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We propose a phenomenological description of the asymptotic near-wall momentum-
exchange mechanism of flat plate zero-pressure gradient turbulent boundary-layer flows
at the extreme Reynolds number regime, based on a simple model of attached eddies
scaling with the location of the mesolayer, δ+

m ∼ Re1/2
τ , and satisfying Kolmogorov’s

inertial similarity scaling for their turnover velocities. This yields an asymptotic power-law
formula for the skin friction, Cf ∼ Re−2/15

x , or, equivalently, Cf ∼ Re−2/13
δ . We also derive a

formula for the asymptotic thickness of the boundary layer. We show that these asymptotic
scaling laws are in excellent agreement with experimental data, and are consistent with
classical semiempirical formulas. For moderately large Re number flows, we argue that
the intermediate asymptotic Blasius scaling, Cf ∼ Re−1/4

δ , or, equivalently, Cf ∼ Re−1/5
x ,

is more appropriate. The asymptotic model relies on an asymptotic analysis of the bulk
normalized axial mean-momentum equation, and it is related to a phenomenology previ-
ously proposed for pipe and channel flows, which suggests the existence of a universal
transition of the turbulent momentum-exchange mechanism of wall-bounded flows in the
asymptotically large Re number regime.

DOI: 10.1103/PhysRevFluids.8.084607

I. INTRODUCTION

This work proposes a model for the momentum-exchange mechanism near the wall for asymp-
totically large Reynolds number turbulent boundary-layer flows that develop along a smooth flat
plate with zero pressure gradient (ZPG TBL flows). As a consequence, we derive simple power-law
formulas for the skin-friction factor, Cf , and the asymptotic thickness of boundary layers at the
extreme Reynolds number regime.

All of the flows discussed in this work are either laminar or are assumed to be fully developed. For
pipe and channel flows, this means that the streamwise derivative of all statistics is null, except for
the constant mean pressure gradient. For ZPG TBL flows, the boundary layer continues to evolve
along the streamwise direction, so that fully developed in this case means that all the remaining
effects from the laminar to turbulent transition may affect only large-scale structures [1,2].

For fully developed pipe and channel flows, the Reynolds number is completely determined by
two of the following three parameters: the pressure gradient, the flow rate, and δ, the channel half-
height or pipe diameter. In contrast, for boundary-layer flows, any working definition of the local
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Reynolds number is such that it increases continuously along the flow. Some of these definitions
are more appropriate than others depending on the information available. For example, the quantity
Reδ = Uoδ/ν depends on the previous knowledge of the boundary-layer thickness, δ = δ(x), which
is generally ill-defined. A common definition of δ is the vertical distance from the wall at which the
mean velocity achieves 99% of its free-stream value Uo, which, in practice, is hard to measure [1,3].
Moreover, the boundary-layer thickness relation δ(x) is not available a priori, thus Reδ may not
be a very useful input parameter for most engineering applications. Another common definition is
Reθ = Uoθ/ν, where θ is the momentum thickness [1,2]. Although θ is also difficult to be estimated
a priori, Reθ is more commonly used in the literature, since θ is related to the skin-friction factor,
Cf , by the Kárman integral momentum equation as Cf /2 := u2

τ /U 2
o = dθ/dx, where uτ = √

τw/ρ

is the friction velocity. One may also define the friction Reynolds number Reτ = uτ δ/ν, which does
not directly involve the free-stream velocity. For more practical applications, a useful definition is
given by the nominal downstream-distance-based Reynolds number, Rex = Uox/ν. In this work, we
derive power-law friction formulas in terms of all the aforementioned Reynolds number definitions
for the laminar, intermediate-Re, and extreme-Re regimes. For each regime, the formulas’ deviations
concerning available experimental data are shown to be very small.

Classical approaches to deriving friction factor relations usually involve the integration of the
mean velocity profile (MVP), which is assumed to obey either a log-law or a power-law scaling in
some domain of the flow [1]. The approach presented here does not involve any explicit assumption
on the MVP, and it relies mainly on the relation of the wall shear stress with a new phenomenology
of momentum exchanging eddies scaling with the location of the so-called mesolayer [4].

The friction formulas presented in this work are explicit and parsimonious (only one fitting
constant for each regime), and for sufficiently high Reynolds number, skin-friction factor data
obtained from different sources can be predicted essentially within experimental uncertainty by
the models. We remark, nonetheless, that the main goal of this work is not to provide any practical
improvement over the classical friction equations [1,2], which are either power-law formulas, with
similar or worse accuracy than the ones presented here, or log-law formulas with two constants, but
with good accuracy over a wider Re number domain. The main objective of this work is to show
that there is a transition from an intermediate power-law scaling to an asymptotic power law for
the friction factor, which is not obvious from the classical formulations. Moreover, we argue that
this change of power-law scaling is related to a universal transition of the momentum-exchange
mechanism scaling dominating the wall shear stress that is also present in other wall-bounded
flows [5–7].

The understanding of the scaling transition reported in this work may be relevant for future
research in the area of flow control since it has been reported that the effectiveness of some flow
control strategies related to the near-wall structures is reduced for large Reynolds numbers [8–10],
and because many of those strategies depend on the momentum-exchange mechanism near the wall.
The relation between the proposed scaling transition and flow control is out of the scope of the
present work.

It is common practice in the fluid dynamics community to extend the methods and the quantities
used to describe turbulent pipe flows to the ZPG TBL problem. In his seminal work, for example,
Barenblatt [11,12] proposed a power law for the velocity profile of turbulent pipe flows with an
exponent depending on the Re number, by assuming an incomplete similarity hypothesis. Although
the analysis brings no deeper understanding of the near-wall structure of the turbulent flow, the
results compare well with experimental data. However, the extension to the ZPG TBL flows [13]
faced difficulties in the definition of the characteristic length scale and its correlation to the
counterpart scale in turbulent pipe flow, i.e., the diameter of the pipe. This theory also does not
provide any further insight into the exponent of the power law, and experimental data is necessary
for this purpose. More recently, following Barenblatt’s steps, Dixit et al. [14] also proposed a friction
semiempirical relation for turbulent pipe flows. To overcome the boundary-layer characteristic
length problem, Dixit et al. [15] proposed an alternative set of dimensionless variables using the
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TBL momentum rate instead of the main stream flow velocity. The results obtained by the authors
are, nonetheless, still inconclusive and more research is necessary to confirm their main hypothesis.

In this work, we pursue a different path. We start discussing pipe and channel flows in Sec. II,
where we use the axial mean-momentum equation scaled in bulk coordinates to relate the friction
factor to the action of the Reynolds stress at the top of the mesolayer. The presentation focuses
on channel flows for the sake of simplicity. We then follow the steps in Refs. [5,7] to propose
a closure model for the Reynolds’ stress to obtain a power-law scaling in terms of Reδ or Reτ .
In Sec. III, we use the boundary-layer streamwise mean-momentum equation to obtain a relation
for the skin-friction factor as a function of the ratio of Rex and Reδ . Assuming a similar eddy
phenomenology for ZPG TBL flows and for pipe/channel flows, we obtain a power-law scaling
for the skin-friction factor in terms of Reδ , which results in an expression for the skin friction in
terms of Rex, for every given streamwise location x ≈ X . We show that both power-law scaling
laws are asymptotically accurate. We also discuss the intermediate asymptotics for pipe, channel,
and boundary-layer flows. We end Sec. III proposing power-law scaling laws for the thickness of the
boundary layers, which implies an explicit relation between Rex and Reδ for each turbulent regime.
We present our conclusions in Sec. IV.

II. FRICTION FACTOR FOR CHANNEL AND PIPE FLOWS

A. Bulk normalized axial mean-momentum equation

Let us begin with the analysis of the axial mean-momentum equation for channel flows, which
reads

ν
d2U

dy2
− d

dy
〈uv〉 − 1

ρ

∂ p

∂x
= 0. (1)

This equation represents a balance of forces, or stress gradients, and we denote by FT := d
dy 〈uv〉,

the mean effect of turbulent inertia, by Fν := ν d2U
dy2 , the mean viscous force, and by Fp := − 1

ρ

∂ p
∂x ,

the mean pressure gradient, so that Fp = FT − Fν .
In Ref. [4], it was observed that turbulent wall flows can be divided into a four-layer structure,

defined by the change of magnitude ordering of these mean forces. This analysis was later extended
via the method of scaling patches (see Refs. [18–20]). The authors revealed the persistence of
viscous effects from layer I, near the wall, until the top of the mesolayer or layer III, where the
peak of Reynolds’ stress is located, around y+ ∼ δ+

m := 2.6 Re1/2
τ . In this work, we focus most of

our analysis in the inertial/advection balance layer, or layer IV, located at 2.6 Re1/2
τ < y+ � Reτ ,

where the magnitude ordering is FT ≈ Fp � Fν . Let us define the bulk normalized quantities:

ŷ = y

δ
, x̂ = x

L
, Û = U

Ū
, τ̂T = 〈ûv〉 = 〈uv〉

Ūvc
, p̂ = p

�p
, (2)

where vc is a regime-dependent characteristic velocity, L is the length of the channel, δ is the half-
height of the channel, Ū is the flow velocity averaged over the channel cross section, and �p is the
total pressure drop along the flow. Now, notice that

δ

Ū 2
FT = vc

Ū

d〈ûv〉
dŷ

,
δ

Ū 2
Fν = 1

Reδ

∂2Û

∂ ŷ2
, (3)

where Reδ := ρŪδ/μ is the bulk Reynolds number. Because d p̂
dx̂ = 1, it follows that

δ

Ū 2
Fp = − δ�p

LρŪ 2

d p̂

dx̂
= 1

2
f , (4)

where f = −2δ
d p
dx

ρŪ 2 = −2δ�p
ρŪ 2L is the friction factor for channel flows. In this work, we denote by f the

friction factor for pipe and channel flows, and by Cf the skin-friction coefficient for boundary-layer
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Re

Re

Re

Re

FIG. 1. Darcy friction factor data from the Princeton Superpipe [16] and Oregon [17]. Laminar friction
equation: f = 64

Re ; Blasius’ friction equation: f = 3.16×10−1

Re1/4 ; extreme Re friction equation: f = 9.946×10−2

Re2/13 .

flows. Let us denote

F̂ν := ∂2Û

∂ ŷ2
, F̂T := d τ̂T

dŷ
, F̂p := d p̂

dx̂
= 1. (5)

Multiplying Eq. (1) by δ

ρŪ 2 , one obtains the bulk normalized asymptotic axial mean-momentum
equation,

2

f

vc

Ū
F̂T − 2

f

1

Reδ

F̂ν = F̂p = 1. (6)

The friction coefficient obeys three different scaling laws depending on the flow’s regime [5,7] (see
Fig. 1). We now present a discussion concerning these different regimes from the perspective of
the bulk normalized axial mean-momentum equation (6). This is important for the extension of our
arguments to obtain the new scaling laws for ZPG TBL flows.

B. Extreme-Re regime

Let δm = 2.6δ/Re1/2
τ denote the border of the mesolayer with the inertial/advection balance

layer [4,18–20]. Inspired by arguments first presented in Refs. [21,22], and later expanded in
Ref. [5], we assume that for extreme Re number flows, the Reynolds stress 〈uv〉|y=δm results from
the momentum exchange between the near-wall region up and down the inertial/advection balance
layer through the work of the δm-scaling attached eddies [see Fig. 2(a) for a pictorial description].
This results in the main hypothesis for pipe and channel flows:

〈uv〉|y=δm ∼ −[u(y + s) − u(y − s)]vm ∼ −Ūvm, (7)

where vm is the eddy turnover velocity, and the momentum contrast is approximated with a fraction
of Ū . Based on Eq. (7), we define the characteristic velocity in (2) and (6) as

vc := vm := −〈uv〉|y=δm

Ū
, (8)

so that τ̂T := 〈uv〉/〈uv〉|y=δm and that 2 vm

f Ū F̂T − 2
f Reδ

F̂ν = 1. Furthermore, because Fp is constant ev-

erywhere, the mean turbulent inertia d
dy 〈uv〉 is also approximately constant in the inertial/advection
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FIG. 2. Schematic of the model of an eddy that straddles the wet surface in the vicinity of the mesolayer
that exchanges its streamwise mean momentum between adjacent layers. (a) Channel flows. (b) Flat plate ZPG
TBL.

balance layer, LIV, where Fν is negligible [4]. This implies

−〈uv〉|y=δm = 〈uv〉|y=δ − 〈uv〉|y=δm =
∫

LIV

d

dy
〈uv〉 dy ≈ δ

(
1 − δm

δ

)
d

dy
〈uv〉. (9)

This yields the asymptotic limit F̂T = δ
〈uv〉|y=δm

d
dy 〈uv〉 ∼ O(1), as Reτ → ∞, for y in the

inertial/advection balance layer.
We illustrate in Fig. 3(a) this asymptotic behavior with the analysis of direct numerical sim-

ulation (DNS) data of high Reynolds number channel flows [23], where one can observe that
F̂T ≈ δFT /〈uv〉|y=δm ≈ −1, and that F̂ν 
 O(1), for sufficiently large y/δ. Because in the turbulent
regime, the friction factor satisfies f > 1/Reδ , this implies that the viscous term is negligible in (6),
for sufficiently large y/δ. Therefore, (6) reduces to f → vm

Ū , as Reτ → ∞, for y/δ ∼ O(1) in the
inertial/advection balance layer.

As argued in Ref. [5], based on evidence of self-similar behavior for eddies with wall-normal
length scales spanning more than a decade in pipe flows [24], we assume Kolmogorov’s self-
similarity scaling vm

Ū ∝ ( δm
δ

)1/3 for the eddy turnover velocity. It is noted that this is not an
assumption on the MVP. This implies that the friction factor for extreme-Re number flows, fE ,
satisfies

fE ∼ vm

Ū
∼

(
δm

δ

)1/3

∼ 1

Re1/6
τ

∼ 1

Re2/13
δ

, (10)

where we used that δm/δ ∼ 1/Re1/2
τ .

FIG. 3. Bulk normalized turbulent stress F̂T := d〈ûv〉
dŷ and bulk normalized viscous force F̂ν := ∂2 û

∂ ŷ2 . (a) DNS
data for channel flows [25]. (b) DNS data for flat plate ZPG TBL flows [23].
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It is important to underscore that employing external (inviscid) quantities does not signify the
dismissal of viscous effects within the mesolayer. In accordance with the classical turbulence theory,
it is broadly acknowledged that energy acquired at larger scales undergoes an energy-conserving
cascade process towards smaller scales, commonly referred to as the Richardson energy cascade.
This cascade mechanism ensures that energy is ultimately dissipated at the finest scales, thereby
linking the larger and smaller scales through energy conservation principles. Consequently, to
characterize the inner scales in terms of pertinent engineering parameters, the incorporation of larger
scales becomes an indispensable step. Figure 1 shows that f = (9.946 × 10−2)/Re2/13

δ yields a very
good approximation to experimental data at the extreme range. The colored regions in Fig. 1 mark
regime transitions, where the deviation from power-law formulas to experimental data is higher than
the experimental uncertainty. Because f = 2τw/ρŪ 2, we remark that it follows from (10) that the
wall shear stress, τw, scales as τw ∼ −ρ〈uv〉|y=δm ∼ ρŪvm asymptotically.

Moreover, taking into account the studies by Hoyas et al. in Refs. [26,27], which use direct
numerical simulation of channel flow at a friction Reynolds number of 10 000, we derive two
pivotal conclusions about channel flows. Firstly, the maximum of the intensity of the streamwise
velocity increases with the Reynolds number. Secondly, the extension of the mean streamwise
velocity’s logarithmic layer surpasses earlier assumptions, spanning from 400 to 2500 wall units.
These significant findings echo the transitional behavior examined in our current study.

C. Laminar flow and intermediate asymptotics

In the laminar regime, by definition, FT is negligible throughout the flow. Assuming that F̂ν =
d2Û
dŷ2 = O(1) for y/δ ∼ O(1), one obtains from (6) the well-known scaling laws for the friction factor

of laminar flows: fL ∼ 1
Reδ

.
For the intermediate asymptotics’ Reynolds number range, where the viscous term in (6) is

negligible, but the wall shear stress is not dominated by the momentum-exchange mechanism
described in the previous section, one observes the emergence of an intermediate power-law scaling
fI ∼ Re−1/4, known as the Blasius correlation. As first noticed in Refs. [21,22], one can derive
such relation by replacing the characteristic velocity vc in (6) by vc ∼ uη, where uη is the K41’s
dissipative velocity, satisfying uη/Ū ∼ Re−1/4 ∼ f . An inspection of Fig. 1 shows that Blasius’
correlation yields an excellent approximation of the friction factor in the intermediate range. In
Refs. [5,28], it is suggested that at lower turbulent Reynolds numbers, wall-incoherent motions made
up of Kolmogorov-type fine scales and other wall-detached motions are dominant for friction, but a
complete description of the flow structure underlying Blasius’ relation remains elusive. It is noted,
nonetheless, that previous works [29–31] by the authors generalized Blasius’ formula for a large
family of purely viscous non-Newtonian fluid flows by generalizing the definition of Kolmogorov’s
dissipative velocity scale, uη, for each rheology and by extending the relation τw ∼ ρŪvn ∼ ρŪuη.

III. SKIN-FRICTION FACTOR FOR FLAT PLATE ZPG TBL FLOWS

A. Bulk normalized streamwise mean-momentum equation

In this section, we extend the theory developed for pipes and channels in the previous section to
flat plate ZPG TBL flows. Consider the streamwise mean-momentum equation

ν
∂2U

∂y2
− ∂

∂y
〈uv〉 =

[
U

∂U

∂x
+ V

∂U

∂y

]
. (11)

This equation represents a balance of forces, or stress gradients, and we denote by FT := d
dy 〈uv〉,

the mean effect of turbulent inertia, by Fν := ν d2U
dy2 , the mean viscous force, and by FA := [U ∂U

∂x +
V ∂U

∂y ], the mean advective force, so that Fν − FT = FA. We now define the bulk normalized quanti-
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ties for boundary-layer flows at a given x ≈ X :

ŷ = y

δ(X )
, x̂ = x

X
, Û = U

Uo
, τ̂T = ˆ〈uv〉 = 〈uv〉

Uovc
, V̂ = XV

Uoδ(X )
, (12)

where vc is a regime-dependent characteristic velocity, Uo is the free-stream mean velocity, and δ

is the thickness of the boundary layer at x = X . We remark that X is fixed, but arbitrary, and the
analysis will be restricted to x̂ ≈ 1, for each X . The scaling in V̂ follows from the mean continuity
equation. It is noted that

δ(X )

U 2
o

FT = vc

Uo

d〈ûv〉
dŷ

,
δ(X )

U 2
o

Fν = 1

Reδ

∂2Û

∂ ŷ2
, (13)

and that

[
δ(X )/U 2

o

]
FA = δ(X )

X

(
Û

∂Û

∂ x̂
+ V̂

∂Û

∂ ŷ

)
. (14)

Let us denote

F̂ν := ∂2Û

∂ ŷ2
, F̂T = d τ̂T

dŷ
(15)

and

F̂A := Û
∂Û

∂ x̂
+ V̂

∂Û

∂ ŷ
. (16)

Multiplying Eq. (11) by (δ/U 2
o ), one obtains the equivalent of relation (6) for ZPG TBL flows:

1

Reδ

F̂ν − vc

Uo
F̂T = δ(X )

X
F̂A. (17)

B. Extreme-Re flows

For turbulent flows, we may assume that the viscosity does not play a direct role in the advective

forces in the inertial/advection balance layer, and therefore the scaling FA(y; x) ∼ U 2
o

X 
( y
δ(X ) ) ∼

O(U 2
o

X ) holds for y
δ(X ) ∼ O(1) in the inertial/advection balance layer, and x̂ ≈ 1. This implies that

F̂A(y; x) = X
U 2

o
FA ∼ O(1) within this region of the flow. Let δm(X ) = 2.6 δ/Reτ (X )1/2 denote the

border of the mesolayer with the inertial/advection balance layer at x = X [19]. As for pipe
and channel flows, we assume that for extreme Re number flows, the Reynolds stress 〈uv〉|y=δm

results from momentum exchange between the near-wall region up and down the inertial/advection
balance layer through the work of the δm-scaling attached eddies [see Fig. 2(b) for a pictorial
description]. The main difference between pipe and channel flows is that for boundary-layer flows,
the characteristics of the attached eddy are x dependent since both the boundary-layer and the
mesolayer thicknesses evolve with x. This results in our hypothesis

〈uv〉|y=δm (x) ∼ −[u(y + s) − u(y − s)]vm ∼ −Uovm, (18)

where vm = vm(x) is the eddy turnover velocity at x, and the momentum contrast is approximated
with a fraction of Uo, which is compatible with the discussion in Ref. [4]. We now define the
characteristic velocity in (12) and (17) as

vc := vm := −〈uv〉|y=δm/Uo, (19)

so that τ̂T := 〈uv〉/〈uv〉|y=δm (x). In Fig. 3(b), we illustrate that, far from the wall, F̂T (y; x) =
δ(X )
Uovm

FT → O(1) and F̂ν 
 O(1) for data obtained from DNS of boundary-layer flows at high

084607-7



ANBARLOOEI, RAMOS, AND CRUZ

Re

Re

Re
Re

Re

Re

FIG. 4. Variation of skin-friction coefficient for ZPG TBL flows as a function of (a) Reδ and (b) Reθ .
Intermediate-Re power law (CI

f ): Eq. (28) and Extreme-Re power law (CE
f ): Eq. (21); 1/6 power law [1] (Cf =

0.02Re−1/6
δ ) and modified Coles-Fernholz [32,33] (Cf = 2[1/(0.384) ln Reθ + 4.127]−2), compared to DNS

data from Ref. [23] and experimental data from KTH [34,35], Princeton [3], Melbourne [36], and LCC [37].

Reynolds number [23]. Inspired by the friction relation for channel and pipe flows, we assume
that τw ∼ −ρ〈uv〉|y=δm (x) = ρUovm.

This implies that the Gioia and Chakraborty momentum-exchange mechanism hypothesis, ini-
tially proposed for pipe/channel flow, can be expanded to encompass flat plate boundary-layer
flows. The fundamental premise of this hypothesis is rooted in the observation that the asymptotic
structures of confined flows and turbulent boundary layers on flat plates exhibit notable similari-
ties [4]. As a result, it is reasonable to postulate that the momentum-exchange mechanisms within
the wet layer also share resemblances. Thus,

Cf = 2τw

ρU 2
o

∼ vm

Uo
∼ 1

Re2/13
δ

. (20)

If one assumes that for turbulent flows, θ ∼ δ, one can write

CE
f = de

Re2/13
δ

= d̃e

Re2/13
θ

. (21)

Figure 4 shows that Eqs. (21) result in very good approximations with de = 0.0148 and d̃e = 0.103.
Now, because δ(X )

X = Reδ

ReX
, we obtain

ReX

Re2
δ

F̂ν

F̂A
− Cf

ReX

Reδ

F̂T

F̂A
= 1. (22)

If we consider this equation within the inertial/advection balance layer, where F̂T

F̂A
∼ O(1) and F̂ν

F̂A



O(1), and because for turbulent flows, Cf > 1/Reδ , we obtain the asymptotic relation

Cf ∼ Reδ

ReX
∼ δ(X )

X
. (23)
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Re

Re

Re

FIG. 5. (a) Variation of skin-friction coefficient for ZPG TBL flows as a function of Rex . Intermediate-
Re power law (CI

f ): Eq. (28) and extreme-Re power-law (CE
f ): Eq. (24); modified White’s formula (Cf =

[0.4177 ln (0.06Rex )]−2) and 1/7 law (Cf = 0.023 58Re−1/7
x ) from Ref. [33], compared to experimental data.

Because Reδ ∼ C−13/2
f , this implies C1+(13/2)

f ∼ 1
ReX

. Since x = X is arbitrary within the extreme Re
range, we may write

CE
f = ce

Re2/15
x

∼ δE (x)

x
, (24)

where CE
f denotes the skin-friction coefficient at the extreme-Re regime. Figures 5 and 6 show that

Eq. (24) yields a good approximation with ce = 0.0204.

C. Laminar flows and intermediate asymptotics

In the laminar regime, FT is negligible throughout the flow, so that 1
Reδ

F̂ν ≈ δ(X )
X F̂A. Because

F̂ν ∼ F̂A ∼ O(1) for ŷ ∼ O(1) and x̂ ≈ 1, one obtains 1
Reδ

∼ δ(X )
X . Then

CL
f =

μ dU
dy |y=0

1
2ρU 2

o

∼ μUo
δ

1
2ρU 2

o

∼ 1

Reδ

, (25)

where CL
f denotes the skin-friction coefficient in the laminar regime. Because 1

Reδ
∼ δ(X )

X = Reδ

ReX
, we

have Re2
δ ∼ ReX . This implies the well-known relation [1]

CL
f ∼ δ(X )

X
∼ 1

Reδ

∼ 1

Re1/2
x

. (26)

Re Re

FIG. 6. (a) Deviation of friction factor from experimental data to intermediate Rex power-law formula (28).
(b) Deviation of friction factor from experimental data to extreme Rex power-law formula (24).
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As for pipe and channel flows, one also observes the emergence of an intermediate power-law
scaling:

Cf ∼ Re−1/4
δ ∼ Re−1/4

θ (27)

(see Fig. 4). This relation can be derived by replacing the characteristic velocity vc ∼ uη in Cf ∼
vc/Uo, where uη is the K41’s dissipative velocity satisfying uη/Ū ∼ Re−1/4

δ . Therefore, replacing
Reδ ∼ C−4

f in relation Cf ∼ Reδ

ReX
, one obtains Cf ReX ∼ C−4

f . Thus,

CI
f = cb

Re1/5
x

, (28)

where CI
f denotes the skin-friction coefficient in the intermediate regime. Figures 5 and 6 demon-

strate that Eq. (28) provides an excellent approximation with cb = 0.0558. Furthermore, it is
noteworthy that the deviation between the current theory and experimental data, as displayed in
Figs. 5 and 6, is smaller than the experimental error reported in the references. Consequently, any
speculation concerning the higher-order behavior of the friction factor carries limited scientific
relevance. Nonetheless, it is crucial to anticipate larger discrepancies in the transition region for
both equations, (24) and (28), as neither of them is entirely valid within that domain.

It should also be noted that, for boundary layers, the transition to the extreme Reynolds regime
occurs around Reδ ≈ 3–4 × 104, while for pipe flows, it is around Reδ ≈ 1.0 × 105.

D. The thickness of the boundary layer

We showed that the scaling laws

Cf ∼ 1

Reαr
τ

∼ 1

Reβr
δ

∼ 1

Reγr
x

(29)

yield excellent approximations for each regime r, where αL = 2, βL = 1, γL = 1/2 for the laminar
regime, αI = 2

7 , βI = 1
4 , γI = 1

5 for the intermediate regime, and αe = 1
6 , βe = 2

13 , γe = 2
15 for the

extreme Reynolds number regime. Because δ(x) ∼ x Cf ∼ x 1
Reγ

x
, one obtains the following relation

for the thickness of the boundary layer:

δ(x) ∼ x1−γ

(
ν

Uo

)γ

. (30)

For the laminar regime, this yields the well-known scaling [1]

δL(x) ∼
(

ν

Uo

)1/2

x1/2, (31)

or Reδ ∼ Re1/2
x in dimensionless form. For turbulent flows in the intermediate regime, this implies

δI (x) ∼
(

ν

Uo

)1/5

x4/5, (32)

or, equivalently, Reδ ∼ Re4/5
x . For the extreme Reynolds regime, one obtains

δe(x) ∼
(

ν

Uo

)2/15

x13/15, (33)

or Reδ ∼ Re13/15
x . Figure 7 shows that the proposed scaling laws result in good approximations

to empirical data. We also present these laws by replacing the boundary-layer thickness δ by the
momentum thickness θ . Table I sums up all derived scaling laws.
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FIG. 7. (a) Variation of bulk Reynolds number, Reδ , with that based on streamwise distance Rex . (b) Vari-
ation of Reynolds number based on momentum thickness, Reθ , with Rex . Comparison with experimental data.

IV. CONCLUSIONS

In this work, we derived power-law formulations for the friction factor of boundary-layer flows
as functions of different Reynolds number definitions dependent on the flow’s regime. The formulas
for the extreme-Re range result from a phenomenological description for the momentum-exchange
mechanism at the local mesolayer of the flow, and scaling considerations of the axial mean-
momentum equation normalized by bulk quantities. Unlike most formulations for the friction factor
in the literature, our proposed formulation does not follow from log-law or power-law similarity
assumptions on the mean velocity profile.

The empirical data suggest that the exchange mechanism proposed in this work appears valid for
an extensive range of extreme Rex flows, as shown in Figs. 5 and 6. In the intermediate turbulent
regime, the classical Re−1/4

δ (or Re−1/5
x ) scaling represents an excellent approximation. However, an

open issue is the lack of a compatible description of the flow structure underlying the wall shear
stress within this range. It is noted that we are proposing a description with two different power-law

TABLE I. Scaling laws for different flow regimes.

Flow regime Boundary-layer thickness Friction factor

Laminar Reδ ∼ Re1/2
x CL

f ∼ 1
Reδ

∼ 1

Re1/2
x

Intermediate-Re Reδ ∼ Re4/5
x CI

f ∼ 1

Re1/4
δ

∼ 1

Re1/5
x

Extreme-Re Reδ ∼ Re13/15
x CE

f ∼ 1

Re2/13
δ

∼ 1

Re2/15
x
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formulations with only one free parameter each, with the transition between regimes starting around
Rex ≈ 3–4 × 106. In contrast, log-law formulations depend on two free parameters, but with a wider
region of validity as displayed in Figs. 4 and 5.

We remark that empirical power-law approximations for the skin-friction factor are classical
subjects. Several expressions have been proposed in the literature [1,33], for example, the 1/6 law
as a function of Reδ [in contrast to the 1/6.5 law proposed in Eq. (20)], or the 1/7 law as a function
of Rex [in contrast to the 1/7.5 law proposed in Eq. (24)]. It is noted, nonetheless, that besides being
obtained from a physical description of the flow, the power-law formulations presented in this work
yield smaller deviations from recent available experimental data, as observed in Figs. 4 and 5. The
intermediate-Re power-law formulas (27) and (28) are also commonly found in the literature, but it
is generally regarded as a purely empirical approximation, and not as a transitory regime.

Concerning the thickness of the boundary layer, the intermediate 4/5 law is usually derived
in textbooks [1] using a power-law approximation to the MVP, and it is also regarded as an
empirical approximation. In Ref. [38], the authors obtain the 4/5 law from spectral considerations
and Kolmogorov’s K41 scaling. Figure 7 shows, however, that this law should be considered valid
only in the intermediate regime.

Scaling transition for the friction factor has also been observed for boundary layers in Ref. [39],
where the authors adjusted empirical power-law fits. They proposed that the friction factor scales
as Cf ∼ Re−0.2209

δ for Reδ � 2 × 105 (in contrast to Re−0.25
δ ), and as Cf ∼ Re−0.1363

δ for higher
Reynolds number flows (whereas 2/13 = 0.1538 . . .).

We also remark that the proposed power-law relation for the extreme Reynolds regime, Reθ ∼
Reδ ∼ Re13/15

x , is very close to the one obtained empirically by Nagib et al. in Ref. [33], where
the authors propose Reθ ∼ Re0.8659

x (whereas 13/15 = 0.866 . . .). It is noted that in this work
we have considered θ ∼ δ, for turbulent flows, but in Ref. [39], the authors suggest that θ/δ ∼
Re−0.0228

δ for Reδ � 2 × 105, and that θ/δ ∼ Re−0.0855
δ for larger Reynolds numbers. It is noted,

however, that direct and reliable measures of δ and θ , independent of friction, are difficult to
obtain and that for very large Reynolds number flows, the velocity profile becomes ever more
affected by roughness effects. Regardless of the relation between θ and δ, the skin friction and
the boundary-layer thickness can be reliably approximated by the formulas proposed in this work
in terms of Reδ , as well as a function of Reθ . More importantly, the asymptotic errors for the skin
friction in terms of the more practical parameter, Rex, displayed in Fig. 6, are within experimental
uncertainty.

A critical observation in the present study involves the employment of a mixed scale in the
derived scaling, with the mesolayer scaling proportional to

√
δδν . Mixed scales have played a

pivotal role in recent advancements in turbulent boundary-layer research. For example, DeGraaf
and Eaton [40] assert that the maximum value, Kmax, of turbulent kinetic energy (TKE) scales with
the mixed scale uτU∞. More recently, Wei [41] performed a novel dimensional analysis to identify
an appropriate scaling for TKE and its dissipation. The author establishes that the controlling
parameters in the near-wall region encompass the kinematic viscosity and the TKE dissipation at
the wall, εk,w. As a result, a suitable inner velocity scale constitutes the Kolmogorov wall velocity,
uε , while the appropriate length scale is the Kolmogorov wall length, ν/uε . Wei also presents a new
mixed scale for kmax, defined as νεk,w/u2

τ , which is substantiated by the inclusion of a controlling
parameter in an innovative dimensional analysis approach.

It is also worth mentioning that in [42,43], the authors utilize the maximum Reynolds shear
stress location to determine the appropriate scales for the outer region ofTBLs under adverse
pressure gradient (APG) conditions. This approach yields a novel scaling of the mean-momentum
equation for the outer region of APG TBLs.

Pursuant to Ref. [6], we are concurrently investigating the possibility of a power-law scaling for
the friction factor being linked to a corresponding power law for the MVP in specific flow regions
within the extreme Reynolds number regime.

It is essential to note that since the early 1930s, there has been an ongoing debate concerning the
behavior of turbulent flow friction factors in pipes and boundary layers. Early models adopted the
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Blasius friction relation for pipes and a Re1/5
x power law for boundary-layer flows. However, this

assumption was disproven for higher Reynolds numbers, and a satisfactory theoretical explanation
remained elusive. Subsequently, the log law became the standard formulation. The work of Baren-
blatt as well as of Gioia and Chakraborty, has rekindled interest in this subject. It is also noteworthy
that Prandtl proposed two power-law equations for flat plate turbulent boundary friction: f ∼ Re1/5

x
and f ∼ Re1/7

x . Both equations are currently employed by engineers in practical applications such
as aeronautical flows, demonstrating their effectiveness in producing accurate results, as evidenced
in [1].

The analysis herein naturally yields the 1/5 relation when restricted to the Blasius regime.
Furthermore, the proposed formulation approximates the 1/7 law, which is refined by the 2/15
law proposed for the extreme-Re regime. This study contends that the transition in the momentum-
exchange mechanism primarily accounts for the coexistence of these two empirical power laws,
frequently utilized in various applications. Furthermore, it provides a more robust explanation for
the emergence of the 1/5 law, beyond being a mere curve fitting.

Given the accuracy of the power-law correlations presented in this study, which are comparable
to the more intricate logarithmic models within their respective regimes of validity, and considering
the consistent application of the power law over several decades, we argue that the two power-
law correlations presented herein, each with a single constant, constitute suitable physical models.
Consequently, they can serve as parsimonious and straightforward alternatives for predicting the
friction factor of flat plate turbulent boundary-layer flow.
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