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Zakhar V. Makridin ,1,* Alexander K. Khe ,1

Ilias N. Sibgatullin ,2,3 and Eugeny V. Ermanyuk 1

1Lavrentyev Institute of Hydrodynamics, 630090 Novosibirsk, Russia
2School of Computer Science and Mathematics, Keele University, Staffordshire, ST5 5AA, United Kingdom

3Univ Lyon, ENS de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France

(Received 21 November 2022; accepted 28 June 2023; published 4 August 2023)

In this paper, we study internal wave focusing in a trapezoidal domain with one moving
boundary. Using linear theory, we construct an exact analytic solution for the case of ideal
uniformly stratified Boussinesq fluid, which is appropriate for developing weakly nonlinear
theory. This analytical solution is compared against the results of direct numerical simula-
tions performed with the help of the spectral element method. It is shown that the nested
structure of wave beams in the ideal-fluid solution is consistent with the peculiarities of the
wave-beam profiles obtained in weakly viscous numerical simulations performed in a range
of Stokes numbers covering three orders of magnitude beyond the typical experimental
values. Finally, we explore the role of the shape of the wave generator on the instantaneous
profiles and envelopes of the wave beams.
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I. INTRODUCTION

Within the linear theory of a uniformly stratified, nonrotating, incompressible, inviscid two-
dimensional Boussinesq fluid, it can be easily shown that spatial structure of internal monochromatic
wave stream function �(x, z, t ) = Re{ψ (x, z)e−iωt } is governed by hyperbolic wave equation for
ψ (x, z) with prescribed values on the boundary [1–3]. The solution of this Dirichlet problem
can be represented by the mapping of the boundary on itself (see, e.g., Refs. [4–6] for relevant
mathematical aspects). Specifically, given a single point on the boundary, its images can be defined
by forward and backward iteration of the mapping correspondingly, following the characteristic
lines passing through that point both in rightward and leftward directions. Thus, one can construct a
web of wave rays iteratively and then specify the stream-function value at each point of the domain.
Under the appropriate choice of parameters, wave attractors arise by construction as closed orbits,
accumulating wave energy, injected from the boundary of the closed domain.

This procedure was used in Ref. [7], where the stream-function field of an unforced standing
wave attractor was obtained and some properties of the mapping were discussed. Later, in Ref. [8],
an internal wave attractor was observed experimentally around a theoretically predicted location in
a trapezoidal setup. Also, it was pointed out that the wave field initially behaves as a standing wave
and tends to a stationary state on the form of a propagating wave. Thus, there is some inconsistency
with the experiment, since theory [7] describes the standing-wave solution only. This issue was
studied in Ref. [9], where a traveling wave solution for sloshing-type surface forcing was obtained
(also iteratively), allowing one to apply more realistic boundary conditions.

Iterative construction of a solution is inappropriate for subsequent development of a weakly
nonlinear theory, since the wave field is defined pointwise. An analytic solution of a standing
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wave attractor was given in Ref. [10], where the wave field in a 2D trapezoidal domain was
represented as a Fourier series with coefficients satisfying the functional equation, which results
in log periodicity of the spectrum. Such functional equations were further investigated in Ref. [11]
within the framework of internal wave theory in confined domains.

The linear theory of weakly viscous forced internal wave attractor was developed in
Refs. [12,13]. With this approach, the forcing is defined as a localized source, located outside
of the trapezoidal domain. Then, the wave attractor is constructed as four branches of a viscous
internal wave beam, reflected at vertical and horizontal boundaries, and closed on itself at the sloping
wall. This requires the spectrum to satisfy the appropriate functional equation, similar to Ref. [10].
Accordingly, one can construct a wave attractor with any spectrum satisfying the corresponding
functional equation. Thus, it is not obvious how to relate the spectrum of a localized source with
that of a moving boundary. In some cases, such a relation can be disregarded. For example, the
scaling law governing the equilibrium width of the wave beams in a weakly viscous fluid can be
obtained under the assumption that the geometric focusing is balanced by viscous diffusion, while
the wave beams are represented by free self-similar oblique shear layers in the spirit of Ref. [14].
In a more systematic way, this approach requires the solution of the linearized boundary-layer-type
equations for free shear layers representing the attractor beams. There exists rich literature on this
approach in application to inertial waves in rotating spherical shells [15,16] (see also Ref. [17],
where a similar approach is used). The scaling law obtained with this approach is in reasonable
agreement with the available data in the vicinity of the wave-ray skeleton of the attractor [18].
However, such an approach does not consider any relation to a specific form of forcing imposed at
the boundary of the liquid domain. In addition, such an approach does not consider a link between
the inner solution (understood as a specific free shear boundary layer) and the outer solution for the
background wave motion in the fluid bulk external to the boundary layer.

In the present paper, we develop the linear theory of an inviscid forced internal wave attractor
in a 2D trapezoidal domain, with one moving wall. This classic setup has been studied theo-
retically [7,8], experimentally [8,18,19], and numerically [20,21] as a model problem possessing
rich nonlinear dynamics which mimics some essential features of internal wave climate in natural
stratified basins [22]. Our goal is to fill some gaps in the understanding of the global wave-field
structure of wave attractors. In particular, we explore how the nested structure of the inviscid
solution corresponding to different profiles of the forcing imposed at the moving boundary is
inherited by a weakly viscous numerical solution at different values of viscosity, including typical
laboratory conditions. Moving walls undergoing prescribed motion are getting increasingly popular
in experiments to inject energy in wave attractors [19,23] as compared to a more traditional approach
with inertial sloshing-type forcing [8,24]. The inviscid theory of such moving-wall generators is
relatively straightforward in application to the wave beams in unbounded domains [25,26], while
the problem remains open for bounded domains.

II. GOVERNING EQUATIONS

We consider inviscid, incompresssible, uniformly stratified, nonrotating Boussinesq fluid, filling
a two-dimensional right-angled trapezoidal domain � of height H and length h [see Fig. 1 (left)].
A sloping wall is inclined at an angle α with respect to the horizontal. Equations of motion can be
written as

ut + (u · ∇)u = − 1

ρ∗
∇p + ezb, (1)

bt + u · ∇b = −vN2, (2)

∇ · u = 0, (3)

where ∇ = (∂x, ∂z ), ez = (0, 1), u = (u, v) is the fluid velocity field, ρ∗ is the characteristic density
of the fluid (averaged over the stratified region), such that fluid density at rest is ρ∗ + ρ0(z), p
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FIG. 1. Left: Schematic view of the two-dimensional trapezoidal domain. The coordinate origin O is placed
at the bottom left vertex. Right: Forward evolution of the point P∗ under characteristic map.

is the pressure fluctuation with respect to the hydrostatic equilibrium d p0/dz = −g(ρ∗ + ρ0(z)),
b = −gρ ′/ρ∗ the perturbed buoyancy field with g being gravitational constant and N2(z) =
−(g/ρ∗)dρ0/dz the buoyancy frequency. Continuity Eq. (3) allows us to introduce stream function
�(x, z, t ), such that u = �z, v = −�x. Then the linearized system Eqs. (1) and (2) transform to

∇2�t = −bx, bt = �x,

which, under elimination of b, leads to the following linear partial differential equation of Sobolev
type [27]:

∇2�tt + �xx = 0. (4)

Here we take N = 1 for simplicity. Equations similar to Eq. (4) were studied in Refs. [5,28–30]
in the framework of spectral theory and more recently in Refs. [31–33] in the context of inertial
and internal wave attractors with a forcing term added the right-hand side. After the substitution
�(x, z, t ) = ψ (x, z)e−iωt , Eq. (4) reduces to the wave equations

ψxx − λ2ψzz = 0, λ2 = ω2

1 − ω2
. (5)

It admits a plane-wave solution with wave vector k = (m, l ) and wave number |k| = (m2 + l2)1/2

if and only if the dispersion relation

ω = ±m/|k| = ± sin θ (6)

is satisfied. Here θ is the angle between the wave vector k and the vertical, therefore λ2 = tan2 θ .
We use free slip conditions on the boundary ∂�:

ψz|x=0 = U (z), ψx|z=0 = ψx|z=H = 0, {ψz tan α − ψx}|z=tan α(h−x) = 0, (7)

with the given real-valued function U (z). Note that the stream function � admits representation

�(x, z, t ) = Re{ψ (x, z)e−iωt } = ϕ(x, z) cos ωt + η(x, z) sin ωt,

where Re denotes the real part. Therefore, real ϕ and imaginary η parts of complex amplitude ψ are
equal to the stream function � at t = t∗ and t = t∗∗, respectively:

�(x, z, t∗) = ϕ(x, z), t∗ = 2πk

ω
, k = 0, 1, 2, . . . ,

�(x, z, t∗∗) = η(x, z), t∗∗ = π

2ω
+ 2πk

ω
, k = 0, 1, 2, . . . .
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FIG. 2. Left: Wave rays, propagating upward from the intervals [z0, z2] and [z3, z5]. Right: Wave rays,
propagating upward from the interval [z2, z3], and downward from [z0, z5].

III. WEB OF WAVE RAYS

For further investigation, one needs to build up web of wave rays. Let us define two maps T ± in
the following way [see Fig. 1 (right)]: each point P∗ = (x∗, z∗) ∈ ∂� is mapped to T +P∗ = (x+, z+)
and T −P∗ = (x−, z−) obtained as an intersection of corresponding characteristics with the boundary
∂�. To get the coordinates of T ±P∗, one should solve the following system:

x± ± λ−1z± = x∗ ± λ−1z∗

T ±P∗ ∈ ∂�.

Now, consider two sequences:

S±(P∗) = {P∗, T ±P∗, (T ∓ ◦ T ±)P∗, (T ± ◦ T ∓ ◦ T ±)P∗, . . .}.
The sequence S+(P∗) (S−(P∗)) can be considered as forward (backward) evolution of the point P∗
under some map, which is called the characteristic map. Denote by L±(P∗) a set of characteristics,
connecting any two successive points of S±(P∗). Since the forcing is prescribed on the {x = 0, z ∈
[0, H]} = � ⊂ ∂�, then, following Ref. [9], the wave ray web is defined as

WR(�) =
⋃

P∗∈�

L±(P∗).

After a close look at the wave ray web, one can observe that rays, starting from different points
on the �, reflect differently. Specifically, let us introduce the set

O±
� (P∗) = S±(P∗) ∩ �,

called the � orbit of point P∗ under forward (+) or backward (−) iteration of the characteristic map.
For a given point P∗ ∈ � with coordinates (0, z∗), consider the following six cases (see Fig. 2):

(I) For z∗ ∈ [z0, z5], where z0 = 0, z5 = H (see Fig. 2), we have

O−
� (P∗) = {P∗, F−P∗, F 2

−P∗, F 3
−P∗, . . .},

with F± = T ± ◦ T ∓ ◦ T ± ◦ T ∓, corresponding to clockwise (+) or counterclockwise (−) wave ray
cycle.

(II) (Singular case.) For z∗ ∈ [z2, z3], where z2 = 2H − 2h tan α/(1 + cot θ tan α) and z3 =
2H − h tan α − (H + h tan α)(1 − cot θ tan α)/(1 + cot θ tan α), it is readily seen from Fig. 2 that
the second point in � orbit may fall outside the interval [z2, z3]. Thus,

O+
� (P∗) = {P∗, P∗∗, O+

� (P∗∗)},
and one should check subsequent cases to obtain the � orbit of P∗∗ = F+P∗.
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(III) For z∗ ∈ [z0, z1] with z1 = H − tan θ (h − H cot α) (see Fig. 2), we have

O+
� (P∗) = {P∗, P∗∗, F−P∗∗, F 2

−P∗∗, . . .},
with P∗∗ = (T − ◦ T + ◦ T −)P∗.

(IV) For z∗ ∈ [z1, z2] (see Fig. 2), we have

O+
� (P∗) = {P∗, P∗∗, F−P∗∗, F 2

−P∗∗, . . .},
with P∗∗ = (T − ◦ T + ◦ T −)P∗;.

(V) For z∗ ∈ [z3, z4], where z4 = 2H − h/ cot θ , we have

O+
� (P∗) = {P∗, P∗∗, F−P∗∗, F 2

−P∗∗, . . .},
with P∗∗ = (T − ◦ F+)P∗.

(VI) For z∗ ∈ [z4, z5], we have

O+
� (P∗) = {P∗, P∗∗, F−P∗∗, F 2

−P∗∗, . . .},
with P∗∗ = (F− ◦ T +)P∗.

Thus, one can see that the profile, specified at the �, is traced by the wave rays in different ways,
according to the six cases written above. The first case shows that the profile focuses under the
backward iteration of the characteristic map. Cases III–VI show that after several reflections, wave
rays tend to the focusing regime described by case I. Finally, the singular case represents defocusing
part of the initial profile.

It is worth noting that cases III and IV seem to be the same, but it is not the case, as will be seen
from the solution. The similar situation stands for cases V and VI: we formally defined P∗∗ in two
different ways to emphasize that corresponding solutions differ from each other (see Appendix).

IV. SOLUTION CONSTRUCTING

Suppose we are dealing with internal waves propagation in an infinite domain. Since the disper-
sion relation Eq. (6) defines frequency ω independent of the wave number, one can superimpose
plane-wave solutions with different wave numbers |k|, propagating at the same angle θ . Thus, we
may represent a solution in the form of Fourier integrals:

ψ (x, z) =
∫ +∞

0
eim1(l )x{

↘
Q (l )eilz+

↗
Q (−l )e−ilz}dl +

∫ +∞

0
eim2(l )x{

↙
Q (l )eilz+

↖
Q (−l )e−ilz}dl.

(8)

Here m1,2(l ) are defined from Eq. (6) and
•
Q (l ) is the Fourier spectrum of the plane-wave superposi-

tion with group velocity direction • ∈ {↗,↘,↖,↙}. The solution of the form Eq. (8) contains four
unidirectional internal wave beams [34], each transferring energy in one direction only. The weakly
nonlinear theory of beam propagation in unconfined domains, including its interaction, stability,
mean flow generation, and reflection at sloping boundaries, is well developed (see Refs. [34–45]
and references therein).

To construct a solution in trapezoidal domain �, one can take an integral solution representation
inside the trapezoidal domain, substitute it into boundary conditions, and then solve numerically the
integral equation obtained [46–48] (see also references therein). Instead, we consider whole plane
R2 and place virtual sources of localized unidirectional wave beams such that boundary conditions
Eqs. (7) are satisfied. This scheme allows us to use Fourier transform and, consequently, solution
representation Eq. (8). Specifically, we solve the auxiliary boundary value problem in an infinite
domain:

ψxx − λ2ψzz = 0, ψz|x=0 = UH (z) + Smov(z), ψx|z=0 = Sbot(x),

ψx|z=H = Stop(x), {ψz tan α − ψx}|z=tan α(h−x) = Sinc(x, z)|z=tan α(h−x). (9)
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Here UH (z) = χH (z)U (z), χH (z) is a characteristic function of the interval [0, H] and Smov, Sbot,
Stop, Sinc are source-type terms which will be determined later.

As discussed in the previous section, beams can be separated into six groups. Therefore, it is
natural to represent the solution as follows:

ψ (x, z) = ψ−
I (x, z) + ψ+

II (x, z) + ψ+
III(x, z) + ψ+

IV(x, z) + ψ+
V (x, z) + ψ+

VI(x, z), (10)

where each term is of the form Eq. (8) and upper index ± corresponds to the slope sign of wave
beam, starting from moving boundary. A similar representation takes place for all source terms
in Eq. (9). Since cases II–VI ultimately reduce to case I, we consider the latter in detail. Let us
remember the definition of Fourier transform f̂ (together with its inverse) of the integrable function
f , which we will use:

f̂ (l ) =
∫ +∞

−∞
f (z)e−ilzdz, f (z) = 1

2π

∫ +∞

−∞
f̂ (l )eilzdl.

Also, it will be useful to remember the Fourier transform of a product of two integrable functions
f (z) and g(z):

f̂ g (l ) = 1

2π
( f̂ ∗ ĝ)(l ).

A. Solution for case I

Solution is sought in the following form:

ψ−
I =

∞∑
k=1

ψ−
k,I, ψ−

k,I(x, z) =
∫ +∞

0
eilx tan θ {

↘
Qk,I (l )eilz+

↗
Qk,I (−l )e−ilz}dl

+
∫ +∞

0
e−ilx tan θ {

↙
Qk,I (l )eilz+

↖
Qk,I (−l )e−ilz}dl. (11)

The function ψ−
I must satisfy boundary conditions[see Eq. (9)]:

(ψ−
I )z|x=0 = 1

2π

∫ +∞

0
ÛH (l )eilzdl + SI,mov(z), (ψ−

I )x|z=0 = SI,bot(x), (12)

(ψ−
I )x|z=H = SI,top(x), {(ψ−

I )z tan α − (ψ−
I )x}|z=tan α(h−x) = SI,inc(x, z)|z=tan α(h−x). (13)

Here we took only one piece of Fourier representation,

UH (z) = 1

2π

∫ +∞

0
ÛH (l )eilzdl + 1

2π

∫ +∞

0
ÛH (−l )e−ilzdl, (14)

which corresponds to the downward propagating beam. Consider boundary conditions on the
moving wall in detail:

1

2π

∫ +∞

0
ÛH (l )eilzdl + SI,mov(z)=

∫ +∞

0
il

↘
Q1,I (l )eilzdl+

∞∑
k=2

∫ +∞

0
il{

↙
Qk−1,I (l )+

↘
Qk,I (l )}eilzdl

+
∞∑

k=1

∫ +∞

0
(−il ){

↗
Qk,I (−l )+

↖
Qk,I (−l )}e−ilzdl.

Our aim is to satisfy boundary conditions on the moving wall from Eqs. (7). It is easy to see that

wave beams with Fourier spectra
↙
Qk,I and

↘
Qk,I only propagate toward and away from the segment

� = {x = 0, z ∈ [0, H]} for all k = 1, 2, . . . (see Fig. 3). Thus, all other beams must be absorbed by
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FIG. 3. Virtual sources for the first two iterations are depicted (blue and yellow segments on lines x = 0
and x = h). Each Fourier integral corresponds to a localized internal wave beam of the same color placed
near the integral. Red line denotes the interval where the discrepancy appears when the iterative procedure is
interrupted.

the function SI,mov. This results in the following relations:

↘
Q1,I (l ) = ÛH (l )

2iπ l
,

↘
Qk,I (l ) = −

↙
Qk−1,I (l ), k = 2, 3, . . . ,

SI,mov(z) =
∞∑

k=1

∫ +∞

0
(−il ){

↗
Qk,I (−l )+

↖
Qk,I (−l )}e−ilzdl. (15)

By similar reasoning, the second boundary condition from Eq. (12) and the first one from Eq. (13)
lead to

SI,bot(x) =
∞∑

k=1

∫ +∞

0
(−il ) tan θ{

↙
Qk,I (l )+

↖
Qk,I (−l )}e−ilx tan θdl,

SI,top(x) =
∞∑

k=1

∫ +∞

0
il tan θ{

↘
Qk,I (l )eilH+

↗
Qk,I (−l )e−ilH }eilx tan θdl,

↘
Qk,I (l ) = −

↗
Qk,I (−l ),

↙
Qk,I (l ) = −

↖
Qk,I (−l )e−2ilH , k = 1, 2, . . . . (16)

The second equality in Eq. (13), being condition on the sloping wall, results in the following
relations:

SI,inc(x, z) =
∞∑

k=1

{
(tan α − tan θ )

∫ +∞

0
il

↘
Qk,I (l )eilx tan θeilzdl

+ (tan α + tan θ )
∫ +∞

0
il

↙
Qk,I (l )e−ilx tan θeilzdl

}
.
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0 =
∞∑

k=1

{
(tan α + tan θ )

∫ +∞

0
(−il )

↗
Qk,I (−l )eilx(tan α+tan θ )e−ilh tan αdl

− (tan α − tan θ )
∫ +∞

0
il

↖
Qk,I (−l )eilx(tan α−tan θ )e−ilh tan αdl

}
,

Now, consider the second equality. Making change of variable l �→ γ l , with γ = (tan α −
tan θ )/(tan α + tan θ ), in the first integral one obtains

(tan α − tan θ )
∞∑

k=1

∫ +∞

0
ileilx(tan α−tan θ ){γ

↗
Qk,I (−γ l )e−iγ lh tan α+

↖
Qk,I (−l )e−ilh tan α}dl = 0,

leading to the focusing relation
↖
Qk,I (−l ) = −γ

↗
Qk,I (−γ l )eilh tan α(1−γ ), k = 1, 2, . . . . (17)

Using formulas Eqs. (16) and (15), it can be easily shown that
↘
Qk,I (l ) = γ k−1ϑk−2(l )

↘
Q1,I (γ k−1l ),

↗
Qk,I (−l ) = −γ k−1ϑk−2(l )

↘
Q1,I (γ k−1l ), (18)

↙
Qk,I (l ) = −γ kϑk−1(l )

↘
Q1,I (γ kl ),

↖
Qk,I (−l ) = γ kϑk−1(l )

↘
Q1,I (γ kl )e2ilH (19)

for k = 2, 3, . . ., where

ϑk (l ) = exp

⎛
⎝il (h tan α(1 − γ ) − 2H )

k∑
j=0

γ j

⎞
⎠ (20)

and
↘
Q1,I (l ) is determined in Eq. (15). Thus, functions ψ−

k,I can be represented as the following linear
integral operators:

ψ−
1,I〈

↘
Q1,I (l )〉 =

∫ +∞

0

↘
Q1,I (l )eilx tan θ (eilz − e−ilz )dl

−
∫ +∞

0
γ ϑ0(l )

↘
Q1,I (γ l )e−ilx tan θ (eilz − e−ilze2ilH )dl (21)

and

ψ−
k,I〈

↘
Q1,I (l )〉 = −

∫ +∞

0
γ kϑk−1(l )

↘
Q1,I (γ kl )e−ilx tan θ (eilz − e−ilze2ilH )dl

+
∫ +∞

0
γ k−1ϑk−2(l )

↘
Q1,I (γ k−1l )eilx tan θ (eilz − e−ilz )dl, (22)

where k = 2, 3, . . . and
↘
Q1,I (l ) is expressed in terms of Fourier spectrum ÛH (l ) of the given

function UH (z). Solutions for remaining cases can be constructed in a similar way (see Appendix
for details).

B. Imaginary part of stream-function complex amplitude

In the previous Sec. IV A, we explained the method of solution construction and, as an example,
we examined case I. Now let us check the fulfillment of boundary conditions. Here we also consider
in detail case I only. Since function ψ−

I is represented as an infinite sum [see Eqs. (11), (21), and
(22)], one needs to consider its partial sums. To be specific, let us assume that function U (z) is linear:
U (z) = A(z − B) with A = 0.0005 and B = H/2 = 20. Figure 4 (first and second rows) displays

real parts of functions SI,mov, SI,top, SI,bot, and SI,inc, corresponding to partial sums ψ−
I,1

def= ψ−
1,I and

084801-8
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FIG. 4. Boundary conditions for partial sums ψI,1 and ψI,2 at lines x = 0, x = h, z = 0, and z = tan α(h −
x). Subscript i means that corresponding expression in the brackets is evaluated at z = tan α(h − x). Pink area
corresponds to each side of the trapezoid �. On the first and the second rows, real parts are depicted, while
imaginary parts are shown in the third and the fourth rows. One can see the discrepancy at the moving wall
� = {x = 0, z ∈ [0, H ]} (left column, first and third rows) similar to red line in Fig. 3.

ψ−
I,2

def= ψ−
1,I + ψ−

2,I. One can see that inside the pink area Re SI,top, Re SI,bot, and Re SI,inc are equal
to zero, meaning that corresponding boundary conditions Eqs. (7) are satisfied. The exception is
provided by Re SI,mov: there is a discrepancy with the function U (z) concentrated on some interval,
which becomes smaller for the second partial sum ψ−

I,2. This phenomenon is natural, since we are
dealing with a truncated series, and it will be shown in subsequent sections that the length of the
discrepancy interval tends to zero with a growing amount of terms in the partial sum of the general
solution. Now, let us look at Fig. 4 (third and fourth rows), where imaginary parts of functions
SI,mov, SI,top, SI,bot, and SI,inc, corresponding to partial sums ψ−

I,1 and ψ−
I,2, are depicted. It is readily

seen, that all functions inside pink area are not equal to zero, thus, boundary conditions Eqs. (7) are
not satisfied and imaginary part of ψ−

I is not a solution to the problems Eqs. (5) and (7). This can
be explained by the following reasoning. For the function U (z), one has

UH (z) = {I−(z) + I+(z)} + i{J−(z) + J+(z)}, (23)

where

I−(z) = 1

2π
Re

∫ +∞

0
ÛH (l )eilzdl, I+(z) = 1

2π
Re

∫ +∞

0
ÛH (−l )e−ilzdl, (24)

J−(z) = 1

2π
Im

∫ +∞

0
ÛH (l )eilzdl, J+(z) = 1

2π
Im

∫ +∞

0
ÛH (−l )e−ilzdl. (25)
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FIG. 5. First row: Left picture integrals I± and J± defined in Eq. (24) are shown; in the right picture
regularization of J− is depicted. In the second and third rows, boundary conditions for regularized partial
sums of complex amplitude’s imaginary parts ηI,1 and ηI,2 are shown. Subscript i means that corresponding
expression in the brackets is evaluated at z = tan α(h − x). Functions ηI,1 and ηI,2 are calculated for ε = 0.1.

Since UH (z) is a real-valued function, then (see Fig. 4)

I−(z) = I+(z), J−(z) = −J+(z).

Real part of the solution ψ−
I is generated by localized profile I−(z) [see Eq. (12)]. However, the

corresponding profile for imaginary part J−(z) is nonlocalized as one can see in Fig. 5 (left picture
in the fist row). Therefore, parasitic wave beams, which correspond to those parts of J−(z) lying
outside [0, H], will invade the domain �, explaining why boundary conditions will not be satisfied.

It is important to note that what’s written above stands for all remaining parts of the general solu-
tion, listed in Appendix. As a result, we have only the standing-wave solution ϕ(x, z) = Reψ (x, z),
with ψ given in Eq. (10). Now, let us discuss how to get another standing-wave solution η(x, z).
Consider a separate boundary value problem:

σxx − λ2σzz = 0, σx|z=0 = S̃bot(x), σx|z=H = S̃top(x),

σz|x=0 = 1

2π

∫ +∞

0
Ŵ −

ε (l )eilzdl + 1

2π

∫ +∞

0
Ŵ +

ε (−l )e−ilzdl + S̃mov(z),

{σz tan α − σx}|z=tan α(h−x) = S̃inc(x, z)|z=tan α(h−x). (26)

Here

Ŵ ±
ε (l ) = 2

∫ +∞

−∞
χε(z)J±(z)e−ilzdz,
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and χε(z) is the characteristic function of the interval [ε, H − ε] with ε > 0 (see right picture in the
first row of Fig. 5). The function χε(z) is required for regularization of singularities of functions
J±(z). It is readily seen that the real part of the boundary condition on the moving wall in Eqs. (26)
coincides with the imaginary part of the moving boundary condition from Eq. (9) if we additionally

assume ImSmov
def= ReS̃mov.

As in the previous subsection, the solution for case I is sought in the following form:

σ−
I =

∞∑
k=1

σ−
k,I, σ−

k,I(x, z) =
∫ +∞

0
eilx tan θ {↘Rk,I (l )eilz+ ↗

Rk,I (−l )e−ilz}dl

+
∫ +∞

0
e−ilx tan θ {↙Rk,I (l )eilz+ ↖

Rk,I (−l )e−ilz}dl. (27)

The function σ−
I must satisfy boundary conditions [see Eqs. (26)]:

(σ−
I )z|x=0 = 1

2π

∫ +∞

0
Ŵ −

ε (l )eilzdl + S̃I,mov(z), (σ−
I )x|z=0 = S̃I,bot(x), (28)

(σ−
I )x|z=H = S̃I,top(x), {(σ−

I )z tan α − (σ−
I )x}|z=tan α(h−x) = S̃I,inc(x, z)|z=tan α(h−x). (29)

Therefore, we arrive at the following expressions:

σ−
1,I〈

↘
R1,I (l )〉 =

∫ +∞

0

↘
R1,I (l )eilx tan θ (eilz − e−ilz )dl

−
∫ +∞

0
γ ϑ0(l )

↘
R1,I (γ l )e−ilx tan θ (eilz − e−ilze2ilH )dl (30)

and

σ−
k,I〈

↘
R1,I (l )〉 = −

∫ +∞

0
γ kϑk−1(l )

↘
R1,I (γ kl )e−ilx tan θ (eilz − e−ilze2ilH )dl

+
∫ +∞

0
γ k−1ϑk−2(l )

↘
R1,I (γ k−1l )eilx tan θ (eilz − e−ilz )dl, (31)

where k = 2, 3, . . . and spectrum
↘
R1,I is expressed in terms of Ŵ −

ε as
↘
R1,I (l ) = Ŵ −

ε (l )/(2iπ l ).
Solutions for the remaining cases can be constructed in a similar way. As a result, we constructed
the second standing-wave solution as η(x, z; ε) = Re σ (x, z; ε), which is confirmed by pictures in
the second and third rows of Fig. 5. Therefore, the true complex amplitude is given by the formula

ψ̃ (x, z; ε) = ϕ(x, z) + iη(x, z; ε). (32)

It is necessary to note that function η is the solution for every ε. Moreover, the solution η is not
unique, because one can consider any function J−(z) with support lying inside the interval [0, H].
When the internal wave-generation problem is considered in an infinite domain, one must take into
account so-called radiation conditions, meaning that energy should propagate away from the source
[49,50]. These conditions give additional constraint, relating real and imaginary parts of the complex
amplitude and, therefore, allowing us to select a unique solution. However, in a confined domain
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it is not clear how to impose such a condition properly [51], hence, the nonuniqueness problem
remains unresolved.

V. PARTIAL SUMS OF THE GENERAL SOLUTION

As discussed in the previous section, one should consider partial sums of the solution constructed.
We define a partial sums of series corresponding to each case I–VI in special form

ψ−
I,K =

K∑
j=1

ψ−
j,I〈

↘
Q1,I (l )〉, ψ+

II,K = ψ+
1,II〈

↗
Q1,II (−l )〉 +

K∑
j=2

ψ+
j,K,II〈

↗
Q1,II (−l )〉,

ψ+
III,K =

K∑
j=1

ψ+
j,III〈

↗
Q1,III (−l )〉, ψ+

IV,K =
K∑

j=1

ψ+
j,IV〈

↗
Q1,IV (−l )〉,

ψ+
V,K =

K∑
j=1

ψ+
j,V〈

↗
Q1,V (−l )〉, ψ+

VI,K =
K∑

j=1

ψ+
j,VI〈

↗
Q1,VI (−l )〉, (33)

where each term ψ+
j,K,II is of the form

ψ+
j,K,II =

∫ +∞

0

e−ilH

4iπ2l
(Ûj−1 ∗ χ̂3)(−l )(eil (z−H ) − e−il (z−H ) )eilx tan θdl

−
∫ +∞

0
κ(l )

e−ilγ −1H

4iπ2l
(Ûj−1 ∗ χ̂3)(−γ −1l )(eil (z−H ) − e−il (z−H )e−2ilH )e−ilx tan θdl

− ψ+
III,K− j+1

〈
1

4iπ2l
(Ûj−1 ∗ χ̂1)(−l )

〉
− ψ+

IV,K− j+1

〈
e−ilH

4iπ2l
(Ûj−1 ∗ χ̂2)(−l )

〉

− ψ+
V,K− j+1

〈
e−ilH

4iπ2l
(Ûj−1 ∗ χ̂4)(−l )

〉
− ψ+

VI,K− j+1

〈
e−ilH

4iπ2l
(Ûj−1 ∗ χ̂5)(−l )

〉
, (34)

for j = 2, 3, . . . and Ûj−1 defined in (A19). The above formulas have clear physical meaning: such
partial sums correspond to wave-beam solutions passing full cycle inside the domain � (i.e., starting
from the left boundary and ending up at the same boundary) K times. Partial sums σK (x, z; ε) are
defined in a similar way. Thus, in further sections we are going to deal with the solution

ϕK (x, z) = �K + Re{ψ−
I,K + ψ+

II,K + ψ+
III,K + ψ+

IV,K + ψ+
V,K + ψ+

VI,K},
ηK (x, z; ε) = �K + Re{σ−

I,K + σ+
II,K + σ+

III,K + σ+
IV,K + σ+

V,K + σ+
VI,K},

where �K and �K are real-valued arbitrary constants, which will be defined further in such a way
that ϕK |∂�/� = ηK |∂�/� = 0 (remember here that � = {x = 0, z ∈ [0, H]}). Therefore, the complex
amplitude of the stream function is given by the limit

ψ̃ (x, z; ε) = ϕ(x, z) + iη(x, z; ε) = lim
K→+∞

{ϕK (x, z) + iηK (x, z; ε)}.

VI. NUMERICAL TESTS

For numerical tests, we take the following set of parameters: the dimensionless height H = 40,
length h = 60, inclination angle α = π/3, and frequency ω = π/5 (corresponding to propagation
angle θ = arcsin π/5). The forcing is taken as above: U (z) = A(z − B), where A = 2ωa/H with
a = 0.01 and B = H/2. We use WOLFRAM MATHEMATICA for computations of all Fourier integrals
by the standard approximation NIntegrate with the integration interval bounded by upper limit
l = 60 for the stream function and l = 110 for velocity components. In addition, we performed
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(a) (b)

(c) (d)

FIG. 6. (a), (b) Cross-sectional profiles of stream function’s real ϕK and imaginary ηK parts for K =
2, 3, 5, 8 are shown correspondingly. Dashed lines traced at 0 and −0.215 as a guide to the eye. (c), (d) Cross-
sectional profiles of vertical velocity component’s real (ϕK )x and imaginary (ηK )x parts for K = 2, 3, 4, 5 are
shown, respectively. Functions ηK are calculated for ε = 0.1.

direct numerical simulations (DNSs) for low-viscosity cases, which are discussed below in more
detail.

A. Convergence test

Prior to comparison of our solution with the one obtained by DNS, we evaluate the number of
beam cycles sufficient to approximate the exact analytical solution by truncated series. To do this, we
take partial sums ϕK and ηK with K = 2, 3, 5, 8, evaluated at the cross section z = cot θ (x − 36) +
29.1 orthogonal to attractor arms (see Fig. 8, red line in the left picture). The results are shown
in Figs. 6(a) and 6(b). One can observe pointwise convergence: the difference between subsequent
partial sums decreases everywhere except for two singularity points corresponding to vertical red
dashed lines. For each K = 2, 3, 5, 8, constants �K and �K are chosen as follows:

�2 = 0.0129, �3 = 0.0156, �5 = 0.0171, �8 = 0.0173,

�2 = 0.1703, �3 = 0.1909, �5 = 0.2018, �8 = 0.2045.

Also, one can see that partial sums ϕ5 and η5 are rather good approximations of solutions ϕ and η.
Vertical velocity component profiles for K = 2, 3, 4, 5 evaluated at cross section z = cot θ (x −

36) + 29.1 for 12 � x � 25 are shown in Figs. 6(c) and 6(d). It is clearly seen that as K increases
the velocity amplitude grows in the vicinity of the attractor arm (vertical red dashed lines). Also,
there are multiple spikes in the (ηK )x profile, which are denoted by vertical black dashed lines. These
spikes result from regularization of singularities at the moving boundary (see Fig. 5, first row, right
picture). Thus, decreasing parameter ε should result in more pronounced spikes [see Fig. 7(a)].
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(a) (b)

(c) (d)

FIG. 7. (a) Variation of the parameter ε = 1; 0.5; 0.1 in (η5)x leading to more pronounced spikes. (b) Ver-
tical velocity component profiles (ϕ5)x and (η5)x , evaluated at cross section z = cot θ (x − 36) + 29.1 for
12 � x � 25. (c), (d) Profiles of (ϕK )z and (ηK )z evaluated at x = 0 for K = 1, 2, 3.

It is necessary to note that, by construction, partial sums ϕK and ηK satisfy boundary conditions
everywhere except the moving wall. However, the domain in the neighborhood of the left reflection
point of the wave-ray attractor, within which the boundary condition is not satisfied, shrinks with
growing K [see Figs. 7(c) and 7(d)].

B. Comparison with direct numerical simulations

Since in laboratory experiments, fluid is viscous and salt-stratified, then one should take into
account salt diffusion in the mass conservation equation. Let us note in passing that we restrict our
attention to the case where the mass diffusivity is low compared to kinematic viscosity. We consider
the case of weak stratification, allowing us to use the Boussinesq approximation, i.e., system of
equations to be solved numerically is of the following form:

ut + (u · ∇)u = − 1

ρ∗
∇p + ν�u + g

ρ ′

ρ∗
,

ρ ′
t + (u · ∇)ρ ′ = λ�ρ ′ − v

dρ0

dz
, ∇ · u = 0,

where ν is kinematic viscosity coefficient, u = (u, v) is velocity field, p is pressure fluctuation with
respect to hydrostatic equillibrium d p0/dz = −g(ρ∗ + ρ0(z)), ρ∗ = 1 [g/cm3] is characteristic den-
sity, ρ0(z) is linear density profile at rest with the gradient dρ0/dz ≈ −0.00101937 [g/cm4], ρ ′ is
density fluctuation, and λ is salt diffusion coefficient. We specify no-slip boundary conditions at all
rigid surfaces except for the vertical wall, where the profile of the horizontal velocity is prescribed:
u(0, z, t ) = U (z) sin ωt . Also, we specify the normal derivative of ρ ′ at a rigid boundary to be
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FIG. 8. Left: Snapshot of vertical velocity field v, obtained by DNS (underlying picture). Comparison
of numerical simulations for different values of Stokes number St with approximate solution (ψ̃x )5 at the
cross section z = cot θ (x − 36) + 29.1 for 12 � x � 25 (red line) is shown in the light blue box. Right:
Picture zoomed-in yellow box is shown. Dashed orange and yellow curves are envelopes of vertical velocity
profiles, obtained by numerical simulation with ν = 10−2 and ν = 10−5, correspondingly. Light blue curves
are envelopes of vertical velocity profile corresponding to the approximate solution (ψ̃5)x .

zero and at t = 0 the fluid is in rest. The DNSs are performed using semi-implicit third-order time
integration scheme and spatial discretisation based on the spectral-element method, implemented
in open source computational fluid dynamics solver Nek5000 (see Refs. [52,53]). To compare
our approximate inviscid velocity field with that calculated numerically we choose the kinematic
viscosity coefficient ν = 10−2; 10−3; 10−4, and 10−5 [cm2/s], covering three orders of magnitude
below the viscosity of the tap water, and corresponding to the values of the global Stokes number
St = H2N/ν = 1.6 × 105; 1.6 × 106; 1.6 × 107, and 1.6 × 108. In all DNSs presented below, the
value of the Schmidt number is kept constant so Sc = ν/λ = 100. In preliminary simulations we
used Sc between 10 and 700. Since the results were found to be very weakly sensitive to the actual
value of Sc provided 1 � Sc we selected Sc = 100 as a representative value for a salt-stratified case
(disregarding a specific type of salt). The geometry of the setup and the nondimensional frequency
were taken precisely the same as in the beginning of Sec. VI.

To perform the comparison we calculate vertical velocity field with linear profile U (z) at moving
boundary (see beginning of Sec VI) at instants t1 ≈ 200T0 and t2 = t1 + T0/4, with T0 being the
forcing period. These instants correspond to real and imaginary parts of complex amplitude ψ̃ . Then
we consider the wave field at the cross section specified by equation z − cot θ (x − 36) + 29.1 = 0
depicted by the solid red line in the left panel of Fig. 8. In the right panel of Fig. 8, we present the
comparison between the envelope,

env〈v〉 = ±
√

v2 + (vs)2, v = v(x, z, t1), vs = v(x, z, t2), (35)

of the vertical velocity component v calculated in DNSs at St = 1.6 × 105 and St = 1.6 × 108 and
the envelope of (ψ̃5)x,

env〈(ψ̃5)x〉 = ±
√

(ϕ5)2
x + (η5)2

x, (36)

evaluated at the same cross section. To compare the curves in detail we present the profiles of these
envelopes for 12 � x � 25. The same data covering a larger range of x are shown at the inset (blue
rectangle) in the left panel of Fig. 8.

Now, let us discuss the physically important effects of the finite value of the Stokes number in
light of the structure of the inviscid solution. First, we note that the envelope profile obtained in
DNSs at St = 1.6 × 108 (solid yellow line) has the structure of nested boundary layers, which is in
excellent qualitative agreement with the nested structure of the inviscid solution (solid blue line),
the former being a smoothed regularized version of the latter. Moreover, as could be anticipated,
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the larger the spatial scale of the profile features, the better the quantitative agreement between
the inviscid solution and the numerical solution obtained at low viscosity (St = 1.6 × 108). Thus,
the inviscid solution describes well the background wave motion in the bulk of the fluid, with the
exception of (i) the boundary layers at the rigid walls and (ii) the fine-scaled nested boundary layers
in the close vicinity of the ray skeleton of the attractor (depicted by vertical dash red line in Fig. 8).
Note that the background wave motion has small but nonzero amplitudes that may be of importance
for future consideration of weakly nonlinear problems since secondary waves emitted from the
primary wave beams due to triadic resonance instability may interfere with the background motion.

Second, we note that the envelope profile obtained in DNSs at St = 1.6 × 105 (orange dash
line) has a bell-shaped form reminding us of the Gaussian envelope for a self-similar solution [14].
However, it can be clearly seen that the right and left tails of the envelope are nonsymmetrical and do
not tend to zero in the way expected for a Gaussian curve. Moreover, the maximum of the envelope
calculated for St = 1.6 × 105 (orange dash line) is displaced from the location of the ray skeleton
of the wave attractor (vertical red dash line in Fig. 8). This is a consequence of the nonsymmetrical
shape of the envelope of the inviscid solution seen in the right panel of Fig. 8 (solid light blue
line). Note that these features appear in the experimental data obtained at St of order 105 [18].
Summing up, both at St = 1.6 × 108 and at St = 1.6 × 105, we can identify relevant observable
features of the wave envelope profiles which can be traced back to the structure of the inviscid
solution. In future research, we are planning to consider a viscous regularization of the inviscid
solution.

As mentioned in the Introduction, in unbounded domains one can relate the prescribed form of
motion of the wave generator with the motion in the radiated internal wave beam [25]. In a confined
domain in the presence of wave focusing and defocusing, such relation is much less straightforward,
as shown in previous sections of this paper. Below, we compare explicitly the forms of wave motion
in the wave attractor induced by two wave generators. The first wave generator consists of the linear
profile U (z) given in the beginning of Sec. VI and corresponding complex amplitude and velocity
components are denoted by index l . The second wave generator profile is a half wavelength of the
cosine with the same amplitude: Uc(z) = −0.01 cos (πz/40). In this case, corresponding complex
amplitude and velocity components are denoted by index c. Again, we consider the wave field at the
cross section z − cot θ (x − 36) + 29.1 = 0.

The result of comparison is shown in Fig. 9, where the vertical velocity envelopes and the
instantaneous vertical velocity profiles are presented in the left and right columns, respectively,
while the rows (from upper to lower) show the approximate inviscid solution and the results of
DNSs at St = 108 and St = 105. Note that the results of calculations for the wavemaker whose
shape is prescribed as a half wavelength of the cosine function Uc(z) are multiplied by the quantity
κ = 8/π2. After this normalization, the results for both wavemakers have comparable amplitudes.
In the inviscid case, one can easily identify the effect of the shape of the wave generator. This
is particularly well seen in the instantaneous vertical velocity profiles: the real part in the two
cases under consideration represents a piecewise combination of either straight lines or cosine
arcs. However, an experimental observation of this effect may be problematic. One may need
to perform experiments at a very high value of the Stokes number, which cannot be obtained in
practice. Otherwise, the effect of the wave-generator shape on the form of wave motion is hidden by
viscosity. Indeed, the results of DNSs (see panels of Fig. 9) appear to be almost undistinguishable,
both in terms of wave envelopes and in terms of instantaneous velocity profiles. Given the typical
errors of particle image velocimetry or synthetic Schlieren techniques, the difference between the
profiles would be hard to identify. The only easily measurable quantity is κ , i.e., the ratio of the wave
amplitudes in the two cases under consideration. The origin of this coefficient is straightforward: it
stands as the common multiplier in the Fourier series for the even triangular wave.

Although we considered only two profiles of wave generators, we can make a plausible con-
jecture that the efficiency of any particular volume-conserving generator is proportional to the
amplitude of the first term in the expansion of the generator shape into the Fourier series. In that
sense, the generators used in Ref. [19] have maximum efficiency in terms of exciting the highest
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(a) (d)

(b) (e)

(c) (f)

FIG. 9. Comparison of the solutions for linear and cosine wave generators. Left column: Vertical velocity
envelopes. Right column: Instantaneous vertical velocity profiles. Rows (top to bottom): Approximate inviscid
solution, DNS for St = 108 and St = 105.

possible wave amplitude at a given amplitude of the wave maker. On the other hand, the technical
simplicity of the wave generator with linear profile, which is a pivoting flat plate undergoing
torsional oscillations around a horizontal axis fixed at half depth of the liquid volume, may be
appealing in applications. A slightly lower efficiency of wave generation (by factor κ as compared
to the wave generator with cosine profile) can easily be compensated by setting a higher oscillation
amplitude.

Finally, let us make an observation concerning the duration of the transient regime required
to reach the saturated steady-state wave regime in the attractor. The DNSs were performed by
switching on the prescribed forcing in an initially quiescent fluid. The duration of the transient
regime can be conveniently quantified by plotting the total kinetic energy of the system as a function
of time. As could be expected, the duration of the transient regime and the saturated value of the
total kinetic energy tremendously increases with the Stokes number.
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FIG. 10. Comparison of the normalized total kinetic energy Ẽ against normalized time t̃ for different Stokes
numbers St = 1.6 × 105, 1.6 × 106, 1.6 × 107, 1.6 × 108, where Ẽ = E/Emean, with Emean being the averaged
kinetic energy over one period T0 at t −→ ∞, and t̃ = t/(T0St1/3).

However, by introducing appropriate scaling, the energy time-history curves obtained at different
values of the Stokes number collapse onto a nearly universal curve. Let us introduce the normalized
kinetic energy as Ẽ = E (t )/Emean, where Emean denotes the kinetic energy averaged over the
forcing period T0, with the averaging performed in the saturated regime of steady-state oscillations
reached at t > t∗. Further, using the viscous timescale σ 2

b /ν, where the beam width σb scales
as (σb/H ) ∼ St−1/3, we can introduce the nondimensional time as t̃ = t/(T0St1/3). The results
of numerical calculations performed at St = 1.6 × 105, 1.6 × 106, 1.6 × 107, and 1.6 × 108 are
presented in Fig. 10. It can be seen that the obtained curves exhibit similar behaviors at sufficiently
large time, and the duration of transients in the system in the considered range of parameters can be
taken as t̃∗ = 0.5. In the case of rotating fluid, a similar estimate applies, with the Stokes number
St replaced by inverse Ekman number Ek−1 and different nondimensional values of t̃∗. For typical
conditions of experiments with an internal wave attractor [18], we have St of the order of about 105,
yielding the transient time equal to about 20 forcing periods, which is in a good agreement with
observations. Note that extrapolation of this scaling to large-scale objects yields very large estimates.
Consider a thought experiment with the same geometric setup and frequency ω/N = π/10, upscaled
to depth H = 4000 m, with N = 10−3 s−1 and ν = 10−6 m2/s. In this case, the transient time t∗ is
about 1260 forcing periods or 145 days. For oceanic systems, one usually has lower values of ω/N
and a horizontally elongated geometry with much higher h/H . If the viscous timescale remains
relevant for elongated geometry, corresponding estimates can be performed by using formula (4.5)
in Ref. [20] and assuming universal t̃∗ = 0.5. Clearly, the transient time (even with, say, three orders
of magnitude higher eddy viscosity, replacing molecular viscosity) appears to be comparable with
the time of seasonal variations of the background stratification N (z, t ) in natural systems. This
puts into perspective the duration of transients in numerical simulations of natural systems [54] and
suggests that, under natural conditions, wave attractors might arise and disappear in sporadic fashion
when appropriate ray geometry is reached (in spirit of Ref. [55]) for slowly evolving N (z, t ), so the
fully saturated regime is never reached.

VII. CONCLUSIONS AND DISCUSSION

This paper is focused on construction of an analytical solution for the problem of internal-
wave motion in a confined trapezoidal domain filled with an ideal uniformly stratified fluid. The
perturbation is introduced by the moving wall which serves as the wave generator. The procedure
allows us to construct a solution for volume-conserving motion of the wall, and relate the spectrum
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of the boundary motion to the spectrum of the internal wave motion. Under the appropriate choice
of parameters, the setup supports the internal wave attractors. The solution for the parallelogram-
shaped wave attractor (having one reflection at each wall of the trapezoidal domain) is constructed
as an iterative superposition of localized wave beams fulfilling the nonpermeability conditions at the
rigid boundaries of the domain. Once generated at the moving wall, wave beams spread energy away
from the source and, on first sight, it is in accordance with the common meaning of the radiation
condition [49]. But when these wave beams reflect from boundary, the energy propagates toward
the source, and it is not obvious how to impose radiation conditions properly (it was also pointed
in Refs. [10,12,51] and other works). Therefore, absence of properly imposed radiation conditions
and separation of the complex amplitude’s real and imaginary parts result in underdeterminacy of
the problem (which is one of the manifestations of its ill posedness).

It is also important to note that the constructed solution can be further used to explore weakly
nonlinear perturbations of the wave beams (e.g., in the spirit of Refs. [34,36]) and to consider
viscous regularization (another way of regularization can be found in Ref. [56]) of the problem
by appropriate viscous damping of the spectral components of the inviscid solution.

The approximate analytical solution is compared against the results of DNSs performed with
the help of the spectral element method. This comparison allowed us to identify the features of the
weakly viscous numerical solution which can be interpreted in terms of the inviscid solution. The
wave motion in the bulk of the fluid domain (away from the rigid boundaries and the wave-ray
skeleton of the attractor) is well described by the inviscid solution, which is in a good quantitative
agreement with the weakly viscous numerical solution. Physically, this could be expected since the
wave motion in the bulk of fluid corresponds to low wave numbers, which are weakly damped by
viscosity. The wave envelopes calculated for the Stokes number of order 105, the value typical for
laboratory experiments, exhibit nonsymmetry with respect to the position of the wave-ray skeleton
of the attractor, both in terms of the position of the maximum of the profile and the shape of “tails.”
This is related to the nonsymmetry of the inviscid solution. At the Stokes number of order 108,
we observe the nested boundary layer structure in the vicinity of the wave-ray skeleton, in perfect
agreement with the nested structure of the inviscid solution.

Further, we explored the role of the shape of the wave generator on the instantaneous profiles
and envelopes of the wave beams. In the inviscid limit, there is a clear relation: for wave-generator
shapes given by the linear function and by the cosine function, the real part of the wave profiles is a
piecewise construction of linear and arc-of-cosine segments, respectively. In the weakly viscous
case in the studied range of the Stokes number covering three orders of magnitude (between
1.6 × 105 and 1.6 × 108), the calculated profiles are very weakly sensitive to the particular shape of
the generator. Experimentally, the difference between the profiles would be hard to detect given
the current state of the art of the existing measurement techniques (particle image velocimetry
and synthetic Schlieren). However, being very similar in terms of shape of the wave profiles, the
two cases are easily distinguished by amplitude of the wave motions. This is related to the fact
that focusing quickly decreases the relevant length scales in the vicinity of the attractor skeleton
so only the largest scale spectral component of the generator shape survives. Thus, the relative
efficiency of a particular profile of the wave generator is given by the first term in the Fourier series
representing the shape of the profile. If the amplitude of oscillation for cosine-shaped and linear-
shaped wave generators is the same, the amplitude of wave motion is 8/π2 times smaller in the latter
case.

Finally, we show that the typical duration of transients in DNSs of the wave attractors is governed
by the viscous tim scale. Under appropriate rescaling, the time histories of total kinetic energies of
the wave attractors (where the wave motion starts from the rest) collapse onto a common curve. The
estimates of the duration of transient processes are in good agreement with experiments performed
at the Stokes number of the order of 105. Care must be taken regarding the physical relevance of
extrapolation of such estimates to large physical objects at ocean-depth (or planetary) scale, where
the relevant values of the Stokes number exceed the typical experimental values by several orders
of magnitude.
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FIG. 11. The real part of the fifth partial sum of the theoretical solution (ϕ5)x = Re
∑5

K=1{ψ−
I,K + . . . +

ψ+
V I,K } versus DNS at different values of the Stokes number. Vertical dashed lines correspond to points zi under

characteristic map.

Note that the solution consists of two types of singularities: primary (attractor itself) and
secondary singularities emanating from trapezium corners. The filtering procedure described in
Sec. IV B affects the positions of secondary singularities as shown in Figs. 11–13: the true solution
(with filtering) traces singularities from the left corners of the trapezium (points z0 and z5) and
discontinuities from the right corners of the trapezium (points z1 and z4), whereas the solution
without filtering is singular at characteristics tracing points z1, z4 and continuous at characteristics
tracing the other points. Here we might introduce a filtering procedure which could be performed
in a smoother way (for instance, by taking a convolution with an appropriate mollifier). However,
we believe that such a strategy is not optimal: the smoothing of boundary conditions would not

FIG. 12. The imaginary part of the fifth partial sum of the theoretical solution without filtering
Im

∑5
K=1{ψ−

I,K + . . . + ψ+
V I,K } versus DNS at different values of the Stokes number. Vertical dashed lines

correspond to points zi under characteristic map.
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FIG. 13. The imaginary part of fifth partial sum of the theoretical solution after filtering (η5)x =
Re

∑5
K=1{σ−

I,K + . . . + σ+
V I,K } versus DNS at different values of the Stokes number. Vertical dashed lines

correspond to points zi under characteristic map.

give us any new physically meaningful features. Ultimately, after adding the viscous attenuation,
the nonphysical singularities and discontinuities would disappear (as shown by DNS).
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APPENDIX: SOLUTIONS FOR REMAINING CASES

1. Cases III and IV

Functions ψ+
III and ψ+

IV must satisfy boundary conditions

(ψ+
III )z|x=0 = 1

4π2

∫ +∞

0
(Û ∗ χ̂1)(−l )e−ilzdl + SIII,mov(z), (ψ+

III )x|z=0 = SIII,bot(x),

(ψ+
III )x|z=H = SIII,top(x), {(ψ+

III )z tan α − (ψ+
III )x}|z=tan α(h−x) = SIII,inc(x, z)|z=tan α(h−x)

and

(ψ+
IV)z|x=0 = 1

4π2

∫ +∞

0
(Û ∗ χ̂2)(−l )e−ilzdl + SIV,mov(z), (ψ+

IV)x|z=0 = SIV,bot(x),

(ψ+
IV)x|z=H = SIV,top(x), {(ψ+

IV)z tan α − (ψ+
IV)x}|z=tan α(h−x) = SIV,inc(x, z)|z=tan α(h−x),
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correspondingly, where χ1 and χ2 are characteristic functions of intervals [z0, z1] and [z1, z2]. Then,
solutions are

ψ+
III =

∞∑
j=1

ψ+
j,III〈

↗
Q1,III (−l )〉, ψ+

IV =
∞∑
j=1

ψ+
j,IV〈

↗
Q1,IV (−l )〉,

ψ+
1,III〈

↗
Q1,III (−l )〉 =

∫ +∞

0

↗
Q1,III (−l )eilx tan θe−ilzdl

+
∫ +∞

0
γ ϑ0(l )

↗
Q1,III (−γ l )e−ilx tan θ (eilz − e−ilze2ilH )dl, (A1)

ψ+
1,IV〈

↗
Q1,IV (−l )〉 = −

∫ +∞

0

↗
Q1,IV (−l )eilx tan θ (eil (z−H ) − e−il (z−H ) )dl

+
∫ +∞

0
γ −1

κ(l )
↗
Q1,IV (−γ −1l )e−ilx tan θeil (z−H )dl,

ψ+
k,III〈

↗
Q1,III (−l )〉 = −γ ψ−

k−1,I〈ϑ0(l )
↗
Q1,III (−γ l )〉,

ψ+
k,IV〈

↗
Q1,IV (−l )〉 = −γ −1ψ−

k−1,I〈κ(l )
↗
Q1,IV (−γ −1l )e−ilH 〉, (A2)

where

↗
Q1,III (−l ) = − (Û ∗ χ̂1)(−l )

4iπ2l
,

↗
Q1,IV (−l ) = − e−ilH

4iπ2l
(Û ∗ χ̂2)(−l ),

κ(l ) = exp (ilγ −1(h tan α − H )(1 − γ )). (A3)

Solutions for the second standing wave are of the form

σ+
III =

∞∑
j=1

σ+
j,III〈

↗
R1,III (−l )〉, σ+

IV =
∞∑
j=1

σ+
j,IV〈↗R1,IV (−l )〉,

σ+
1,III〈

↗
R1,III (−l )〉 =

∫ +∞

0

↗
R1,III (−l )eilx tan θe−ilzdl

+
∫ +∞

0
γ ϑ0(l )

↗
R1,III (−γ l )e−ilx tan θ (eilz − e−ilze2ilH )dl, (A4)

σ+
1,IV〈↗R1,IV (−l )〉 = −

∫ +∞

0

↗
R1,IV (−l )eilx tan θ (eil (z−H ) − e−il (z−H ) )dl

+
∫ +∞

0
γ −1

κ(l )
↗
R1,IV (−γ −1l )e−ilx tan θeil (z−H )dl,

σ+
k,III〈

↗
R1,III (−l )〉 = −γ σ−

k−1,I〈ϑ0(l )
↗
R1,III (−γ l )〉,

σ+
k,IV〈↗R1,IV (−l )〉 = −γ −1σ−

k−1,I〈κ(l )
↗
R1,IV (−γ −1l )e−ilH 〉, (A5)
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with

↗
R1,III (−l ) = − (Ŵ +

ε ∗ χ̂1)(−l )

4iπ2l
,

↗
R1,IV (−l ) = − e−ilH

4iπ2l
(Ŵ +

ε ∗ χ̂2)(−l ). (A6)

2. Cases V and VI

Functions ψ+
V and ψ+

VI must satisfy boundary conditions:

(ψ+
V )z|x=0 = 1

4π2

∫ +∞

0
(Û ∗ χ̂4)(−l )e−ilzdl + SV,mov(z), (ψ+

V )x|z=0 = SV,bot(x),

(ψ+
V )x|z=H = SV,top(x), {(ψ+

V )z tan α − (ψ+
V )x}|z=tan α(h−x) = SV,inc(x, z)|z=tan α(h−x),

and

(ψ+
VI)z|x=0 = 1

4π2

∫ +∞

0
(Û ∗ χ̂5)(−l )e−ilzdl + SVI,mov(z), (ψ+

VI)x|z=0 = SIV,bot(x),

(ψ+
VI)x|z=H = SIV,top(x), {(ψ+

VI)z tan α − (ψ+
VI)x}|z=tan α(h−x) = SIV,inc(x, z)|z=tan α(h−x),

correspondingly, where χ4 and χ5 are characteristic functions of intervals [z3, z4] and [z4, z5]. Then,
the solutions are

ψ+
V 〈

↗
Q1,V (−l )〉 =

∞∑
j=0

ψ+
j,V〈

↗
Q1,V (−l )〉, ψ+

VI〈
↗
Q1,VI (−l )〉 =

∞∑
j=0

ψ+
j,VI〈

↗
Q1,VI (−l )〉,

ψ+
1,V〈

↗
Q1,V (−l )〉 = −

∫ +∞

0

↗
Q1,V (−l )eilx tan θ (eil (z−H ) − e−il (z−H ) )dl

+
∫ +∞

0
γ −1

κ(l )
↗
Q1,V (−γ −1l )e−3ilH e−ilx tan θ (eilz − e−ilze2ilH )dl

+
∫ +∞

0
γ −1

κ(l )
↗
Q1,V (−γ −1l )e−ilx tan θeil (z−H )dl, (A7)

ψ+
1,VI〈

↗
Q1,VI (−l )〉 = −

∫ +∞

0

↗
Q1,VI (−l )eilx tan θ (eil (z−H ) − e−il (z−H ) )dl

+
∫ +∞

0

↗
Q1,VI (−l )e−ilH eilx tan θe−ilzdl

+
∫ +∞

0
γϑ0(l )

↗
Q1,VI (−γ l )e−γ ilH e−ilx tan θ (eilz − e−ilze2ilH )dl

ψ+
k,V〈

↗
Q1,V (−l )〉 = −γ −1ψ−

k−1,I〈κ(l )
↗
Q1,V (−γ −1l )e−3ilH 〉

ψ+
k,VI〈

↗
Q1,VI (−l )〉 = −γψ−

k−1,I〈ϑ0(l )
↗
Q1,VI (−γ l )e−γ ilH 〉, (A8)

where

↗
Q1,V (−l ) = − e−ilH

4iπ2l
(Û ∗ χ̂4)(−l ),

↗
Q1,VI (−l ) = − e−ilH

4iπ2l
(Û ∗ χ̂5)(−l ).
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Solutions for the second standing wave are of the form

σ+
V 〈↗R1,V (−l )〉 =

∞∑
j=0

σ+
j,V〈↗R1,V (−l )〉, σ+

VI〈
↗
R1,VI (−l )〉 =

∞∑
j=0

σ+
j,VI〈

↗
R1,VI (−l )〉,

σ+
1,V〈↗R1,V (−l )〉 = −

∫ +∞

0

↗
R1,V (−l )eilx tan θ (eil (z−H ) − e−il (z−H ) )dl

+
∫ +∞

0
γ −1

κ(l )
↗
R1,V (−γ −1l )e−3ilH e−ilx tan θ (eilz − e−ilze2ilH )dl

+
∫ +∞

0
γ −1

κ(l )
↗
R1,V (−γ −1l )e−ilx tan θeil (z−H )dl, (A9)

σ+
1,VI〈

↗
R1,VI (−l )〉 = −

∫ +∞

0

↗
R1,VI (−l )eilx tan θ (eil (z−H ) − e−il (z−H ) )dl

+
∫ +∞

0

↗
R1,VI (−l )e−ilH eilx tan θe−ilzdl

+
∫ +∞

0
γϑ0(l )

↗
R1,VI (−γ l )e−γ ilH e−ilx tan θ (eilz − e−ilze2ilH )dl

σ+
k,V〈↗R1,V (−l )〉 = −γ −1σ−

k−1,I〈κ(l )
↗
R1,V (−γ −1l )e−3ilH 〉

σ+
k,VI〈

↗
R1,VI (−l )〉 = −γ σ−

k−1,I〈ϑ0(l )
↗
R1,VI (−γ l )e−γ ilH 〉, (A10)

with

↗
R1,V (−l ) = − e−ilH

4iπ2l
(Ŵ +

ε ∗ χ̂4)(−l ),
↗
R1,VI (−l ) = − e−ilH

4iπ2l
(Ŵ +

ε ∗ χ̂5)(−l ).

3. Singular case II

In this subsection, we deal with the completely defocusing case, when the spectrum U (z)χ3(z),
defined on the interval [z2, z3] only, is mapped onto the whole interval [z0, z5] by one beam cycle.
The corresponding solution ψ+

II is sought in the form

ψ+
II =

∞∑
k=1

ψ+
k,II, ψ+

k,II(x, z) =
∫ +∞

0
eilx tan θ {

↘
Qk,II (l )eil (z−H )+

↗
Qk,II (−l )e−il (z−H )}dl

+
∫ +∞

0
e−ilx tan θ {

↙
Qk,II (l )eil (z−H )+

↖
Qk,II (−l )e−il (z−H )}dl. (A11)

Now, substitute this formula to the corresponding boundary conditions:

(ψ+
II )x|z=0 = SII,bot(x), (ψ+

II )x|z=H = SII,top(x), (A12)

(ψ+
II )z tan α − (ψ+

II )x|z=tan α(h−x) = SII,inc(x, z)|z=tan α(h−x), (A13)

(ψ+
II )z|x=0 = 1

4π2

∫ +∞

0
(Û ∗ χ̂3)(−l )e−ilzdl + SII,mov(z). (A14)
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Let us define all spectra phenomenologically:
↘
Qk,II (l ) = −

↗
Qk,II (−l ),

↙
Qk,II (l ) = γ −1

κ(l )
↗
Qk,II (−γ −1l ), (A15)

↖
Qk,II (−l ) = −γ −1

κ(l )
↗
Qk,II (−γ −1l )e−2ilH , k = 1, 2, . . . , (A16)

↗
Q1,II (−l ) = − e−ilH

4iπ2l
(Û ∗ χ̂3)(−l ),

↗
Qk,II (−l ) = −

↖
Qk−1,II (−l ), k = 2, 3, . . . . (A17)

Since the interval [z2, z3] is mapped onto the whole interval [z0, z5], then one can easily see that
functions ∫ +∞

0
il

↖
Qk,II (−l )e−il (z−H )dl, k = 1, 2, . . . (A18)

have nonzero values on the whole interval [z0, z5]. It means that one should decompose these
functions on corresponding intervals and consider all five cases. Specifically, let us define functions
Uk (z) as follows:

Uk (z) = 1

2π

∫ +∞

−∞
Ûk (l )eilzdl, Ûk (l ) = −2iπ l

↖
Qk,II (l )e−ilH , k = 1, 2, . . . . (A19)

Then Uk must be represented as∫ +∞

0
il

↖
Qk,II (−l )e−il (z−H )dl =

5∑
j=1

1

4π2

∫ +∞

0
(Ûk ∗ χ̂ j )(−l )e−ilzdl, k = 1, 2, . . . . (A20)

Thus, one should restrict the second equality in Eq. (A17) on the interval [z2, z3]:

↗
Qk,II (−l ) = − e−ilH

4iπ2l
(Ûk−1 ∗ χ̂3)(−l ), k = 2, 3, . . . . (A21)

The remaining part of the spectrum propagates according to the previous cases. Therefore, for all
k = 2, 3, . . ., we have

ψ+
k,II〈

↗
Q1,II (−l )〉 =

∫ +∞

0

e−ilH

4iπ2l
(Ûk−1 ∗ χ̂3)(−l )(eil (z−H ) − e−il (z−H ) )eilx tan θdl

−
∫ +∞

0
κ(l )

e−ilγ −1H

4iπ2l
(Ûk−1 ∗ χ̂3)(−γ −1l )(eil (z−H ) − e−il (z−H )e−2ilH )e−ilx tan θdl

− ψ+
III

〈
1

4iπ2l
(Ûk−1 ∗ χ̂1)(−l )

〉
− ψ+

IV

〈
e−ilH

4iπ2l
(Ûk−1 ∗ χ̂2)(−l )

〉

− ψ+
V

〈
e−ilH

4iπ2l
(Ûk−1 ∗ χ̂4)(−l )

〉
− ψ+

VI

〈
e−ilH

4iπ2l
(Ûk−1 ∗ χ̂5)(−l )

〉
, (A22)

and function ψ+
1,II is of the form

ψ+
1,II〈

↗
Q1,II (−l )〉 =

∫ +∞

0

e−ilH

4iπ2l
(Û ∗ χ̂3)(−l )(eil (z−H ) − e−il (z−H ) )eilx tan θdl

−
∫ +∞

0
κ(l )

e−ilγ −1H

4iπ2l
(Û ∗ χ̂3)(−γ −1l )(eil (z−H ) − e−il (z−H )e−2ilH )e−ilx tan θdl.

(A23)
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In the formula Eq. (A22), spectrum
↗
Q1,II (−l ) is hidden in Ûk−1 for all k = 2, 3, . . . via the relations

Eqs. (A15)–(A17), and (A19). Now, to find explicit relations for source-type terms, one should
substitute the solution obtained back into boundary conditions Eqs. (A12)–(A14).

Solution for the second standing wave is of the form

σ+
k,II〈

↗
R1,II (−l )〉 =

∫ +∞

0

e−ilH

4iπ2l
(Ŵk−1 ∗ χ̂3)(−l )(eil (z−H ) − e−il (z−H ) )eilx tan θdl

−
∫ +∞

0
κ(l )

e−ilγ −1H

4iπ2l
(Ŵk−1 ∗ χ̂3)(−γ −1l )(eil (z−H ) − e−il (z−H )e−2ilH )e−ilx tan θdl

− σ+
III

〈
1

4iπ2l
(Ŵk−1 ∗ χ̂1)(−l )

〉
− σ+

IV

〈
e−ilH

4iπ2l
(Ŵk−1 ∗ χ̂2)(−l )

〉

− σ+
V

〈
e−ilH

4iπ2l
(Ŵk−1 ∗ χ̂4)(−l )

〉
− σ+

VI

〈
e−ilH

4iπ2l
(Ŵk−1 ∗ χ̂5)(−l )

〉
(A24)

for k = 2, 3, . . . and

σ+
1,II〈

↗
R1,II (−l )〉 =

∫ +∞

0

e−ilH

4iπ2l
(Ŵ +

ε ∗ χ̂3)(−l )(eil (z−H ) − e−il (z−H ) )eilx tan θdl

−
∫ +∞

0
κ(l )

e−ilγ −1H

4iπ2l
(Ŵ +

ε ∗ χ̂3)(−γ −1l )(eil (z−H ) − e−il (z−H )e−2ilH )e−ilx tan θdl,

(A25)

where

↗
R1,II (−l ) = − e−ilH

4iπ2l
(Ŵ +

ε ∗ χ̂3)(−l ),
↗
Rk,II (−l ) = − ↖

Rk−1,II (−l ), k = 2, 3, . . . .

Wk (z) = 1

2π

∫ +∞

−∞
Ŵk (l )eilzdl, Ŵk (l ) = −2iπ l

↖
Rk,II (l )e−ilH , k = 1, 2, . . . .
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