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Swirling against the forcing: Evidence of stable counterdirected sloshing
waves in orbital-shaken reservoirs
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We investigate the response of the free liquid surface in a partially filled circular
cylindrical container undergoing a planar elliptic and time-periodic orbit while maintaining
fixed its orientation. For small forcing amplitudes and deep liquid layers, we quantify
the effect of the orbit’s aspect ratio on the surface dynamics in the vicinity of the fluid
system’s lowest natural frequency ω0. We provide experimental evidence of the existence
of a frequency range where stable swirling can be either co- or counterdirected with respect
to the container’s direction of motion. Our findings are then rationalized by an inviscid
weakly nonlinear model, amended with heuristic damping.
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I. INTRODUCTION

The problem of liquid sloshing, i.e., the oscillations of a free liquid surface in partially filled
containers, pertains to many aspects of daily life, ranging from mundane wine tasting to more
pragmatic issues such as liquid spilling [1] and transport safety [2,3]. Therefore, a proper predictive
understanding and modeling of the sloshing hydrodynamics at stake is essential in the design process
of liquid tanks.

In this regard, the case of orbital sloshing in partially filled circular cylinders represents an
archetypal sloshing system [4]. Previous experimental studies have described its resonance dynam-
ics for circular or purely longitudinal shaking, casting light on a variety of wave regimes attracting
the interest of dynamicists over the last decades [5–8].

For circular orbits, the system responds with a swirling wave codirected with the container
motion [9]. This well-defined hydrodynamics, often modeled by a one-degree-of-freedom Duffing
oscillator [6,10], is advantageously exploited in the design of bioreactors, where the container is
shaken so as to gently mix the liquid, prevent sedimentation and enhance gas transfer [11]. In
the case of longitudinal forcing, the standing wave solution may undergo a resonant symmetry
breaking, with clockwise and anticlockwise swirling waves equally probable, or completely lose
regularity showing an alternation of planar and swirling motions [5,12]. Such a configuration finds
a close mechanical analogy in the resonant motion of a forced spherical pendulum [8], a four
degrees-of-freedom system that has been widely studied in the context of order-to-chaos transitions
[7,13] for its similarities with the Lorentz’s problem [14].

Surprisingly, however, no experimental studies devoted to the more generic case of elliptic orbits
have been reported so far in the sloshing literature. Yet, existing theoretical analyses of this forcing
condition brought out interesting features of the resonant liquid response that depend on the orbit’s
ellipticity. In particular, the inviscid theory of Faltinsen et al. [15] suggests the counterintuitive
existence, under resonant elliptic forcing, of stable swirling waves that propagate in the direction
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FIG. 1. (a) Experimental setup. Sloshing waves are generated by the container elliptic trajectory, achieved
by imposing along the x and y axes two sinusoidal forcing of driving angular frequency � and amplitudes ax

and ay. δ(θ, t ) denotes the free surface elevation measured at the sidewall, r = R. (b) Sketch illustrating the
extraction from the frame corresponding to time instant ti of the intensity profiles along the vertical middle axis
of the container image (labeled as Iti (0)) and along the vertical axes located at coordinates ∓R/2.

opposite to the forcing direction. The theory further predicts that counterwaves may exist even
for quasicircular orbits and travel with a smaller amplitude than codirected waves. However, these
predictions have not been confirmed yet by experimental evidence.

For moderately large-size containers, the use of inviscid hydrodynamic models is well accepted
[3]. Still, in real sloshing problems, waves are always subjected to a nonvanishing viscous dis-
sipation. Hence, the counterswirling wave predicted by inviscid theories [15], being intrinsically
disfavored by the forcing direction, is likely more sensitive to damping than coswirling solutions,
and it is currently unclear whether such a solution can arise in a laboratory experiment.

With this paper, we aim to provide a joint experimental and theoretical characterisation of the
free liquid surface response for a generic, elliptic periodic container trajectory so as to bridge the
gap between the two diametrically opposed shaking conditions previously discussed. Specifically,
we intend to identify the experimental range of external control parameters, i.e., driving frequency,
amplitude, and orbit aspect ratio, for which stable counterdirected swirling waves occur and assess
the extent of the forcing regime where asymptotic inviscid theoretical models break down.

The paper is organized as follows. The experimental setup and procedure are described in Sec. II.
The inviscid asymptotic model, based on a weakly nonlinear multiple time scales analysis, is
described in Sec. III. Section IV is dedicated to the comparisons between theory and experiments.
Final conclusions are outlined in Sec. V.

II. EXPERIMENTAL SETUP AND PROCEDURE

In our experimental campaign, we used a plexiglas circular cylindrical container of total height
50 cm and internal radius R = 0.086 m, filled to a depth h = 0.15 m with water: density ρ =
1000 kg m−3, surface tension γ = 0.0725 Nm−1 and dynamic viscosity μ = 0.001 kg m−1 s−1. The
gravity acceleration is denoted by g [see Fig. 1(a)]. The container is fixed on a double-axes linear
motion actuator (Aerotech pro165LM + pro225LM), which imposes along the x and y axes two
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sinusoidal forcings of angular frequency � and amplitudes ax and ay, that are π/2-phase shifted
with respect to each other. The fluid motion is recorded with a digital camera (Nikon D850) coupled
with a Nikon 60mm f/2.8D lens and operated in slow mode with an acquisition frequency of 120fps.
The camera’s optical axis is aligned with the x axis. A LED panel is placed behind the container so
as to provide a back illumination for better optical contrast.

In the moving reference frame, any planar ellipticlike shaking can be represented by the fol-
lowing equations describing the motion acceleration of the container axis parametrized in polar
coordinates (r, θ ),

d2X0

dt2
=
{(− fx cos �t cos θ − fy sin �t sin θ

)
er,(

fx cos �t sin θ − fy sin �t sin θ
)

eθ ,
(1)

where fx = f = ax�
2/R and fy = α f = ay�

2/R are the nondimensional major- and minor-axis
driving acceleration components, respectively, and � = �/

√
g/R the nondimensional driving angu-

lar frequency. The bar symbol refers to the dimensional quantities. Note that the minor-to-major-axis
component ratio, α = ay/ax = fy/ fx, has been introduced. A value 0 < α < 1 refers to elliptic
orbits, whereas the two limiting cases α = 0 and α = 1 correspond, respectively, to longitudinal
and circular shaking conditions.

With this experimental campaign we intend to study the free surface response in the vicinity
of the lowest natural frequency ω0 = ω0/

√
g/R = √

k tanh (kh/R) = 1.3547 (with wave number
k = 1.8412) [16], for varying orbit’s aspect ratios α and forcing amplitudes ax. In particular, we
aim at recovering the whole set of stationary wave amplitude solutions, i.e., co- and counterswirling
waves, and at studying how their stability depends on the forcing parameters. If coswirling and
counterswirling waves happen to be coexisting stable solutions for a certain combination of control
parameters, then a codirected swirling motion will very likely be naturally favored by the forcing
direction and will therefore spontaneously arise from the time-harmonic forcing. On the other hand,
triggering counterswirling would require escaping the basin of attraction of the coswirling wave
solution, which is only possible by introducing a sufficient flow perturbation. The experimental
procedure described in the following is thus suitably designed so as to reveal steady-state counter-
directed waves, whenever this dynamics is a stable admissible solution.

In a typical experiment, the amplitude ax ∈ [1, 3] mm and ellipticity α ∈ [0.1, 0.95] are fixed,
while frequencies are swept upward and downward within the (dimensionless) range �/ω0 ∈
[0.82, 1.21]. The increment between two consecutive steps in the frequency sweep is 0.0217. Each
frequency step consists of two parts: the container undergoes first a harmonic elliptic forcing that
is in the anticlockwise direction for 150 oscillation periods and then in the clockwise direction for
another 150 oscillation periods. Two movies are then recorded at each step so as to monitor the
free surface response to both clockwise and anticlockwise forcing. Switching the direction of the
tank’s trajectory in the second phase of the experimental procedure induces a flow perturbation
that is enough to produce a counterdirected wave if the latter is an admissible stable configuration
for the system. For each frequency step and container direction, the camera is triggered only after
100 cycles so that it only records the last 50 oscillation periods. Preliminary longer measurements
performed for a few forcing parameters sampled within our experimental range showed that the
transient regime typically lasts less than 100 cycles. Successively, we made sure that every movie
recorded after 100 oscillation periods indeed corresponds to stationary wave amplitude regimes,
except when the system exhibits the irregular dynamics described later in the section.

A. Analysis of the free-surface response

The procedure to analyze the free surface response is extensively described in Marcotte et al. [17]
and illustrated here in Fig. 1(b). Briefly, we build from each movie an image I (y) = [It1 (y), It2 (y), ...]
where Iti (y) is the intensity profile along the vertical axis Y (ti) = y on the frame i corresponding to
time ti, with Y (ti ) = 0 being the vertical middle axis between the edges of the container image
[represented by Y (ti ) = R and Y (ti ) = −R]. The resulting image, as illustrated in Fig. 2, displays
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FIG. 2. (a)–(d) Intensity profiles as a function of time along the middle vertical axis I (0) for ellipticity
α = 0.5, amplitude ax = 1.5 mm and frequency (a)–(b) �/ω0 ≈ 0.95 or (c)–(d) �/ω0 ≈ 1.04. The intensity
profiles (b) and (d) are obtained from the binarization of (a) and (c) so as to filter out the signal of weaker
intensity coming from the back contact line whenever the elevation of the front contact line is minimal. The
oscillations of the front contact line are then enclosed into a top-bottom envelope, plotted in red in (d).

a periodic dark pattern that represents the free surface response to the harmonic forcing. The free
surface appears as the darkest feature on each frame so that the intensity profile along a vertical line
at a given time ti represents the vertical extension of the free surface in this direction.

The usefulness of the resulting image I (y) is threefold: (i) it allows the detection of irregular
dynamics. This corresponds to the absence of any stable wave amplitude for a given set of
forcing parameters and is easily identified by the time-varying envelope modulating the free surface
oscillations, see Fig. 2(a). (ii) For a regular response, I (0) enables one to measure the amplitude of
the front contact line in the azimuthal direction θ = 0. (iii) The comparison of the profiles along two
vertical directions that are mirror symmetric with respect to the vertical middle axis, e.g., I (−R/2)
and I (R/2), makes it possible to determine the propagation direction of the wave and to compare it
with the container’s motion direction.

B. Detecting the irregular regime

Figure 2 displays two intensity profiles as a function of time along the vertical middle axis (Y =
0) for the same forcing amplitude ax and ellipticity α but for two different forcing frequencies �/ω0.
Those images show that depending on the forcing parameters, the amplitude of the free surface
oscillations can be either irregular, Figs. 2(a)–2(b), or stationary, Figs. 2(c)–2(d). In the analysis of
the close-to-resonance dynamics, we, therefore, use the profile I (0) to identify the irregular regime.

C. Measuring the wave amplitude

The intensity profile I (0) also provides the amplitude δ(θ = 0, t ) of the swirling wave at the
front wall of the container, i.e., at the azimuthal coordinate θ = 0, such as defined in Fig. 1(b).
Indeed, due to the back lighting, the intensity signal corresponding to the front contact line appears
darker than the one due to the back contact line, so that pieces of information associated with the
latter can be filtered out by a proper thresholding of profile I (0). On the resulting binarized image,
the maximal and minimal heights of the final periodic pattern correspond then to the peaks and
troughs of the swirling wave at the front wall along θ = 0. The amplitude of the wave (in pixel)
is thus experimentally retrieved as half the difference between the height of the top and of the
bottom envelopes enclosing its oscillations, displayed in Fig. 2(d) as red lines, and converted into
millimeters by using a scale put on the front wall of the container. Note that in this procedure, we
neglect the variation of the pixel size that can occur along the container motion, the camera being
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FIG. 3. Superposition of the intensity profiles as a function of time along the vertical axis (Y = R/2) and
(Y = −R/2), denoted I (R/2) (in blue) and I (−R/2) (in red), respectively, for a harmonic forcing of frequency
�/ω0 ≈ 1.04, amplitude ax = 1.5 mm, and (a)–(b) ellipticity α = 0.50 and (c)–(d) α = 0.95. The container
moves either in the anticlockwise direction [(a) and (c)] or in the clockwise direction [(b) and (d)]. See also
movies in Supplemental Material [18].

fixed. This is justified by the very small forcing amplitude (1 mm � ax � 3 mm) with respect to
the distance between the camera and the front wall of the container (1 m). The error related to the
variation of the pixel size is therefore of the order of 0.1%, i.e., negligible compared to the typical
dispersion of our measurements.

D. Identifying the swirling direction

To detect the direction of propagation of the wave, we compare for each movie [18] the intensity
profiles along two vertical directions that are mirror symmetric with respect to the vertical middle
axis of the container. Figure 3 shows composite images that each consists of the superposition
of I (R/2) and I (−R/2) into a composite RGB image, where gray areas correspond to pixels
where I (R/2) and I (−R/2) have the same intensity, while red (blue) areas correspond to the part
of I (−R/2) [I (R/2)] that do not overlap with I (R/2) (I (−R/2)). Thus, a red (blue) peak preceding a
blue (red) peak corresponds to a wave traveling from the left (right) to the right-hand (left-hand) side
of the front wall of the container, i.e., in the anticlockwise (clockwise) direction. The propagation
direction of the wave can then be determined and compared to the direction of the container
motion. In Fig. 3, the dynamics associated with two different aspect ratio α = 0.5 and α = 0.95
(quasicircular orbit) are compared for the same forcing frequency and amplitude. For each α, the
right- and left-hand side signals I (R/2) and I (−R/2) are superposed to each other for two motion
configurations, namely an anti-clockwise followed by a clockwise container trajectory. In the case
of the anticlockwise tank’s motion, Figs. 3(a)–3(b), the swirling wave travels in the same direction
as the container, but the change of container’s motion direction induces a flow perturbation sufficient
to produce a robust counterdirected wave, if the latter corresponds to a system’s stable solution. We
indeed observe in the case of α = 0.5 that the wave, though of smaller amplitude, is still traveling
from the left- to the right-hand side of the container’s front wall despite the reverse of direction in
the tank trajectory. This appears glaringly in Fig. 4, where the two series of free surface snapshots
show how the wave’s direction of rotation remains unchanged despite the reversal of the container’s
direction of motion. On the contrary, Figs. 3(c)–3(d), the wave switches direction for the large
ellipticity α = 0.95 and is therefore codirected with the forcing for both container motion directions.
These results provide the first experimental evidence for the existence of counterswirling solutions
and validate this procedure as suitable to trigger and identify stable counterdirected waves.
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FIG. 4. Free surface snapshots corresponding to the case of Figs. 3(a)–3(b) with α = 0.50. Direction of the
container motion: left, anticlockwise; right, clockwise (follow the black arrows). The white arrows indicate the
direction of the wave rotation. A visual indication of the different wave amplitudes is provided by the black
double-sided arrows.

III. INVISCID ASYMPTOTIC MODEL

To assess the extent of the validity of an inviscid hydrodynamic model to predict resonant
counterswirling in a laboratory-scale experiment, in this section we compare our experimental
results with the theoretical estimates provided by the asymptotic model formalized in Marcotte et al.
[17] and recalled in the following. This weakly nonlinear model has been extensively compared with
Faltinsen et al. [15] for both purely longitudinal [17] and circular [10] shaking conditions and it has
been shown to provide consistent results. See Ref. [17] for a discussion on the methodological
analogies and differences as well as on the pros and cons of the present approach versus the
Narimanov-Moiseev multimodal theory employed in Ref. [15].

A. Governing equations

In the potential flow limit, i.e., the flow is assumed inviscid, irrotational and incompressible, the
liquid motion is governed by the Laplace equation, subjected to the homogeneous no-penetration
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condition at the solid lateral wall, r = R, and bottom z = −h,


� = 0, ∇� · n = 0, (2)

and by the kinematic and dynamic boundary conditions at the free surface z = η(r, θ, t ) [2,3],

∂η

∂t
+ ∇� · ∇η − ∂�

∂z
= 0. (3a)

∂�

∂t
+ 1

2
∇� · ∇� + η = r[ fx cos (�t ) cos θ + fy sin (�t ) sin θ ], (3b)

made nondimensional using the characteristic length R and velocity
√

gR. �(r, θ, z, t ) and η(r, θ, t )
denote potential velocity field and free surface elevation, respectively. Note that, as in Ref. [15] and
Ref. [17], surface tension effects have been neglected. By recalling the definition of the orbit aspect
ratio, α = ay/ax = fy/ fx, so that fx = f and fy = α f , equation (3b) can be conveniently rewritten
as

∂�

∂t
+ 1

2
∇� · ∇� + η = r

f

2

(
αA ei(�t−θ ) + αB ei(�t+θ ))+ c.c., (4)

with c.c. denoting the complex conjugate and with αA = (1 + α)/2 and αB = (1 − α)/2 two auxil-
iary orbit parameter.

B. Multiple time scales weakly nonlinear analysis

The weakly nonlinear multiple timescale analysis formalized in Sec. IV of Marcotte et al. [17] is
based on the following asymptotic expansion for the flow quantities,

q(r, θ, z, t ) = {�, η}T = q0 + εq1 + ε2q2 + ε3q3 + O
(
ε4
)
, (5)

and on the assumption of a small forcing amplitude of order f = ε3F , which is justified by the fact
that close to the resonance � ≈ ω0, even a small forcing will induce a large system response. We
then allow for a small frequency detuning with respect to the first system’s natural frequency, ω0,
such that � = ω0 + λ, with λ = ε2�, ε a small parameter � 1 and the new auxiliary parameters F
and � assumed of order O(1). Note that the ε0-order solution, q0 represents the rest state, for which
�0 and η0 are simply zero.

Given the azimuthal periodicity of the forcing term on the right-hand side of (4), i.e., m = ±1
(with m a so-called azimuthal wave number), we postulate a leading-order solution as the sum of
two counterpropagating traveling waves

q1(r, θ, z, t ) = A1(T2)q̂A1
1 (r, z)ei(ω0t−θ ) + B1(T2)q̂B1

1 (r, z)ei(ω0t+θ ) + c.c.. (6)

with c.c. denoting the complex conjugate. As typical of multiple timescale analyses [19,20], the
complex amplitudes A1 and B1, functions of the slow time scale T2 = ε2t and still undetermined
at this stage of the expansion, describe the slow time amplitude modulation of the two oscillating
waves and must be determined at a higher order of the asymptotic expansion.

The natural frequency ω0 and structure q̂A1
1 (and q̂B1

1 ) assume the meaning of eigenvalue and
associated eigenmode of the leading-order linearized sloshing operator, whose matrix compact form
can be written as (iω0B − Am=±1)q̂A1, B1

1 = 0 (see Refs. [21], [10], and [17] for the expression
of B and Am). As in Ref. [10], those matrices are numerically discretized in space by means of
a Gauss-Lobatto-Chebyshev pseudospectral collocation method with a two-dimensional mapping
implemented in MATLAB, which is analogous to the method described in Refs. [21] and [22].

By pursuing the expansion to the second order in ε, one obtains a linear system forced by
second-order nonlinear terms produced by combinations of the two leading-order waves through,
e.g., ∇�1 · ∇�1/2 in the dynamic condition and ∇�1 · ∇η1 in the kinematic equation. These

forcing terms, F̂ i j
2 , are proportional to A2

1 and B2
1 (second harmonics), to |A1|2 and |B1|2 (steady
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FIG. 5. (a) First-order and (b)–(e) second-order free surface deformations. Top: top-view of the full surface
deformations, reconstructed according to the corresponding azimuthal periodicity and shown for t = 0, i.e.,
η̂

A1, B1
1 (r) cos mθ . Bottom: interface as a function of the radial coordinate only and at θ = 0, e.g., η̂

A1, B1
1 (r).

The first-order solution is normalized with the amplitude and phase of the contact line elevation (at r = 1),
such that the free surface η

A1, B1
1 is purely real, whereas the potential velocity field �̂

A1, B1
1 is purely imaginary.

Note that, owing to the symmetries of the problem, the system admits the following invariant transformation:

(q̂, +m, iω0) −→ (q̂, −m, iω0), so that η̂
A1
1 = η̂

B1
1 , η̂

|A1|2
2 = η̂

|B1|2
2 and η̂

A2
1

2 = η̂
B2

1
2 . In other words, only part of

the first and second-order responses need to be computed explicitly.

and axisymmetric mean flow corrections) and to A1B1 and A1B1 (cross-quadratic interactions), and
therefore they call for a second-order solution in the form

q2 = |A1|2q̂A1Ā1
2 + |B1|2q̂B1B̄1

2 + (
A2

1q̂A1A1
2 ei2(ω0t−θ ) + B2

1q̂B1B1
2 ei2(ω0t+θ ) + c.c.

)
(7)

+
(

A1B1q̂A1B1
2 ei2ω0t + A1B1q̂A1B1

2 e−i2θ + c.c.
)
.

None of the associated forcing terms being resonant, each spatial structure, q̂i j
2 (r, z) can be computed

numerically as described in Ref. [10] by simply inverting the corresponding linear operator, e.g.,

q̂A1A1
2 = (−A0)−1F̂A1A1

2 , q̂A1A1
2 = (i2ω0B − A−2)−1F̂A1A1

2 ,

q̂A1B1
2 = (i2ω0 − A0)−1F̂A1B1

2 , q̂A1B1
2 = (−A−2)−1F̂A1B1

2 . (8)

The resulting structures are shown in Fig. 5 in terms of free surface deformations.
We now move forward to the ε3-order problem, which is once again a linear problem forced by

combinations of the first- (6) and second-order (7) solutions, produced by third-order nonlinearities
through, e.g., (∇�1 · ∇�2 + ∇�2 · ∇�1)/2 in the dynamic condition or ∇�1 · ∇η2 + ∇�2 · ∇η1

in the kinematic equation, as well as by the slow time-T2 derivative of the leading-order solution
and by the external forcing, which was assumed of order ε3:

(∂tB − Am)q3 = F3 = −∂A1

∂T2
Bq̂A1

1 ei(ω0t−θ ) − ∂B1

∂T2
Bq̂B1

1 ei(ω0t+θ )

+ |A1|2A1F̂
|A1|2A1

3 ei(ω0t−θ ) + |B1|2B1F̂
|B1|2B1

3 ei(ω0t+θ )

+ |B1|2A1F̂
|B1|2A1

3 ei(ω0t−θ ) + |A1|2B1F̂
|A1|2B1

3 ei(ω0t+θ )

+αA FF̂F
3 ei(ω0t−θ )ei�T2 + αB FF̂F

3 ei(ω0t+θ )ei�T2

+ N.R.T. + c.c., (9)
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with F̂F
3 = {0, r/2}T and where N.R.T. stands for nonresonating terms. The latter terms are not

strictly relevant for further analysis and can therefore be neglected. The arbitrariness on amplitudes
A1 and B1 is fixed by requiring that secular terms do not appear in the solution to Eq. (9), where
secularity results from all resonant forcing terms in F3 (see Appendix D of Ref. [10] for its explicit
expression), i.e., all terms sharing the same frequency and wave number of q1, e.g., (ω0, m = ±1),
and in effect, all terms explicitly written in (9). It follows that a compatibility condition must be
enforced through the Fredholm alternative [23], which imposes the amplitudes A = εA1e−iλt and
B = εB1e−iλt to obey the following normal form:

dA

dt
= −iλA + i αAμ f + i ν|A|2A + i ξ |B|2A, (10a)

dB

dt
= −iλB + i αBμ f + i ν|B|2B + i ξ |A|2B, (10b)

where the physical time t = T2/ε
2 has been reintroduced and where forcing amplitude and detuning

parameter are recast in terms of their corresponding physical values, f = ε3F and λ = ε2� = � −
ω0, so as to eliminate the small implicit parameter ε [24,25].

The values of the normal form coefficients μ, ν, and ξ as a function of the nondimensional fluid
depth, H = h/R, are reported in Appendix A. These coefficients, which turn out to be real-valued
quantities due to the absence of dissipation, are computed as scalar products between the adjoint
mode, (q̂A1†

1 , q̂B1†
1 ), associated with (q̂A1

1 , q̂B1
1 ), and the third-order resonant forcing terms:

i I μ =< q̂A1†
1 , F̂F

3 >=
∫ 1

0
(r/2)η̂

A1†
1 rdr, (11a)

i I ν =< q̂A1†
1 , F̂ |A1|2A1

3 >=
∫ 1

0

(
η̂

A1†
1 F̂ |A1|2A1

3dyn
+ �̂

A1†

1 F̂ |A1|2A1
3kin

)
rdr, (11b)

i I ξ =< q̂A1†
1 , F̂ |B1|2A1

3 >=
∫ 1

0

(
η̂

A1†
1 F̂ |B1|2A1

3dyn
+ �̂

A1†

1 F̂ |B1|2A1
3kin

)
rdr, (11c)

where

I =< q̂A1†
1 , Bq̂A1

1 >=
∫ 1

0

(
η̂

A1†
1 �̂

A1
1 + �̂

A1†

1 η̂
A1
1

)
rdr. (12)

Here (q̂A1†
1 , q̂B1†

1 ) = (q̂
A1

1 , q̂
B1

1 ), since the inviscid problem is self-adjoint with respect to the
Hermitian scalar product < a, b >= ∫

V a · b dV , with a and b two generic vectors (see Ref. [26]
for a thorough discussion and derivation of the adjoint problem).

For the sake of brevity, we do not report the expression of the various forcing terms. As an
example, the full expression of F̂ |A1|2A1

3kin
is given in Appendix D of Ref. [10]. The other forcing terms

are calculated analogously.

C. Phenomenological damping coefficient

Consistently with the inviscid analysis of Faltinsen et al. [15], the system of amplitude equa-
tions (10a)–(10b) unrealistically predicts counterwaves for α → 1 [15,27], while the condition
α = 1 gives only codirected waves [9,28] (see Appendix C for further details). This implies that
the response curve branching is not a continuous function of α, which is in contradiction with our
experimental evidence reported in the next section. By analogy with Raynovskyy and Timokha
[27], we, therefore, introduce in Eqs. (10a)–(10b) a heuristic damping coefficient, σ , that serves to
regularize the limit for α → 1.
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The value of σ is estimated according to the well-known expression [29–31]

σ = 2k2

Re︸︷︷︸
bulk

+
√

ω0

2Re

(
k cosh2 kH

sinh 2kH

)
︸ ︷︷ ︸
surf. contamination

+
√

ω0

2Re

⎛
⎜⎜⎜⎝ k

sinh 2kH︸ ︷︷ ︸
bottom

+ 1

2

1 + (1/k)2

1 − (1/k)2 − kH

sinh 2kH︸ ︷︷ ︸
sidewall

⎞
⎟⎟⎟⎠. (13)

The damping associated with lowest natural frequency, ω0 = ω0/
√

g/R = √
k tanh (kH ) = 1.3547

(with wave number k = 1.8412) [16], in a container of diameter D = 2R = 0.172 m filled to a
depth H = h/R = 1.744 with distilled water, i.e., ρ = 1000 kg/m3, μ = 0.001 kg/ms and γ =
0.072 N/m, for which Re = ρ

√
gR3/μ = 78 952 (Reynolds number), amounts to σ = 0.0055.

Typically the viscous damping rate can be interpreted as a slow damping process [21,32], i.e.,
1/σ ≈ 180, over a faster time scale represented by the wave oscillation, i.e., 1/ω0 ≈ 0.5. When
this hypothesis holds, as in the present experimental study, the damping coefficient is assumed to be
small of order ε2, such that damping terms as −σA and −σB, both of order ∼O(ε3) [A, B ∼ O(ε)],
can be phenomenologically added a posteriori to the final inviscid amplitude equations.

Before moving forward, it is worth noticing that expression (13) englobes different effects, i.e.,
viscous dissipation occurring in the Stokes boundary layers (at the solid lateral and bottom wall),
bulk dissipation and possible sources of dissipation associated with free surface contamination
effects [29,33], but it does not account for any form of dissipation induced by contact angle
dynamics [22,34–37] or by wave breaking and overturning [27].

Moreover, as pointed out in Appendix A of Ref. [10], prediction (13) is only valid for
small-amplitude capillary-gravity waves, whereas the dissipation rates of forced wave motions
are generally more complex, i.e., it is typically a function of the wave amplitude [27]. A more
rigorous viscous analysis would indeed produce complex eigenfunctions and, therefore, complex-
valued normal form coefficients [25], e.g., ν = Re[ν] + i Im[ν] (same for ξ ), so that the effective
damping will be asymptotically proportional to the square of the wave amplitude through the
cubic term in the amplitude equation, i.e., (σ + Im[ν]|A|2 + Im[ξ ]|B|2) for amplitude A and
(σ + Im[ν]|B|2 + Im[ξ ]|A|2) for amplitude B.

For these reasons, we do not expect the heuristic damping model to provide an accurate estima-
tion of the actual amplitude-dependent dissipation of the system, crucial for a correct prediction of
the phase lag between forcing and the system response [38]. However, accounting for a damping
coefficient σ in Eqs. (14a)–(14b) is essential in order to regularize the weakly nonlinear model
prediction as the orbit aspect ratio α approaches 1, e.g., for circular orbits.

D. Lowest-order asymptotic solution

In conclusion, after accounting for the small damping terms −σA and −σB, the lowest-order
asymptotic solution governing the close-to-resonance interaction of the two m = ±1 counterpropa-
gating waves is ruled by the following system of complex amplitude equations

dA

dt
= −(σ + iλ)A + i μαA f + i ν|A|2A + i ξ |B|2A, (14a)

dB

dt
= −(σ + iλ)B + i μαB f + i ν|B|2B + i ξ |A|2B. (14b)

The leading-order free surface deformation writes

η(r, θ, t ) = η̂
A1, B1
1 (r)

(
Aei(�t−θ ) + Bei(�t+θ ))+ c.c.. (15)

Given the choice of the mode normalization, for which η̂
A1, B1
1 (r = 1) = 1, we can express the

dimensionless contact line elevation, δ(θ, t )/R, at any azimuthal coordinate, e.g., at θ = 0, as

δ(0, t )/R = (A + B)ei�t + c.c. (16)
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This quantity will be used in the next section for comparison with the experimental measurements of
the stable stationary wave amplitudes. The stationary solutions and their stability can be computed
and predicted from (14a)–(14b) as explained in Appendix B.

IV. COMPARISON WITH EXPERIMENTS

We now compare, in Fig. 6, our measurements to the asymptotic model (14a)–(14b). It is impor-
tant to note that the comparison is outlined only in terms of steady-state wave amplitude. In other
words, the experimental transient dynamics following the reverse of the container’s direction of
motion is ignored and, more generally, the specific structure of such an initial perturbation does not
enter the theoretical model, as we only look for large time stationary solutions of Eqs. (14a)–(14b)
with d/dt = 0.

Figure 6 shows that at small ellipticity, e.g., α close to 0.10, the amplitude response curve is
similar to that induced by a purely longitudinal forcing [12,17] except that the planar wave solution
no longer exists, owing to the preferential direction of motion, and that the co- and counterrotating
waves are no more equally probable, with the counterwave exhibiting a slightly lower amplitude.
By increasing the value of α, the counterwave displays a decreasing amplitude and the range of
frequency for which irregular motion occurs shrinks down and ultimately vanishes [15]. For longi-
tudinal sloshing, irregular motions are the result of an irregular alternation of planar and swirling
dynamics [12]. In the context discussed here, irregular means that both the co- and counterswirling
solutions are unstable and the system exhibits irregular and chaotic patterns switching between
co- and, at a small ellipticity, counterswirling dynamics alternating transient intervals of nearly
planar motions (see also movies in Supplemental Material [18]). As α approaches 1, the admissible
frequency range associated with counterwaves reduces and it is eventually suppressed, whereas the
frequency range associated with codirected swirling widens and covers all of the frequency range at
α = 0.95, i.e., approaching the limiting case of a circular trajectory (α = 1) [9,10]. We also observe
a decrease in the wave amplitude at ax = 3 mm for α � 0.5, occurring just before the jump-down
frequency (see gray boxes in Fig. 6) and which can be tentatively attributed to highly nonlinear
effects, e.g., wave breaking leading to the atomization of the wave crests, overlooked by the weakly
nonlinear model.

The experimental steady-state wave amplitudes are in good quantitative agreement with the
theoretical predictions for all ax and α values explored, hence proving the validity of the inviscid
analysis in our regime of operation. The only major limitation of the asymptotic analysis is intrinsic
to the use of a simple phenomenological damping. As the latter does not depend on the wave
amplitude, it cannot accurately predict the phase lag between forcing and the system response
[38]. This translates into an imprecise estimation of the jump-down frequency occurring above
resonance and of the frequency range associated with the counter-swirling, which appears slightly
overestimated.

V. CONCLUSION

In this work, we have investigated the sloshing dynamics in the vicinity of the first harmonic res-
onance for container elliptic orbits. The amplitude-response curves at different forcing amplitudes
were examined versus the orbit’s aspect ratio. We have reported for the first time experimental
evidence of the existence of a frequency range where stable swirling can be counterdirected
with respect to the container’s direction of motion. Particularly, our experiments demonstrated the
existence of a significant frequency range associated with stable counterswirling up to surprisingly
high orbit aspect ratios.

Our findings have been rationalized by the asymptotic model formalized in Marcotte et al. [17]
supplemented with a heuristic damping coefficient, which shows how the close-to-resonant sloshing
dynamics for any container’s ellipticlike orbit is well represented by four degrees of freedom
only. This suggests that generalizing the resonantly forced spherical pendulum [7] could provide
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FIG. 6. Nondimensional wave amplitude, 
δ = [maxt δ(0, t ) − mint δ(0, t )]/2R versus �/ω0 for different
values of ax (rows) and α (columns). Markers: experiments (black for co- and red for counterwaves). The
typical dispersion in the measurements is well represented by the size of the markers. Curves: stable branches
predicted by the present WNL theory (solid for co- and dashed for counterwaves). Vertical dotted lines indicate
frequency values at which experiments have shown irregular motion. Unstable branches are not displayed for
the sake of clarity.
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TABLE I. Value of the normal form coefficients appearing in (14a)–(14b) computed at different non-
dimensional fluid depths H = h/R (as reported in Table 1 of Marcotte et al. [17]) and associated with the
lowest natural frequency mode. The subscript SC was used in Refs. [10] and [17] to indicate the shape of
the associated free surface response close to harmonic resonance, initially denominated single-crest (SC) by
Reclari et al. [9]. Here the subscript SC has been omitted, but in practice, μ, ν, and ξ coincide with μSC , νSC ,
and ξSC in Ref. [17]. For completeness, we also report the value of the system’s lowest natural frequency ω0.
The bold values correspond to those used in the main document for comparison with experiments.

H = h/R 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.744 1.8 1.9 2.0

μ –0.279 –0.280 –0.281 –0.282 –0.283 –0.283 –0.283 –0.283 –0.284 –0.284 –0.284
ν 1.414 1.407 1.406 1.407 1.409 1.410 1.411 1.412 1.412 1.412 1.412
ξ –7.487 –7.914 –8.101 –8.211 –8.281 –8.328 –8.359 –8.369 –8.381 –8.395 –8.405
ω0 1.334 1.341 1.346 1.349 1.352 1.353 1.354 1.355 1.355 1.356 1.356

a suitable mechanical analogy for this entire family of sloshing dynamics, thus offering additional
room in this archetypical low degrees-of-freedom class of dynamical systems.

We have discussed how the phenomenological damping is sufficient to resolve the singular
limiting behavior for α → 1, but its simplistic estimation does not allow for an accurate prediction
of the jump-down frequency and of the frequency range associated with counterswirling. The
adequate embedding of dissipative viscous effects is a longstanding problem in the hydrodynamics
community and still represents a current key challenge in modeling sloshing dynamics. The use of
machine learning algorithms has been recently suggested as a pursuable approach [39], but their use
obviously requires the a priori knowledge of an experimental dataset for training. Therefore, future
perspectives of this work could include the extension of the weakly nonlinear model to a viscous
framework in the same spirit as Bongarzone et al. [25]. Although the latter presently hinges on the
subtle modeling of the moving contact line dynamics, such an extension is desirable, as it would
enable one to better quantify the overall system dissipation and also to predict the viscous streaming
experimentally observed in orbitally shaken containers [40].
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APPENDIX A: VALUES OF THE NORMAL FORM COEFFICIENTS

In Table I we report the values of the normal form coefficients, μ, ν, and ξ appearing in
(14a)–(14b) as a function of the nondimensional fluid depth H = h/R. Note that our experiments
have been performed at a fluid depth H = 1.744.

For completeness we also report the value of the system’s lowest natural frequency ω0, which
satisfies the well-known dispersion relation for gravity waves ω0 = ω0/

√
g/R = √

k tanh (kH )
(with k = 1.8412) [16]. We do not report the value of the damping coefficient σ as a function
of H , since for H � 1 the fluid depth does not affect significantly its value estimated according
to (13).

APPENDIX B: STATIONARY WAVE AMPLITUDE SOLUTIONS AND THEIR STABILITY

By turning (14a)–(14b) into polar coordinates, i.e., A = |A|ei�A and B = |B|ei�B , we can split
real and imaginary parts, hence obtaining

d|A|
dt

= −σ |A| + αAμ f sin �A, (B1a)
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|A|d�A

dt
= −λ|A| + αAμ f cos �A + ν|A|3 + ξ |B|2|A|, (B1b)

d|B|
dt

= −σ |B| + αBμ f sin �B, (B1c)

|B|d�B

dt
= −λ|B| + αBμ f cos �B + ν|B|3 + ξ |A|2|B|. (B1d)

Let us then decompose amplitudes and phases as the sum of stationary values plus time-dependent
small perturbations of order ε � 1.

y(t ) =

⎛
⎜⎜⎝

|A|(t )
�A(t )
|B|(t )
�B(t )

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

a0

φA,0

b0

φB,0

⎞
⎟⎟⎠+ ε

⎛
⎜⎜⎝

a1(t )
φA,1(t )
b1(t )

φB,1(t )

⎞
⎟⎟⎠ = y0 + εy1(t ) = y0 + ε

(
ŷ1est + c.c.

)
, (B2)

with s = sR + isI ∈ C an eigenvalue and c.c. denoting the complex conjugate part of the small linear
perturbation. The substitution of (B2) in (B1a)–(B1d) and the linearization around y0, lead to two
problems at order ε0 and ε, respectively. As the nonlinear system of equations at order ε0 does
not admit an analytical solution, we apply a numerical procedure after rewriting the problem in the
form:

F = 0 =

⎧⎪⎪⎨
⎪⎪⎩

αAμ f sin φA,0 − σa0,

αAμ f cos φA,0 − a0
(
λ − νa2

0 − ξb2
0

)
,

αBμ f sin φB,0 − σb0,

αBμ f cos φB,0 − b0
(
λ − νb2

0 − ξa2
0

)
.

(B3)

System (B3) is then solved in MATLAB function using the built-in function fsolve and prescribing
some initial guesses (ig) for (aig

0 , φ
ig
A,0, big

0 , φ
ig
B,0). In practice, we provide in input the external control

parameters, �, ax = ax/R and α, whereas the associated combination of stationary amplitudes and
phases, (a0, φA,0, b0, φB,0) are computed as outputs.

In the following we study the stability properties of these steady-state amplitude and phase
solutions. Given the ansatz y1(t ) = ŷ1est + c.c., at order ε the linearized and unsteady system,
describing the evolution of small amplitude perturbations around the stationary states can be written
in a matrix form as

sMŷ1 = Kŷ1, (B4)

with matrices M and K reading

M =

⎡
⎢⎢⎣

1 0 0 0
0 a0 0 0
0 0 1 0
0 0 0 b0

⎤
⎥⎥⎦, K =

⎡
⎢⎢⎣

K11 K12 0 0
K21 K22 K24 0
0 0 K33 K34

K41 0 K43 K44

⎤
⎥⎥⎦, (B5)

ŷ1 = (â1, φ̂A,1, b̂1, φ̂B,1)T and

K11 = −σ, K33 = −σ, (B6a)

K12 = αAμ f cos φA,0, K34 = αBμ f cos φB,0, (B6b)

K21 = −λ + 3νa2
0 + ξb2

0, K43 = −λ + 3νb2
0 + ξa2

0, (B6c)

K22 = −αAμ f sin φA,0, K44 = −αBμ f sin φB,0, (B6d)

K24 = 2ξa0b0, K41 = 2ξa0b0, (B6e)
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FIG. 7. Close-to-resonance branching diagram illustrated in terms of dimensionless wave amplitude, 
δ,
versus the rescaled forcing frequency �/ω0 and for ax = 3 mm. (a) α = 0.99 and σ = 0; (b) α = 1 and σ = 0;
(c) α = 0.99 as in (a), but σ = 0.0055 as prescribed by Eq. (13). (c) shows how accounting for a small damping
coefficient is sufficient to suppress the counterdirected swirling branch for α = 0.99, hence regularizing the
branching diagram in the limit of α → 1 clearly highlighted by (a) and (b) for σ = 0.

We proceed as follows. For each (a0, φA,0, b0, φB,0), solution of (B3), we obtain four eigenvalues
s. If the real part of at least one of these eigenvalues is positive, then that configuration, associated
with the set of external parameters (�, ax, α), is labeled as unstable.

APPENDIX C: BIFURCATION DIAGRAM FOR α → 1

In this Appendix, we illustrate the role of the phenomenological damping coefficient on the
branching diagram in the limit of α → 1. Indeed, we have observed in our experiments that for
increasing α, the frequency range associated with the existence of a stable counterswirling wave
progressively shrinks until it eventually disappears (for āx = 3 mm, this occurs between α = 0.85
and α = 0.95). However, as discussed in Sec. III C, the inviscid model predicts an extended branch
associated with stable counterdirected waves for any α < 1, e.g., α = 0.99 [see Fig. 7(a)], and no
branch at all for α exactly equal to 1 [Fig. 7(b)], thus indicating that the response curves branching
is not a continuous function of α. Instead, accounting for a damping coefficient, σ , allows for a
continuous shrinking of the counterdirected wave branch, that eventually disappears [Fig. 7(c)], in
qualitative agreement with our experimental observations.
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