratification (Frk > 2), the sink due to the kp term (orange stars) is
small and the dominant balance is between the source due to the kw term (black triangles), pressure
scrambling (blue crosses), and dissipation (red triangles). The pressure scrambling term is a larger
sink for the third type of forcing compared to the first (about 71% of all sinks compared to about
57%). As stratification increases, the sink due to the kp term increases in magnitude for both the
first and third types of forcing until becoming the only significant sink of the vertical buoyancy
flux at Frk ≈ 0.4 and 0.2, respectively. Analogously, the dissipation term decreases in magnitude
until becoming negligible at Frk ≈ 0.4 and 0.2 (for the first and third types of forcing) and the
pressure scrambling term also exhibits important changes. For the first type of forcing, the pressure
scrambling term switches sign at Frk ≈ 1, thus becoming a source of vertical buoyancy flux, and it
contributes equally as a source of vertical buoyancy flux with the source due to kw term over the
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range 0.2 < Frk < 0.5. In contrast, for the third type of forcing, the pressure scrambling term only
switches sign at stronger stratification (Frk ≈ 0.2), and the pressure scrambling and source due to
kw term become equal in magnitude at Frk ≈ 0.08. For Frk < 0.08, the pressure scrambling term
becomes the dominant source of vertical buoyancy flux and the source due to the kw term decreases
in importance.

We next consider the vertical buoyancy flux budget for the second type of forcing [Fig. 8(b)].
Unlike the first and third types of forcing, there is an additional source term due to forcing (purple
circles). For weak stratification (Frk > 2), the sink due to the kp term (orange stars) is small and
the dominant balance is between the source due to forcing (purple circles), the source due to kw

(black triangles), pressure scrambling (blue crosses), and dissipation (red triangles). As stratification
increases, the sink due to the kp term increases in magnitude until becoming the only significant sink
of the vertical buoyancy flux at Frk ≈ 0.4, and the dissipation term becomes negligible at Frk ≈ 0.4
as well. This behavior is similar to what is observed for the first and third types of forcing. The
pressure scrambling term, however, exhibits some notable differences compared to the first and
third types of forcing. Because the first and second types of forcing connect the physics in the
streamwise and vertical directions, we pay particular attention to the similarities and differences
between these two cases. First, because there are two source terms for the vertical buoyancy flux
for the second type of forcing, the pressure scrambling term has a delayed sign change (as the
stratification increases) at Frk ≈ 0.4 compared to the first type of forcing where it occurs at Frk ≈ 1.
Second, while the pressure scrambling term maintained an equal contribution to the source due
to the kw term for the first type of forcing, this behavior is not observed for the second type of
forcing. This is because both the source due to forcing and the source due to kw terms account for
all generation of vertical buoyancy flux until Frk ≈ 0.4. As the pressure scrambling term increases
in magnitude and becomes a more important source of the vertical buoyancy flux, the other two
source terms decrease in magnitude.

F. Mixing coefficient versus turbulent Froude number

Having considered the turbulence budgets in detail in the previous sections, we are now in a
position to better understand the relationship between the mixing coefficient � and the turbulent
Froude number Frk in Fig. 9(b). As noted earlier, for all stratification strengths (weak to strong), we
observe an ordering of the values of � such that the second type of forcing (blue triangles) exhibits
the largest values of � and the third type of forcing (orange circles) exhibits the smallest values of �.
This indicates that the forcing mechanism (i.e., how the turbulence is generated) plays an important
role in setting �. Broadly speaking, all three types of forcing exhibit the following relationship
between � and Frk: (i) For weak stratification (Frk > 1), � increases with stratification; (ii) for
moderate to strong stratification, � reaches a maximum value; and (iii) for very strong stratification,
� begins to diminish from its peak value.

To connect some of these changes in the shape of how � varies with Frk , we plot the normalized
pressure scrambling term as a function of Frk in Fig. 9(a) and the difference between the vertical
component of TKE and TPE normalized by the total turbulent energy of the system as a function
of Frk in Fig. 9(c). The normalized difference between kw and kp is meant to demonstrate the
combined effect of the related source and sink terms that appear in the vertical buoyancy flux
budget [cf. terms 3 and 4 on the RHS of Eq. (13), which can be reexpressed as (kw − kp)N2 after
multiplying through by g/ρ0]. First, we note that for the first and second types of forcing (red
squares and blue triangles), the normalized difference between kw and kp changes sign at Frk ≈ 0.8
and 0.9, respectively, whereas for the third type of forcing (orange circles), this occurs at Frk ≈ 0.2.
Connecting back to the budget of kw in Figs. 7(a2)–7(c2), the Frk values associated with these sign
changes correspond closely to when the buoyancy flux becomes a significant sink of kw. With regard
to the vertical buoyancy flux budget, this sign change implies that other terms in the budget need
to adjust to keep wρ positive for smaller values of Frk . For the first and third types of forcing, this
is achieved with the sign change of the pressure scrambling term. However, for the second type of
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FIG. 9. Volume- and time-averaged values of (a) the normalized pressure scrambling term from the vertical
buoyancy budget (see also Fig. 8), (b) the mixing coefficient �, and (c) the normalized difference between kw

and kp as a function of the turbulent Froude number. The three color and symbol combinations correspond to
the three forcing scenarios: type 1 (red squares), type 2 (blue triangle), and type 3 (orange circles).

forcing, the pressure scrambling term is still a sink of wρ and the compensation is achieved by the
additional source of wρ due to forcing [purple circles in Fig. 8(b)].

Regarding how this connects to �, we note the following observations. First, for the first two
types of forcing (red squares and blue triangles), the sign change of the normalized difference
between kw and kp lines up closely with when � starts to plateau before reaching its maximum
value (Frk ≈ 0.8 and 0.9), whereas for the third type of forcing, this sign change lines up closely
with the maximum value of � (Frk ≈ 0.2). Second, for the second and third types of forcing (blue
triangles and orange circles), the sign change of the pressure scrambling term lines up closely with
the maximum value of � (Frk ≈ 0.4 and 0.2), but for the first type of forcing (red triangles), the
point where the pressure scrambling term increases beyond 0.5 seems to be a better indicator of the
maximum value of � (Frk ≈ 0.2). Further increases in the pressure scrambling term are associated
with less efficient mixing, indicated by � < �max, which has also been observed for axisymmetric
stratified turbulence [40]. One interpretation of this might be that as the buoyancy flux is increasingly
generated by the pressure scrambling mechanism, the conversion of kw to kp becomes less effective
[B becomes less efficient in Figs. 5(a) and 5(b)]. Interestingly, for the second type of forcing,
which involves direct generation of kw, we observe that ku becomes the largest component of TKE
for Frk < 0.3, indicating that the conversion of kw to ku becomes more favorable relative to the
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FIG. 10. Terms on the RHS of Eq. (14) and the mixing efficiency B/Pk as a function of Frk for the first and
third types of forcing (red squares and orange circles).

conversion of kw to kp [Ru becomes more efficient than B in Fig. 5(b)]. In Fig. 7(b2) we see this
trade-off between the pressure-strain correlation (blue crosses) and the buoyancy flux (orange stars)
as sinks of kw.

Before closing this section, we also quantitatively explore the role that direct versus indirect
generation of kw plays for �. Recall that for the first and third types of forcing, ku is directly
generated. Some of this gets converted to kw through the pressure-strain correlation term before
finally getting converted to kp through the buoyancy flux. Therefore, kp is generated in two steps.
For the second type of forcing, however, kw is directly generated and therefore the buoyancy flux
can directly convert some of this energy to kp, making this a single-step process. To quantitatively
consider this effect, we rewrite the irreversible mixing efficiency for the first and third types of
forcing as follows:

Ri f = B

Pk
=

(
−Ru

Pk

)(
−Rw

Ru

)(
B

Rw

)
. (14)

The first term (−Ru/Pk) represents how much of the TKE generation gets used to generate kv and
kw. For incompressible flow, the continuity equation dictates Ru + Rv + Rw = 0, but here we are
particularly interested in how much of Ru goes to generating kw, which is represented by the second
term (−Rw/Ru). Finally, the third term (B/Rw) represents how much of this indirect generation of
kw gets used to generate kp. Therefore, for the first and third types of forcing, the overall mixing
efficiency B/Pk is set by the individual efficiencies of the three terms on the RHS of Eq. (14).

In Fig. 10 we explore the three terms on the RHS of Eq. (14) as a function of Frk for the first and
third types of forcing (red squares and orange circles). We first consider −Ru/Pk as a function of
Frk in Fig. 10(a). For weak stratification, both types of forcing have similar values between 0.56 and
0.58. As stratification increases (Frk < 1), however, we begin to observe deviations such that the
first type of forcing (red squares) exhibits more of the TKE generation being available to indirectly
generate kv and kw compared to the third type of forcing (orange squares). For both types of forcing,
we see that this indirect generation mechanism becomes less efficient at very strong stratifications
(Frk < 0.2). For the first type of forcing, the scatter in 0.3 < Frk < 0.7 is due to Reynolds-number
variations at fixed Frk , which is explored in Ref. [41].

We next consider −Rw/Ru as a function of Frk in Fig. 10(b). For all stratification strengths,
we see that the first type of forcing (red squares) is able to use more of −Ru for generating kw

084803-20



UNDERLYING PHYSICS OF MIXING EFFICIENCY FOR …

compared to the third type of forcing (orange circles). For weak stratification, about 55% of −Ru

is used to generate kw for the first type of forcing, whereas about 45% of −Ru is used to generate
kw for the third type of forcing. As stratification increases (Frk < 1), both types of forcing exhibit
an increase of −Rw/Ru before reaching a plateau of about 75% and 57%, respectively, around
Frk ≈ 0.5, which is maintained for even stronger stratifications. We note that unlike in Fig. 10(a),
the Reynolds-number effects seem to be minimal for this particular ratio of terms as noted by the
reduced scatter of the red squares for 0.3 < Frk < 0.7.

We finally consider B/Rw as a function of Frk in Fig. 10(c). For weak stratification, this term
is near zero, indicating very weak coupling between kw and kp, but as stratification increases
(Frk < 3), we observe that the first type of forcing is always more effective in using Rw for
generating kp through B. The first type of forcing exhibits a plateau of B/Rw ≈ 0.65, which first
occurs at Frk ≈ 0.5, whereas the third type of forcing exhibits a plateau of B/Rw ≈ 0.5, which first
occurs at Frk ≈ 0.2.

Combining these three terms together, we take a final look at Ri f = B/Pk as a function of Frk

in Fig. 10(d). Given that the second and third terms both exhibit plateaus for strong stratification,
the reduced mixing efficiency for Frk < 0.2 for both types of forcing can only be explained by the
reduced efficiency of −Ru/Pk at strong stratifications. Also, the more efficient mixing associated
with the first type of forcing compared to the third type of forcing is the result of all three conversion
steps [i.e., three terms on the RHS of Eq. (14)] being more efficient.

G. Alternative expression for the mixing efficiency and comments on Reynolds-number effects

Until now, we have presented our results mostly in terms of Frk [and implicitly in terms of Rig
and S∗ given they are related to Frk as shown in Fig. 3(b)]. Our simulations, however, also exhibit
Reynolds number variations (e.g., ReL, Reb, and ReS). While the primary variations of our quantities
of interest have been captured by Frk , we expect our results to change when the Reynolds number
is increased, albeit to a lesser degree than the variations demonstrated as a function of Frk [34,35].

Following Ref. [44], we can express the mixing efficiency Ri f in an alternative way as

Ri f = 1

1 − c3

(
Rw

Pk
− c3

)
, (15a)

Ri f = 1

1 − c3

(
1 + Rw

Pk
− c3

)
, (15b)

where Rw/Pk is the pressure-strain correlation term from the kw budget normalized by the TKE
production and c3 = εw/εk is the ratio of the dissipation rate of kw to the TKE dissipation rate.
Equation (15a) applies to the first and third types of forcing and Eq. (15b) applies second type of
forcing, where the additional term arises from the shear forcing term in the kw budget. To arrive at
Eqs. (15a) and (15b), we take the kw budget, divide by the TKE production term Pk , and using the
total energy balance at steady state (i.e., Pk = εk + εp and B = εp) isolate Ri f .

Taking the limit as Re � 1, where we expect c3 → 1/3 from local isotropy, the two expressions
can be rewritten as

lim
Re�1

Ri f = 3

2

(
Rw

Pk

)
− 1

2
, (16a)

lim
Re�1

Ri f = 1 + 3

2

(
Rw

Pk

)
. (16b)

While there are three candidates for Re (ReS , Reb, and ReL), here we choose the Reynolds number
that best represents the range of isotropic scales of motion. Given that S∗ > 1 is typically observed
for unstratified and stratified turbulent shear flows [81,82], Re = ReS for Rig � 1 and Re = Reb

for Rig � 1 [83]. This is because for Rig < 1, the Corrsin scale is smaller than the Ozmidov scale,
while for Rig > 1, the Ozmidov scale is smaller than the Corrsin scale. For Rig = 1, the two scales
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FIG. 11. Plots of (a) Rw/Pk (types 1 and 3) and 1 + Rw/Pk (type 2), (b) c3 = εw/εk , (c) Rw/Pk − c3 (types
1 and 3) and 1 + (Rw/Pk ) − c3 (type 2) as a function of Frk . (d) Plot of Ri f as a function of the terms on the
RHSs of Eqs. (15).

are equivalent. Recalling the energy exchange diagrams in Fig. 5 (and also that all three systems
considered here involve a net downscale transfer of energy), Eqs. (16) demonstrate that the eventual
ratio of the TPE and TKE dissipation rates is determined at larger scales of motion that contribute
most to Rw and Pk .

Using the volume- and time-averaged statistics from our three sets of simulations, we evaluate
the RHSs of Eqs. (15a) and (15b) in Fig. 11. First, in Fig. 11(a) we plot the terms in the parentheses
that are not c3 as a function of Frk , which broadly represent the large-scale contributions to Ri f . We
note that the three sets of simulations are ordered as before with the second type of forcing (blue
triangles) having the largest values and the third type of forcing (orange circles) having the smallest
values. Next, in Fig. 11(b) we plot the ratio of the dissipation rates of kw and k as a function of
Frk for the three types of forcing. The horizontal dashed line indicates 1/3, which is expected for
Re � 1. Once again, we see the same ordering in the magnitudes of c3 across the three types of
forcing, and the scatter for 0.3 < Frk < 1 is due to Reynolds-number effects, which is studied in
Ref. [41]. While our data sets do not exhibit c3 → 1/3 even for the weakly stratified conditions
(Frk > 1) (especially the second and third types of forcing in blue stars and orange circles), this is
likely because our simulations are characterized by ReS < 50 (see Tables III–V), which is substan-
tially below the high-Re limit. For homogeneous, stably stratified, vertically sheared turbulence,
small-scale anisotropy has been shown to decrease with increasing Re [35,84], but it persists even
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up to ReS ≈ 140 for Rig ≈ 0.15 (see Fig. 2 of [35]). Then, in Fig. 11(c) we plot the combined effects
of the parenthetical terms as a function of Frk . The same ordering remains after taking the difference
of the terms in Figs. 11(a) and 11(b) with the values for weak stratification approaching 0. As a final
check, we plot Ri f as a function of the terms on the RHSs of Eqs. (15a) and (15b). Apart from the
two most weakly stratified simulations for the first and third types of forcing, all simulations lie
close to their respective one-to-one lines (offset by factors of 2, 0.5, and 0.1), indicating that the
flow statistics are representative of statistically stationary conditions.

IV. CONCLUSION

In this work we studied three different types of shear-forced, stably stratified turbulence under
statistically stationary conditions. Given that the three types of shear forcing interacted differently
with the background vertical stratification (Figs. 2 and 5), we sought to understand how their distinct
large-scale anisotropy would affect their mixing characteristics. We found a number of notable
results. First, as we increased stratification, the component of TKE that was directly generated
increased monotonically except for the second type of forcing where the streamwise component
overtook the vertical component of TKE at Frk ≈ 0.3 [Fig. 6(b1)]. Second, we quantified the
streamwise and vertical Reynolds stress budgets as a function of Frk (Fig. 7), highlighting the
importance of the pressure-strain correlation terms in generating kw for the first and third types
of forcing, where only ku is directly generated by the shear forcing. For the second type of forcing,
where kw is directly generated, this led to negative values of the pressure-strain correlation term at
all values of Frk . Third, we quantified the vertical buoyancy flux budgets as a function of Frk (Fig. 8),
where with increasing stratification we observed the sign change of the pressure scrambling term,
making it a source of wρ, which was accompanied by a decrease in the magnitudes of the dissipation
and the source due to kw and source due to forcing terms. For strong stratification, the sink due to kp

always became the sole sink of wρ. Fourth, we considered the mixing coefficient � as a function of
Frk . We observed a persistent ordering in the values of � from weak to strong stratification (spanning
two orders of magnitude of Frk), which indicates that the turbulence generation mechanism and the
resulting transfer of energy among the components of TKE and TPE have a significant effect on
the mixing properties of stratified turbulence. In particular, we observed important changes in �

when the normalized difference (kw − kp)/(k + kp) changed signs as well as when the pressure
scrambling term either changed signs (for the second and third types of forcing) or significantly
deviated from a fixed value that had persisted over a range of Frk (for the first type of forcing). Fifth,
drawing on the energy exchange diagrams (Fig. 5) and the fact that the first and third types of shear
forcing involve indirect generation of kw, we decomposed the mixing efficiency into three separate
energy conversion steps and quantified the efficiency of each of these steps (Fig. 10). We found that
the � values associated with the first type of forcing being larger than those associated with the third
type of forcing is due to all three conversion steps being more efficient for the first type of forcing.
Finally, we considered alternative expressions for the mixing efficiency (Fig. 11). Taking the limit
of large Reynolds number, the expressions simplified such that the mixing efficiency was solely
set by the ratio of the pressure-strain term from the kw budget and the TKE production (Rw/Pk).
This indicates that while Reynolds-number effects are present for finite Reynolds numbers, given
the net downscale energy transfer associated with these systems, the mixing efficiency is primarily
determined at the large scales, namely, based on how much of the TKE production can be used for
intercomponent exchange through Rw.

Given that our analyses have shown the important relationship between the mixing coefficient �

and the pressure-strain correlations and pressure scrambling terms, there is a need to develop a more
robust physical understanding of these terms. In particular, for Reynolds-averaged Navier-Stokes
simulations, models for the pressure scrambling term remain a major source of uncertainty for
estimating turbulent passive scalar fluxes and therefore the mean passive scalar concentration field
(see, e.g., Ref. [77]). For stratified flows, this challenge becomes even more significant given that
the Reynolds stresses and turbulent buoyancy fluxes are coupled so that errors in either can affect
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the predictions of the mean momentum and buoyancy fields. Following some previous works in the
geophysical context (e.g., Refs. [85–88]), the pressure-strain and pressure scrambling terms from
our DNS data sets could be further analyzed by decomposing the pressure fluctuations into one slow
and two rapid components, where the one slow pressure component is associated with nonlinear
effects and the two rapid pressure components are associated with the shear forcing and buoyancy
effects. In particular, it will be interesting to see how these three pressure components contribute to
the observed sign changes for the total pressure scrambling term [Fig. 9(a)]. Furthermore, existing
Reynolds stress and scalar flux models that have been applied to various stratified turbulent flows
(e.g., Refs. [89–91]) could be applied to our three DNS data sets to test the validity of their modeling
assumptions for the pressure-strain and pressure scrambling terms, especially in the limit of very
strong stratification.

Regarding the accurate representation of irreversible mixing in large-scale ocean simulations,
our results indicate that knowing how the turbulence is generated is of leading order importance in
determining the value of �, which is needed to estimate the turbulent diffusivity DT for the density
field. This means that rather than seeking a universal description of � as a function of Reb or Frk

(see, e.g., [18,36]), more sophisticated approaches for estimating � are necessary. With regard to
ocean measurements, our results suggest that one needs to know what type of turbulence generation
mechanism the measured values of εk are associated with in order to appropriately determine �. A
likely approach for moving forward might involve using a classification algorithm as in Ref. [92] to
determine what type of turbulence generation mechanism is active and apply specific fits for � in
terms of turbulence parameters such as Frk and S∗ (see, e.g., Ref. [41]) or an equivalent description
based on length-scale ratios (see, e.g., Ref. [93]).
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APPENDIX A: REYNOLDS SHEAR STRESS AND STREAMWISE BUOYANCY FLUX BUDGETS

Here we consider the budget for the nonzero Reynolds shear stress component for the three
forcing scenarios. For the first two types of forcing, the nonzero component is uw, and for the third
type of forcing, the nonzero component is uv. All terms have been normalized so that they are
between ±1, and since the Reynolds shear stresses are negative, their source terms will occupy the
negative halves of the y axes.

We first consider the budget for uw for the first two types of forcing in Figs. 12(a) and 12(b). For
both types of forcing, the sink due to the uρ term (orange stars) is small for weak stratification
and there is a balance between three terms: source due to kw and ku [for the first and second
types of forcing, respectively (black triangles)], pressure strain (blue crosses), and dissipation (red
triangles). As stratification increases, the sink due to the uρ term becomes more important and
this change is accompanied by the pressure-strain and dissipation terms becoming less important
sinks of uw. For the first type of forcing, the pressure strain and sink due to the uρ terms become
equally important at Frk ≈ 0.8, while for the second type of forcing, the two terms become equally
important at Frk ≈ 0.5. With stronger stratification (Frk < 0.8), for the first type of forcing, we
observe that the pressure-strain correlations change signs at Frk ≈ 0.3, becoming a source of uw,
and it becomes equally important as the source due to kw at Frk ≈ 0.11 and even eclipses it to
become the most important source of uw for Frk < 0.11. With stronger stratification (Frk < 0.5),
for the second type of forcing, the sink due to the uρ term becomes the most important loss term
of uw, but for the simulations with strongest stratification, the pressure-strain term seems to grow
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FIG. 12. Steady-state and volume- and time-averaged budgets of the nonzero Reynolds shear stresses
[nonzero i �= j components of Eq. (7)] as a function of the turbulent Froude number for the three types of
forcing: (a) type 1, (b) type 2, and (c) type 3.

in importance once more, eclipsing the sink due to uρ. This behavior, however, needs to be studied
with larger simulations that would allow one to explore Frk < 0.1 at higher Reynolds numbers.

We next consider the budget for uv for the third type of forcing in Fig. 12(c). We note that this
particular shear stress component does not involve w, which is the direction where the buoyancy
force is directly active. Interestingly (because of this fact), we find that for all stratification strengths
(across two orders of magnitude of Frk), the relative importance of the terms in the uv budget
remains largely unchanged. The source term due to kv is the only generation mechanism for uv, and
the dissipation and pressure-strain terms are the two sinks of uv with the pressure-strain term being
more significant.

Now we consider the budgets of the streamwise component of the density flux vector (uρ) in
Figs. 13(a) and 13(b). All terms have been normalized so that they are between ±1, and since the
streamwise buoyancy flux is negative, its source terms will occupy the negative half of the y axis.

For the first type of shear forcing [Fig. 13(a)], there are two source terms of uρ, which are the
sources due to wρ and uw (black circles and black triangles, respectively), and two sink terms
of uρ, which are the dissipation (red triangles) and pressure scrambling (blue crosses) terms. As
stratification is increased, the first notable change occurs at Frk ≈ 1, where the dissipation term de-
creases and the pressure scrambling increases. The next notable change occurs at Frk ≈ 0.4, where
the two sources of uρ become equally important; as stratification is increased further (Frk < 0.4),
the source due to uw becomes the more important source of uρ. Interestingly, the dissipation term
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FIG. 13. Steady-state and volume- and time-averaged budgets of uρ [the j = 1 component of Eq. (8)] as a
function of the turbulent Froude number for the (a) first and (b) second types of forcing.

begins to increase in magnitude for Frk < 0.1, which is accompanied by a decrease in magnitude
of the pressure scrambling term, which is in contrast to the dissipation term approaching zero for
strong stratification in the Reynolds shear stress and vertical density flux budgets.

For the second type of shear forcing [Fig. 13(b)], there is only one source term for uρ, which is
the source due to uw (black triangles), and there are two sink terms of uρ, which are the pressure
scrambling (blue crosses) and dissipation (red triangles) terms. As stratification is increased, the first
notable change occurs at Frk ≈ 1, where the pressure scrambling and dissipation terms are equally
important sinks of uρ. As stratification is further increased (Frk < 1), the pressure scrambling term
becomes increasingly important as a sink of uρ while the dissipation becomes less important.

APPENDIX B: TURBULENT PRANDTL NUMBER VERSUS TURBULENT FROUDE NUMBER

Here we consider the turbulent Prandtl number PrT = νT /DT for the three shear forcing scenar-
ios, which is defined as

PrT = −uw

αwρ
Ri1/2

g , (B1a)

PrT = −uv

αwρ
Ri1/2

g , (B1b)

with Eq. (B1a) for the first two forcing types and Eq. (B1b) for the third forcing type. The turbulent
Prandtl number is often used to algebraically estimate the turbulent scalar diffusivity with a known
model for the turbulent viscosity νT . For stratified flows, PrT is known to vary strongly with
stratification (see, e.g., Fig. 1 of Ref. [94]).

In Fig. 14(a) we plot the normalized Reynolds shear stresses as a function of Frk . For weak
stratification (Frk > 3), the normalized Reynolds shear stresses have a value of 0.2. For the first and
third forcing types (red and orange, respectively), the normalized Reynolds shear stresses decrease
monotonically with Frk . For the second forcing type (blue), however, the normalized Reynolds shear
stress reaches a maximum at Frk ≈ 0.7 before decreasing with Frk .
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FIG. 14. Steady-state and volume- and time-averaged values of the (a) normalized Reynolds shear stresses,
(b) normalized vertical buoyancy flux, and (c) turbulent Prandtl number as a function of Frk .

Next we plot the normalized vertical buoyancy flux as a function of Frk [Fig. 14(b)]. At all values
of Frk , the values of the vertical buoyancy flux are ordered such that those from the second forcing
type (blue) are largest and those from the third forcing type (orange) are smallest. The normalized
vertical buoyancy flux has a maximum at Frk ≈ 0.7.

Finally, we plot the turbulent Prandtl number as a function of Frk [Fig. 14(c)]. For weak stratifica-
tion (Frk > 3), the three types of forcing exhibit relatively constant values of PrT ≈ 0.62, 0.26, and
1.40, respectively. With increasing stratification, we observe that PrT increases monotonically for
Frk < 1. Given that both the numerator and denominator of PrT are broadly decreasing for Frk < 1
(apart from the initial increase in wu for the second type of forcing), the increase in PrT indicates
that the vertical buoyancy flux is decreasing faster with decreasing Frk than the Reynolds shear
stress.
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