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A series of direct numerical simulations (DNSs) of forced compressible isothermal tur-
bulence in a periodic box are conducted by using an eighth-order compact finite-difference
scheme to study the Reynolds number and resolution-level (kmaxη) dependence of the
statistics of the compressible turbulence, where kmax = √

3N/2, η the Kolmogorov length
scale. The number of grid points N3 and the Taylor microscale Reynolds number Rλ are up
to 40963 and 853, respectively, and the turbulent Mach number and the ratio of dilatational
to solenoidal root-mean-square velocities are approximately 0.3 and 0.4, respectively. The
DNSs have shown that the energy spectrum for the compressible isothermal turbulence
increases to a higher wave-number range of kη > 1 with increasing resolution levels
suggesting a k−3 scaling of its dilatational component; however, the energy spectrum and
its solenoidal and dilatational components for kη < 1 are not sensitive to resolution levels
provided that kmaxη � 2. When the solenoidal quantities are used for normalization, the
solenoidal component of the energy spectrum and the solenoidal dissipation rate agree well
with those gathered from the DNSs of incompressible turbulence. DNS studies indicate
that the normalized dilatational component of energy dissipation is still finite nonzero for
large Rλ values (as opposed to an expectation from the result by John et al. [J. Fluid Mech.
920, A20 (2021)]). The PDFs of the solenoidal component of pressure fluctuations agree
with those of incompressible turbulence. However, a close study shows that the solenoidal
pressure and enstrophy fluctuations in compressible isothermal turbulence are consistently
less intermittent than those in incompressible turbulence. The impact of bulk viscosity on
the energy spectrum is examined using the DNSs of compressible isothermal turbulence
with nonzero bulk viscosity.

DOI: 10.1103/PhysRevFluids.8.084606

I. INTRODUCTION

Turbulence is fundamentally essential in science and engineering. We may roughly classify many
of the turbulent flows around us as incompressible ones. Theoretically, incompressible turbulence
may be easier to study than compressible turbulence, because it lacks any parameters that determine
the flow’s compressibility. Therefore, flows are often assumed as incompressible in turbulence
studies. However, turbulent airflows are weakly compressible depending on the circumstances.
Additionally, compressibility plays a significant role in many turbulent flows in astrophysics and
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mechanical engineering. Therefore, deepening our understanding of both incompressible and com-
pressible turbulent flows, and the relationship between them, is desired in science and engineering.

Direct numerical simulation (DNS) of turbulence is a powerful tool for studying the characteris-
tics of turbulence. With the development of supercomputers, this tool has become strongly advanced.
Regarding incompressible turbulence, the Fourier spectral method has been widely applied to DNSs
of homogeneous isotropic turbulence in a periodic box. The DNS data enable us to carefully evaluate
the universality of the statistics of the small-scale turbulent motions in detail [1]. As anticipated by
Kolmogorov’s theory, DNS studies of incompressible turbulence at high Reynolds numbers have
confirmed that the finiteness of the normalized mean-energy dissipation rate per unit mass and
the presence of inertial subrange in the energy spectrum. Recent large-scale DNSs of turbulence
with the number of grid points and the Taylor microscale Reynolds number Rλ up to 12 2883 and
approximately 2300, respectively, showed that the wave-number (k) range of the energy spectrum
could be separated into three categories, including F (flat), T (tilted), and B (bump) ranges [2]: The
compensated energy spectrum, E (k)/(ε2/3k−5/3), is almost flat in the F range, moderately tilted in
the T range, and has a bump in the high wave-number range (B range), where ε is the mean rate of
energy dissipation per unit mass. The existence of the spectral bump in the B range has also been
known in a numerical study based on the vortex blob method [3]. The T range in the energy spectrum
can be observed in Refs. [1,4,5]. It has been shown in Ref. [2] that the energy spectrum fits well to
a power law in the T range, but the pre-factor depends on Rλ. This result implies that the statistics
in the T range are not necessarily free from the viscosity. Regarding the F range, DNSs with larger
Rλ and longer simulation times are awaited to examine Rλ dependence. However, the larger-scale
DNS based on the Fourier spectral method has become more challenging for us to perform longer
on recent petascale supercomputers because data transfer occupies almost all of the computational
elapsed time.

Numerical simulations of compressible turbulence based on high-order and high-resolution finite
difference methods have been actively conducted to understand the effect of compressibility on
turbulence (e.g., see Refs. [6–10]). These studies revealed that fluctuations in fluid density lead to
the generation of shocklets (weak shock waves) even in weakly compressible turbulence. However,
compared to incompressible turbulence, the maximum numbers of grid points and Rλ the DNSs of
compressible box turbulence are limited to 20483 and 430, respectively [9,10]. In compressible
turbulence, the flow velocity u can be split into a solenoidal component us and a dilatational
component ud by Helmholtz decomposition [7], where ∇ · us = 0 and ∇ × ud = 0. The kinetic
energy spectrum of the solenoidal component is very close to that of incompressible flow and the
dilatational component depends significantly on the Mach number [11]. Wang et al. [12] reported
that the kinetic energy spectrum of u exhibits k−5/3 scaling in the inertial range, while that of
ud exhibits k−2 scaling in that range. Donzis and Jagannathan [9] analyzed a DNS database of
compressible turbulence with purely solenoidal forcing and demonstrated that the energy spectra
for Rλ ≈ 38–430 and the turbulent Mach number Mt ≈ 0.1, 0.3, 0.6 are entirely consistent with
incompressible results. Numerical simulations with solenoidal forcing at Mt from 0.05 to 1.0 and
at Rλ from 40 to 350 by Wang et al. [13] are basically consistent with those in Ref. [9]. Recently,
Donzis and John [14] demonstrated that the statistics of compressible turbulence depend on the
ratio δ ≡ ud/us, in addition to Rλ and Mt , where us and ud are the root-mean-square (rms) values of
the solenoidal and dilatational components of the velocity field, respectively. The value of δ varies
with the ratio of the solenoidal and dilatational components of external forcing injected at a small
wave-number range. Therefore, it is essential to analyze how consistent the solenoidal component
of the energy spectrum in compressible turbulence produced by the forcing that has a dilatational
component is with the energy spectrum in incompressible turbulence.

Donzis and John [14] studied the scaling properties in homogeneous compressible turbulence.
They confirmed a relationship εr ≡ εd/εs ≈ δ2 by all data from different flows, different forcing
schemes, and different conditions. Here εs and εd are the solenoidal and dilatational energy dissi-
pation rates, respectively. Mach number and Reynolds number scalings of εr were proposed based
on numerical simulations with solenoidal forcing by Wang et al. [13]. However, Donzis and John
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[14] demonstrated that such scalings do not hold generally if nonsolenoidal forcing is used. John
et al. [15] used a database of DNS throughout a broad parameter space Rλ ≈ 8–450, Mt ≈ 0.05–0.8,
δ ≈ 10−3–7.0 to study the dissipative anomaly in compressible turbulence. First, they introduced the
energy dissipation rate εs and the Reynolds number Rs

λ calculated using the solenoidal component
of the velocity field. They observed that the normalized values of εs asymptotically approach a finite
nonzero value as Rs

λ increases. Next, the energy dissipation rate εd and Reynolds number Rd
λ were

calculated using the dilatational component of the velocity field. In the parameter range studied in
Ref. [15], the normalized values of εd decrease with the increase in Rd

λ , and no asymptotic approach
was discovered. Therefore, large-scale DNSs of compressible turbulence with higher Reynolds
numbers are required to observe the asymptotic Rd

λ dependence of εd .
DNS studies of incompressible turbulence and experimental studies show that the probability

density function (PDF) of the pressure fluctuations in turbulence is negatively skewed [16–21]. The
low-pressure regions are believed to be produced by the vortex tubes [22]. Using a DNS database of
compressible turbulence with purely solenoidal forcing, Donzis and Jagannathan [9] demonstrated
that the skewness of the PDF of pressure fluctuations changes from negative to positive as the
values of Mt increase, and the transition occurs at Mt ≈ 0.3. The fluctuating pressure can be
decomposed into solenoidal and dilatational components [23]. Sakurai et al. [24] conducted DNSs
of compressible turbulence with Rλ ≈ 190–440, Mt ≈ 0–0.3, and εr ≈ 0–0.1. They showed that
the PDF of pressure fluctuation depends on both Mt and εr , and also that the PDFs of solenoidal
pressure agree well with those of the pressure fluctuations in incompressible turbulence.

The effects of spatial resolution on small-scale statistics of turbulence in DNSs have been
discussed in the past 20 years [25–33]. As shown in Jimenez et al. [34] by DNS of incompressible
turbulence, the average radius of microscale vortices (formed by the solenoidal turbulent field) is
approximately 3η–5η, where η is the Kolmogorov length scale. However, in compressible turbu-
lence, the dilatational component of velocity may form smaller flow structures such as shocklets. As
demonstrated in Ref. [35], the most typical thickness of shocklets is a slightly decreasing function
of Mt and is as tiny as 1.5η for Mt ≈ 0.9. This shows that effective assessment of the impact of fluid
compression in small-scale turbulence requires high-resolution simulation. Several studies have ex-
amined the effects of resolution on compressible turbulent fields [35–39]. Wang et al. [37] performed
numerical simulations of compressible turbulence with various resolutions (k′

maxη = 1.65, 2.47,
and 3.33, where k′

max = N/2 and N is the number of grid points in each Cartesian coordinate).
They showed that, except for extremely strong compression regions, the PDFs of the normalized
dilatation overlap almost everywhere. They also indicated that the observed energy spectra of the
velocity field converge under the grid refinement. However, the resolution levels much higher than
3 were not performed in their study, and it has not yet been clear whether the finest structure
formed by the dilatational component of the turbulent field is accurately captured. Note that the
finest scale in compressible turbulence may depend on the values of the bulk viscosity appearing
in the Navier-Stokes equations, which is generally assumed to be zero for dilute monatomic gases.
By conducting additional DNSs with nonzero bulk viscosity, we will study its effects on the high
wave-number range of the energy spectrum. See the Appendix for details.

Several numerical simulations of compressible turbulence [6–10] have been performed under
nonisothermal conditions, in which the energy conservation equation is solved to determine the total
energy (or the temperature). Alternatively, if we consider the compressible turbulence of isothermal
fluid, then we need not solve the energy equation. In the field of astrophysics, numerical simulations
of compressible isothermal turbulence are often used to study the fluid density distribution in the
interstellar medium [40–44] and the clustering and dynamics of dust particles in protoplanetary
disks [24,45] and molecular clouds [46–48]. Notably, in the case of very high Mach numbers,
including the case of the interstellar medium, it was shown that the density variance in isothermal
turbulence is different from that in nonisothermal turbulence [44]. However, Sakurai et al. [24]
showed that when Mt is small (Mt � 0.3), the statistics of the motion of the inertial particles in
compressible isothermal turbulence agree well with those in nonisothermal turbulence. Their results
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show no remarkable differences between the statistics of isothermal and nonisothermal turbulence
when Mt is small.

Here, we perform a series of the DNSs of compressible isothermal turbulence and compare the
results with those of compressible nonisothermal and incompressible turbulence to discuss their
similarities and differences. Additionally, we study the resolution dependence of the statistics by
comparing the DNSs with different values of kmaxη, in which the maximum wave number kmax

is defined by kmax = √
2N/3 as used in the DNSs of incompressible turbulence [29]. Then, by

using the DNSs of compressible isothermal turbulence with the grid points and the Taylor-scale
Reynolds number up to N3 = 40963 and Rλ = 853, respectively, we study the scaling properties of
the energy spectra and the energy dissipation rates. The main questions addressed in this paper are
the following.

(1) How do the solenoidal and dilatational energy dissipation rates behave when the Reynolds
number is high?

(2) How does the spatial resolution of the DNS of compressible turbulence affect such statistics
as the energy spectrum?

(3) Does the solenoidal component of the energy spectrum in the inertial subrange of weakly
compressible isothermal turbulence conform to that of incompressible turbulence?

In Sec. II, we briefly describe a series of our DNSs of compressible isothermal turbulence. In
Sec. III, we present our results by comparing those in compressible nonisothermal and incompress-
ible turbulence and discuss the resolution and Reynolds number dependence of turbulent statistics.
In Sec. IV, we summarize our results as conclusions. Finally, in the Appendix, the effect of the bulk
viscosity on the energy spectra of compressible isothermal turbulence is discussed on the basis of
DNSs of compressible isothermal turbulence with nonzero bulk viscosity.

II. METHODS OF DIRECT NUMERICAL SIMULATIONS

A. Governing equations

This study considers the three-dimensional homogeneous isotropic turbulence of compressible
fluid. The compressible fluid is assumed to be isothermal and to be governed by the following
equations:

∂ρ

∂t
+ ∂ρu j

∂x j
= 0, (1)

∂ρui

∂t
+ ∂ (ρuiu j + pδi j )

∂x j
= ∂τi j

∂x j
+ fi, (2)

p = ρc2, (3)

where ρ is the density, ui and fi are the ith components of the velocity and external force, p is the
pressure, and c is the speed of sound. The viscous stress tensor τi j is given by

τi j = μ

(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3
θδi j

)
, (4)

where θ ≡ ∂uk/∂xk is the velocity divergence, and the dynamic viscosity μ is constant in the
isothermal turbulence. Note that μ may depend on the temperature in the nonisothermal turbulence.

The forcing fi in Eq. (2) is added to maintain a statistically quasistationary state of turbulence.
We use the forcing scheme proposed by Ref. [49], which can adjust the ratio of the dilatational to
solenoidal component of the turbulent field. The Fourier coefficient of fi is not zero only at low
wave numbers |k| < 3, and fi is given by

fi = cs
√

ρw̄is + cd
√

ρw̄id , (5)

where w̄is and w̄id are the solenoidal and dilatational components of the spectrally filtered density-
weighted velocity obtained by setting the Fourier coefficient of wi ≡ √

ρui for |k| � 3 to zero,
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respectively, the two coefficients are determined by

cs = εs target

〈w̄iswi〉 and cd = εd target − 〈θ p〉
〈w̄id wi〉 ,

where we specify the values of εtarget = εs target + εd target and εr target = εd target/εs target to keep the
energy dissipation per unit mass ε = 〈τi j (∂ui/∂x j )〉/〈ρ〉 and εr = εd/εs approximately constant.
Here, the solenoidal and dilatational dissipation per unit mass is defined as εs = ν〈|ω|2〉 and εd =
(4/3)ν〈θ2〉, respectively, where ν = 〈μ〉/〈ρ〉 [50] and ω = ∇ × u. The values of εr target were set
to 0.1 for all runs of compressible isothermal turbulence, and the values of εtarget were set to those
of 〈ε〉 obtained by the DNSs with the same grid points in Table 1 of Ref. [29]. Readers refer to
Ref. [49] for the details of the forcing scheme.

In this paper, we compare the results of the DNSs of compressible isothermal turbulence
with those of compressible nonisothermal turbulence in Ref. [24] and those of incompressible
turbulence in Refs. [29,51]. Here, we briefly review the governing equations used in the DNSs
of the compressible nonisothermal and incompressible turbulence for the readers’ convenience.

In the DNS of compressible nonisothermal turbulence [24], Eqs. (1) and (2), and the total energy
equation

∂ρE

∂t
+ ∂ (ρEuj + pu j )

∂x j
= ∂ (τi jui − q j )

∂x j
+ f ju j + fe (6)

are used. Here τi j is given by Eq. (4), and the total energy E and heat flux qi are given by

E = 1

2
u ju j + e and qi = −κ

∂T

∂xi
,

respectively, where e is the internal energy, κ is the thermal conductivity, and T is the temperature.
The dynamic viscosity and thermal conductivity are assumed to be given by μ = μ0(T/T0)0.76 and
κ = κ0(T/T0)0.76, where μ0 and κ0 are the reference (dimensional) constants and T0 is the reference
temperature [7]. The cooling function fe in Eq. (6) is set to be fe = − f ju j to conserve the total
energy as in Ref. [49]. The equation of state of an ideal gas

p = ρRT (7)

is used to close the set of equations, where R is the gas constant of the fluid, the sound speed is
given by c = √

γ RT , and γ = Cp/Cv is the ratio of the specific heat at constant pressure Cp to
that at constant volume Cv . The Prandtl number Pr ≡ μ0Cp/κ0 = 0.7 and the ratio of specific heat
γ = 1.4 are used.

In the DNS of incompressible turbulence of unit density (ρ = 1) [29,51], the Navier-Stokes
equation

∂ui

∂t
+ ∂ (uiu j + pδi j )

∂x j
= ∂τi j

∂x j
+ f I

i (8)

and the continuity equation

∂u j

∂x j
= 0 (9)

are used, where τi j = ν(∂ui/∂x j + ∂u j/∂xi ), the kinematic viscosity ν is constant, and f I
i is the

incompressible forcing (e.g., see Ref. [29] for the details of f I
i ).

B. Numerical method and running conditions

The turbulence field is assumed to be periodic in each direction of the Cartesian coordinates
with a fundamental periodic box of size 2π . In the DNS of compressible isothermal turbulence, the
eighth-order compact difference (CD) scheme [52] and the eighth-order central finite difference
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TABLE I. Simulation parameters and turbulence characteristics. C256-1-nonIT, C512-1-nonIT, C1024-1-
nonIT, I256-1, I512-1, and I1024-1 are from Ref. [24] (note that Mrms in Ref. [24] is equivalent to Mt in this
paper). I512-2 and I1024-2 are from Ref. [29]. I2048-2 and I4096-2 are from Ref. [51].

Run N3 kmaxη 103�t 10−3Re Rλ Mt δ εr 102ε L λ 103η u

C256-1 2563 1.00 1.0 1.00 185 0.31 0.39 0.097 7.64 1.19 0.219 8.19 0.590
C512-1 5123 1.03 0.5 2.93 354 0.30 0.39 0.101 6.97 1.29 0.156 4.21 0.635
C1024-1 10243 1.02 0.5 6.75 514 0.32 0.40 0.077 7.01 1.22 0.0931 2.09 0.607
C2048-1 20483 1.04 0.1 17.4 853 0.32 0.40 0.071 6.61 1.25 0.0612 1.07 0.613
C512-2 5123 1.99 0.5 1.08 183 0.31 0.39 0.110 7.84 1.28 0.217 8.14 0.592
C1024-2 10243 1.99 0.5 2.84 326 0.33 0.39 0.098 8.02 1.26 0.145 4.07 0.632
C2048-2 20483 2.01 0.1 7.09 520 0.32 0.40 0.094 7.46 1.26 0.0923 2.06 0.620
C4096-2 40963 2.06 0.1 17.2 840 0.32 0.41 0.092 6.96 1.23 0.0600 1.05 0.616
C2048-4 20483 4.05 0.1 2.89 337 0.33 0.40 0.120 7.48 1.28 0.150 4.14 0.631
C4096-8 40963 8.08 0.1 2.89 336 0.33 0.40 0.126 7.55 1.28 0.149 4.13 0.631
C256-1-nonIT 2563 1.01 1.0 1.11 193 0.32 0.36 0.089 7.34 1.27 0.220 8.28 0.614
C512-1-nonIT 5123 1.03 0.5 2.78 316 0.32 0.38 0.080 7.12 1.26 0.144 4.20 0.618
C1024-1-nonIT 10243 1.05 0.5 5.69 437 0.30 0.38 0.061 6.44 1.11 0.0863 2.14 0.560
I256-1 2563 0.96 1.0 0.933 167 − − − 8.50 1.13 0.203 7.97 0.577
I512-1 5123 0.98 0.5 2.26 286 − − − 7.89 1.09 0.139 4.08 0.577
I1024-1 10243 1.00 0.5 6.43 458 − − − 7.22 1.22 0.0873 2.07 0.577
I512-2 5123 1.96 1.0 1.00 173 − − − 7.95 1.21 0.210 8.10 0.577
I1024-2 10243 1.95 0.625 2.31 268 − − − 8.29 1.12 0.130 4.03 0.577
I2048-2 20483 1.97 0.4 5.84 446 − − − 7.62 1.11 0.0849 2.04 0.577
I4096-2 40963 2.02 0.25 14.8 730 − − − 7.11 1.13 0.0556 1.05 0.577

scheme are used to calculate the advection and the viscous terms, respectively, as in the case
of compressible nonisothermal turbulence [24]. The CD scheme was implemented by solving
tridiagonal matrix problems in parallel with the method developed by Mattor et al. [53]. The
time marching is conducted using the third-order TVD Runge-Kutta method [54] with a constant
time step (�t). The eighth-order low-pass filter [55] removes nonphysical numerical oscillations
that may occur in the high-frequency region. For incompressible turbulence, Eqs. (8) and (9) are
solved numerically by a fully alias-free spectral method, where aliasing errors are removed using
the so-called phase-shift method, which keeps all the Fourier modes satisfying k < kmax = √

2N/3.
The time marching is performed by a fourth-order Runge-Kutta method. See Ref. [29] for details of
the methods for DNS of incompressible turbulence.

The simulation parameters and turbulence characteristics in the DNSs are summarized in Table I.
The run names for compressible turbulence consist of the initial character “C” representing a
compressible flow, the number of grid points (N) in each Cartesian coordinate, and the integer,
which represents the resolution level defined as the approximate value of kmaxη(≈ 3η/�x, where
�x = 2π/N). The character “nonIT” follows the resolution level for compressible nonisothermal
turbulence. The run names for incompressible turbulence consist of the initial character “I” rep-
resenting an incompressible flow, N , and the integer representing the resolution level (kmaxη with
kmax = √

2N/3).
The statistics for runs with N3 = 2563, 5123, and 10243 were obtained through time averaging

(except for I512-2 and I1024-2). As demonstrated in Refs. [14,24], the properties of compressible
turbulence depend on the values Mt and δ (or εr ≈ δ2). In our DNSs and a part of those in Ref. [24],
target values of Mt and εr are set to 0.3 and 0.1, respectively, and their resulting values are also
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shown in Table I. The energy dissipation per unit mass, ε = 〈τi j (∂ui/∂x j )〉/〈ρ〉, is computed by

ε = ν

(
〈|ω|2〉 + 4

3
〈θ2〉

)
, (10)

where ν = μ/〈ρ〉 in compressible isothermal turbulence whereas ν is a given constant and 〈θ2〉 = 0
in incompressible turbulence. We set 〈ρ〉 = 1 in the DNSs in Table I. Note that, in general,

2
∫ ∞

0
k2E (k)dk = 〈|ω|2〉 + 〈θ2〉, (11)

where E (k) is the three-dimensional energy spectrum. The integral length scale L and the
Kolmogorov length scale η are, respectively, calculated as

L = π

2u2

∫ ∞

0
k−1E (k)dk (12)

and η = (ν3/ε)1/4 in both compressible and incompressible turbulence. Here, u is the rms value of
the fluctuating velocity in one direction and is related to E (k) as

3

2
u2 =

∫ ∞

0
E (k)dk. (13)

The Taylor microscale is computed by λ = (15νu2/ε)1/2. The Reynolds number Re and the Taylor
microscale Reynolds number Rλ are calculated as Re = uL/ν and Rλ = uλ/ν, respectively. The
turbulent Mach number Mt is calculated by Mt =

√
〈3u2〉/〈c〉.

We decompose turbulence characteristics into their solenoidal and dilatational components to
assess the scaling for the solenoidal and dilatational parts separately. The energy dissipation rate
may be decomposed into ε = εs + εd , each of which is calculated as

εs = ν〈|ω|2〉 = 2ν

∫ ∞

0
k2Es(k)dk, (14)

εd = (4/3)ν〈θ2〉 = (8/3)ν
∫ ∞

0
k2Ed (k)dk, (15)

respectively [50]. Here Es(k) and Ed (k) are the solenoidal and dilatational components of the
energy spectrum. Following Ref. [15], we calculate the decomposed Taylor Reynolds number and
decomposed integral length scale as

Rs
λ = Rλ

(us

u

)2
√

ε

εs
, Rd

λ = Rλ

(ud

u

)2
√

ε

εd
, (16)

Ls = π

2u2
s

∫ ∞

0
k−1Es(k)dk, Ld = π

2u2
d

∫ ∞

0
k−1Ed (k)dk, (17)

respectively. The decomposed solenoidal and dilatational values of Rλ, ε, L, and u are summarized
in Table II.

III. NUMERICAL RESULTS

A. Energy dissipation rate

A basic assumption of turbulence theories, including Kolmogorov (1941) [56], is that the
dissipation rate remains finite as the viscosity tends to zero. This fundamental turbulence principle
is commonly known as “dissipative anomaly” and is also called the “zeroth law of turbulence.”
Therefore, Reynolds number dependence of the normalized average energy dissipation rate,

D ≡ εL

u3
, (18)
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TABLE II. Solenoidal and dilatational components of turbulence characteristics for compressible turbu-
lence. D = εL/u3, Ds = εsLs/u3

s , and Dd = εd Ld/u3
d . C256-1-nonIT, C512-1-nonIT, and C1024-1-nonIT are

from Ref. [24].

Run Rλ Rs
λ Rd

λ 102ε 102εs 102εd L Ls Ld u us ud D Ds Dd

C256-1 185 168 80.9 7.64 6.97 0.673 1.19 1.14 1.52 0.590 0.551 0.213 0.440 0.474 1.06
C512-1 354 322 153 6.97 6.34 0.638 1.29 1.25 1.58 0.635 0.592 0.230 0.352 0.381 0.830
C1024-1 514 460 265 7.01 6.51 0.502 1.22 1.17 1.57 0.607 0.564 0.225 0.383 0.424 0.688
C2048-1 853 761 453 6.61 6.17 0.441 1.25 1.20 1.57 0.613 0.569 0.227 0.358 0.400 0.594
C512-2 183 168 75.7 7.84 7.06 0.777 1.28 1.24 1.53 0.592 0.552 0.213 0.483 0.521 1.22
C1024-2 326 298 141 8.02 7.31 0.714 1.26 1.21 1.57 0.632 0.589 0.227 0.401 0.433 0.962
C2048-2 520 470 241 7.46 6.82 0.639 1.26 1.20 1.59 0.620 0.577 0.229 0.393 0.428 0.853
C4096-2 840 749 422 6.96 6.37 0.584 1.23 1.17 1.59 0.616 0.569 0.235 0.366 0.403 0.715
C2048-4 337 308 141 7.48 6.68 0.801 1.28 1.23 1.59 0.631 0.586 0.233 0.382 0.409 1.00
C4096-8 336 307 137 7.55 6.71 0.842 1.28 1.23 1.58 0.631 0.587 0.233 0.384 0.410 1.05
C256-1-nonIT 193 179 76.2 7.34 6.72 0.597 1.27 1.23 1.59 0.614 0.578 0.206 0.403 0.427 1.09
C512-1-nonIT 316 287 149 7.12 6.57 0.529 1.26 1.20 1.66 0.618 0.577 0.221 0.379 0.409 0.821
C1024-1-nonIT 437 393 228 6.44 6.07 0.376 1.11 1.06 1.47 0.560 0.523 0.199 0.407 0.447 0.705

has been extensively examined in turbulence studies, e.g., experiments by Refs. [57–59] and
numerical simulations by Refs. [60–65]. An analytical upper bound for dissipation is given by
Doering and Foias [66] for incompressible turbulence, and Donzis et al. [63] used their analytical
expression to fit incompressible data of D. An extensive discussion of a dissipative anomaly in
incompressible turbulence can be found in Ref. [67].

Figure 1(a) compares the values of D obtained from the compressible data in Table I with those
for incompressible turbulence plotted in Ref. [62]. The results show that both D values remain
finite as Rλ becomes large and that D’s values for compressible turbulence are slightly smaller than
those for incompressible turbulence. Figure 1(b) demonstrates that the present values of D agree
well with the compressible results plotted in Ref. [15]. This agreement confirms that the classical
incompressible scaling does not hold for the total dissipation field [15]. The value of D in Eq. (18)
can be considered a ratio of the average energy dissipation rate to the value of u3/L, where the
later is in the order of the average energy input rate on a large scale. Therefore, the results in Fig. 1
imply that the ratio in high Re compressible turbulence may be slightly smaller than that in high

FIG. 1. (a) Comparison of the values of normalized energy dissipation, D ≡ εL/u3, obtained from the
DNSs of compressible turbulence with those of incompressible turbulence (from Ref. [62]), plotted as a
function of Rλ and (b) the same plot compared with those from compressible simulations in Ref. [15].
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FIG. 2. (a) Solenoidal dissipation normalized by solenoidal variables, Ds ≡ εsLs/u3
s , as a function of Rs

λ and
(b) dilatational dissipation normalized by dilatational variables, Dd ≡ εd Ld/u3

d , as a function of Rd
λ . The dashed

line in (a) corresponds to the function Ds = (Cs
∞/2)(1 +

√
1 + (Rs

λ,cr/Rs
λ)2) with Cs

∞ = 0.4 and Rs
λ,cr = 92. The

values of Cs
∞ and Rs

λ,cr are obtained for incompressible flows in Ref. [68]. The data from Refs. [62] and [15]
are plotted as gray points in panels (a) and (b), respectively.

Re incompressible turbulence. However, we should note that the solenoidally forced cases follow a
trend similar to that for incompressible turbulence, as reported in Jagannathan and Donzis [10].

According to John et al. [15], the relationship between normalized energy dissipation rate and
Reynolds number in compressible turbulence can be assessed using the solenoidal and dilatational
components of the energy dissipation rate separately. In Fig. 2(a), we plot solenoidal dissipation
normalized by solenoidal variables, Ds ≡ εsLs/u3

s , as a function of the solenoidal Taylor Reynolds
number Rs

λ. The normalized solenoidal energy dissipation rate values keep a constant value (≈0.4) in
the Rs

λ ≈ 168–761 and conform to the incompressible results. These high Reynolds number results
support that the characteristics of the solenoidal energy dissipation rate in compressible turbulence
are virtually the same as those of the energy dissipation rate in incompressible turbulence.

To investigate the asymptotic behavior of the normalized dilatational dissipation rate, Dd ≡
εd Ld/u3

d , in compressible turbulence, we examine the Rd
λ dependence obtained in both compressible

isothermal turbulence and compressible nonisothermal turbulence. John et al. [15] mentioned that if
asymptotic scaling of the dilatational dissipation rate exists, the asymptotic value is zero. However,
the Rd

λ values in their DNS seem not to be high enough. The range of the dilatational component of
Rλ in our DNSs is Rd

λ = 75.7–453, which means that Rd
λ dependence of εd can be investigated in a

higher Rd
λ range than John et al. [15]. Since the values related to the compressibility of turbulence

are set as Mt ≈ 0.3 and δ ≈ 0.4 (or εr ≈ 0.1) in this study (see Table I), the dilatational components
of the integral length scale Ld and the rms value of the velocity ud are almost the same values for
different runs (see Table II). However, the values of εd , which are related to the viscosity rate μ,
are a decreasing function of the Reynolds number. This observation indicates that the Dd values
tend to be zero at high Rd

λ as described in John et al. [15]. Figure 2(b) shows that Dd is a slightly
decreasing function of Rd

λ; however, the value is approximately 0.5 at Rd
λ ≈ 400. This result shows (i)

the dilatational dissipation rate may remain finite nonzero in the limit Rd
λ → ∞ like the solenoidal

component, or (ii) it may approach to zero, but the approach is slow. The DNSs of compressible
turbulence under various conditions with even higher Reynolds numbers should be conducted to
confirm these conjectures.

As for the values of D, Ds, and Dd in the DNSs of compressible turbulence, their dependence on
the resolution level defined by the value of kmaxη(≈ 3η/�x) has not been so remarkable. However,
careful observation reveals a small but finite systematic dependence. For example, the values of Rλ,
Mt , and δ in Runs C256-1, C512-1, C1024-1, and C2048-1 (resolution level 1) are approximately
similar to those in Runs C512-2, C1024-2, C2048-2, and C4096-2 (resolution level 2), respectively.
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FIG. 3. Linear-log plots of (kη)3Es(k)/(εν5)1/4 (solid lines) and (4/3)(kη)3Ed (k)/(εν5)1/4 (dashed lines)
for the DNS data at Rλ ≈ 340 by Runs C512-1, C1024-2, C2048-4, and C4096-8.

The difference is only in their grid numbers, i.e., the resolution level. Conversely, we cannot observe
the systematic dependence of the values of Lα and uα on the resolution level, where α = s and d .
Therefore, it implies that Lα and uα are insensitive to the resolution level. (Note that the values of Lα

and uα can be influenced indirectly by the resolution level because our forcing depends on energy
dissipation. Nevertheless, the influence was not visible in the values of Lα and uα .) However, we
can observe that the values of ε, εs, and εd in resolution level 1 are systematically smaller than their
corresponding values in resolution level 2. This result indicates that the energy dissipation rates may
be underestimated in the DNSs of the resolution level 1.

To acquire some idea of the resolution-level dependence of ε, εs, and εd , let us study the wave-
number dependence of the spectra k2Es(k) and k2Ed (k) at Rλ ≈ 330 by Runs C512-1, C1024-2,
C2048-4, and C4096-8. From Eqs. (14) and (15) we have

ε = 2ν

∫ ∞

0
{k2Es(k) + (4/3)k2Ed (k)}dk

= 2ε

∫ ∞

0
{(kη)2Es(k)/(εν5)1/4 + (4/3)(kη)2Ed (k)/(εν5)1/4}d (kη),

where the last integral is a constant (= 1/2) by the definitions of ε and η. Noting that
∫

k2E (k)dk ∝∫
k3E (k)d (lnk), we plot normalized values of k3Es(k) and (4/3)k3Ed (k) as functions of the log-

arithm of kη in Fig. 3. We can see that the main contribution to both solenoidal and dilatational
energy dissipation for the case of Mt ≈ 0.3 comes from a wave-number range at kη ≈ 0.3. The plot
shows that the shape of k3Es(k) for kη < 1 of Run C512-1 is mainly different from those of Runs
C1024-2, C2048-4, and C4096-8. Furthermore, it reveals that the value of k3Ed (k) at high kη is
not so small that it can be ignored. These result in the following: (i) to properly analyze the energy
spectra for kη < 1, the value of kmaxη(≈ 3η/�x) should not be less than 2 in this DNS method of
compressible turbulence, and (ii) to properly analyze the values of εd the resolution level should be
higher than 2 for this case of Mt ≈ 0.3.

B. Energy spectrum

The energy spectrum of turbulence is one of the most fundamental measures characteriz-
ing the statistics of turbulent flows. Compared with the energy spectrum of incompressible
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FIG. 4. (a) Compensated kinetic energy spectrum and its (b) solenoidal and (c) dilatational components.
Arrows are directed toward the increasing resolution.

turbulence, the studies on the energy spectrum of compressible turbulence have been limited.
DNS results by Donzis and Jagannathan [9] showed that the total energy spectra for Rλ ≈ 38–430
and Mt ≈ 0.1, 0.3, 0.6 are entirely consistent with incompressible results. However, they used
solenoidal forcing, and the possible influence of the resolution level on the energy spectrum has
not been discussed yet for the cases of nonsolenoidal forcing. Additionally, the energy spectrum
in the dissipation range of compressible turbulence has not been extensively studied compared to
incompressible turbulence (e.g., Refs. [69–75]). Therefore, it may be worthwhile to obtain some
ideas on the potential influence of the resolution level on the energy spectrum of compressible
turbulence.

Let us consider the possible influence of the resolution level (i.e., the choice of kmaxη). Figure 4(a)
shows the compensated energy spectra ε−2/3k5/3E (k) obtained from DNSs with various resolutions
in compressible isothermal turbulence at almost the same values of Rλ(≈ 326–354), Mt ≈ 0.3–0.33,
and δ ≈ 0.39–0.4. The spectra from different resolution levels in Fig. 4(a) have no remarkable
difference for kη � 0.6. The spectra in the kη � 0.6 are consistent with those in Ref. [9]. However,
as expected from Fig. 3, there are visible differences in the spectra for kη � 0.6, i.e., the spectra
expand toward the higher wave-number side as the resolution level increases.

To examine the resolution dependence of the energy spectrum in more detail, we investigate
the solenoidal and dilatational components of the spectra in Figs. 4(b) and 4(c), respectively.
Figure 4(b) shows that the solenoidal component of the energy spectrum does not depend on the
resolution when kmaxη � 4. However, Fig. 4(c) demonstrates that, as the resolution level increases,
the dilatational component of the energy spectrum spreads toward the high wave-number side
suggesting a power law such as Ed (k) ∝ k−3. These results indicate that the solenoidal component of
the energy spectrum almost converges when the smallest solenoidal eddies are resolved. In contrast,

084606-11



YOSHIKI SAKURAI AND TAKASHI ISHIHARA

FIG. 5. (a) A plot of ε−2/3k5/3E (k) versus kη for C2048-2, I1024-1, and I2048-2. (b) A plot of
ε−2/3

s k5/3Es(k) versus kηs for C1024-1-nonIT, C1024-1, C2048-2, I1024-1, and I2048-2.

the exceptionally high-resolution is required to accurately evaluate the dilatational component of
the energy spectrum in compressible turbulence at Mt ≈ 0.3. However, note that all normalized
spectra, E (k), Es(k), and Ed (k), for kη < 1, are insensitive to the resolution levels provided that
kmaxη � 2. This study performed DNSs with no bulk viscosity, i.e., Stokes’ hypothesis was applied.
However, bulk viscosity can affect the dilatational component of the turbulent field. The effect of
bulk viscosity on the kinetic energy spectrum is discussed in the Appendix.

Figure 5 compares the compensated energy spectrum of compressible turbulence and incom-
pressible turbulence. To normalize the spectrum of compressible turbulence ε is used in Fig. 5(a),
while εs is used instead in Fig. 5(b). Here, the dissipation rate εs, Kolmogorov length ηs ≡
(ν3/εs)1/4, and energy spectrum Es(k) in compressible isothermal turbulence are calculated using
the solenoidal component of the velocity field. The compensated energy spectra in runs I1024-1 and
I2048-2 are slightly different in the high wave-number range kη ≈ 1 and the low wave-number range
(kη < 0.02). The disparity of the spectra in these wave-number ranges, as stated in Ref. [2], is prob-
ably caused by the wave-number truncation at high k and the difference of the energy-containing
eddies at the forcing scales. In contrast to the high and low wave-number ranges, the difference
between the spectra in the other range (0.02 < kη < 0.8 in this case) for the two incompressible runs
is very small. This result demonstrates that the spectrum of incompressible turbulence in the range
is insensitive to the difference between kmaxη ∼ 1 and kmaxη ∼ 2, which agrees with the previous
studies. Fig. 5 shows that the compensated spectrum of C2048-2 agrees well with those of I1024-1
and I2048-2 in the range (0.02 < kη < 0.8) when εs is used for the normalization instead of ε.
Figure 5(b) shows that the compensated spectra in runs C1024-1 and C1024-1-nonIT agree well with
each other in the range (0.02 < kη < 0.8). However, their agreement with C2048-2 (a compressible
run with kmaxη ∼ 2) in the range (0.02 < kη < 0.8) is not as good as in the case of incompressible
turbulence. In general, the values of εs in resolution level 1 are smaller than those in level 2 (see
Table II). Also, if the value of εs of C2048-2 is used, then the compensated energy spectrum of
C1024-1 almost overlaps that of C2048-2 plotted in Fig. 5(b). Therefore, it can be explained that
the difference in the spectra of C1024-1 and C2048-2 is mainly caused by the underestimation
of the value of εs in C1024-1. In summary, the compensated spectrum obtained from the DNS of
compressible isothermal turbulence with kmaxη � 2 agrees well with that obtained from the DNS of
incompressible turbulence when εs is used for the normalization instead of ε.

The Reynolds number dependence of the energy spectra obtained from compressible isothermal
turbulence and incompressible turbulence are shown in Fig. 6. The result shows that the height
of the energy spectrum at kη ≈ 0.13 decreases with Rλ. The Reynolds number dependence of the
spectral bump is also observed in the DNS results of incompressible turbulence [1,5]. According
to Ishihara et al. [2], the wave-number range of the energy spectrum can be categorized into range
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FIG. 6. Compensated energy spectra, ε−2/3
s k5/3Es(k), as a function of kηs in (a) log-log scale and (b) linear-

log scale. The arrows are directed toward increasing Rλ.

F (kη � 5 × 10−3), T (5 × 10−3 � kη � 2 × 10−2), and B (2 × 10−2 � kη). In Fig. 7(a), we show
the solenoidal energy spectra for compressible isothermal turbulence with Rλ = 520 and the energy
spectra for incompressible turbulence with Rλ = 446. It can be observed that the energy spectra
almost overlap within the B range. Furthermore, in the results of DNSs with Rλ ≈ 800 in Fig. 7(b),
we find that the solenoidal energy spectrum for compressible isothermal turbulence and the energy
spectrum for incompressible turbulence match even in the part of the T range. This result implies that
the multiscale property of the solenoidal component of the velocity field in compressible isothermal
turbulence agrees with that of the velocity field in incompressible turbulence. In incompressible
turbulence, it is confirmed that the energy spectrum in the F range is significantly flatter than that in
the T range [2]. Therefore, the F range is considered the candidate for the inertial subrange predicted
by Kolmogorov [56] and Obukhov [76]. To confirm the existence of the F range in compressible
turbulence, DNS of compressible turbulence with higher Rλ is required.

Figure 8 shows the compensated dilatational energy spectra obtained from the DNS series of
the compressible isothermal turbulence with different Reynolds numbers of Rλ = 183–840 at a
turbulent Mach number of Mt ≈ 0.3. We do not observe the scaling Ed (k) ∝ k−2 [i.e., k5/3Ed (k) ∝
k−1/3] as observed in a hybrid numerical simulation of compressible turbulence at Mt ≈ 0.73 and
Rλ ≈ 210 [12]. The highest Reynolds number possible for our compressible DNSs are significantly
higher than that in the numerical simulations by Ref. [12]. However, the turbulent Mach number

FIG. 7. Compensated energy spectra ε−2/3
s k5/3Es(k) for (a) C2048-2 and I2048-2 and (b) C4096-2 and

I4096-2. The gray lines in panels (a) and (b) show several snapshot data from (a) t/T = 0.5–1.0 and (b) t/T =
0.4–0.7, respectively. Here, T = L/u. Solid lines for C2048-2 in panel (a) and C4096-2 in panel (b) show the
average over several snapshots represented in gray lines in panels (a) and (b), respectively.
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FIG. 8. Dilatational components of the compensated kinetic energy spectra.

in Ref. [12] is much higher than ours. Therefore, it is plausible to consider that the k−2 scaling
of the compressive component of the kinetic energy spectrum in their simulation [12] comes from
the shocks observed at Mt ≈ 0.73 in Fig. 2(a) of Ref. [12]. We observed several jumps in density
fluctuations that correspond to the shocklets in the DNSs of compressible isothermal turbulence;
the result (figure omitted) is similar to Fig. 2(c) of Ref. [24]. A remarkable difference between the
shocklets and the shocks can be visually observed by comparing these two figures.

Donzis and Jagannathan [9] compared the normalized dilatational energy spectrum for different
Mach numbers Mt ≈ 0.1, 0.3, and 0.6 at the highest Rλ available for each case (i.e., 170, 430, and
170, respectively). See Fig. 10(b) in Ref. [9]. The figure shows that the value of each spectrum
strongly depends on the values of Mt . For example, the value of the normalized dilatational energy
spectrum in Fig. 8 is much higher than that of the case of Mt ≈ 0.3 in Fig. 10(b) in Ref. [9]. The
difference between our case and their case may come from the difference in the forcing scheme,
i.e., a pure solenoidal forcing is used in Ref. [9], while solenoidal and dilatational components are
forced in our cases.

C. PDFs of pressure and dilatation

Pressure fluctuations p′ in compressible turbulence can be decomposed into solenoidal ps and
dilatational pd pressures [23]. Here, the solenoidal component ps is obtained by solving the Poisson
equation

∇2 ps = 〈ρ〉∂us
i

∂x j

∂us
j

∂xi
, (19)

and the dilatational component pd is obtained by pd = p′ − ps. A DNS study by Sakurai et al.
[24] showed that the PDFs of p′ in compressible nonisothermal turbulence depend on parameters
such as Mt and δ, which characterize the compressible turbulence. It also shows that the PDFs of
ps in compressible turbulence are insensitive to such parameters and conform to the PDFs of p′
in incompressible turbulence. Figure 9 shows that the pressure PDFs in compressible isothermal
turbulence overlap relatively well, regardless of the Reynold number. The values of Mt and δ for
compressible isothermal turbulence in this study are almost the same (see Table I), so no remarkable
difference can be observed in the pressure PDFs. The PDFs of ps are negatively skewed in Fig. 9(b).
They are qualitatively consistent with the PDFs of pressure fluctuations in incompressible turbulence
[18–21]. The PDFs of p′ and pd are positively skewed in Figs. 9(a) and 9(c), respectively. All PDFs
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FIG. 9. PDFs of (a) pressure fluctuation p′, (b) solenoidal component ps, and (c) dilatational component
pd . The values are normalized using the rms value. The gray lines represent a Gaussian distribution.

are consistent with the results obtained in compressible nonisothermal turbulence with Mt ≈ 0.3
and εr ≈ 0.1 (δ ≈ 0.4) in Ref. [24]. This result indicates that the pressure field in the compressible
turbulence is dominated by the dilatational component regardless of isothermal or nonisothermal.
According to Ref. [10], the PDFs of pd are close to Gaussian for negative fluctuations. However,
the PDFs of pd in Fig. 9(c) show platykurtic (light-tailed) compared to a Gaussian distribution
for negative fluctuations. The difference in these results may be because of differences in forcing
schemes; that is, a stochastic solenoidal forcing is used in Ref. [10], whereas a deterministic forcing
in solenoidal and dilatational components is used in our study. The parameter study using the DNSs
of compressible nonisothermal turbulence at Mt = 0.1, 0.3 and εr = 0, 0.01, 0.1 [24] shows that
the higher the values of Mt and εr , the higher the values of skewness of the PDFs of pd , resulting in
the relatively lighter tail of the negative parts.

The PDFs of ps are compared in Fig. 10(a) to understand the difference between compress-
ible isothermal and incompressible turbulence. All results exhibit negatively skewed fluctuations,
indicating little differences in the solenoidal component of pressure fluctuations among different
turbulent conditions. However, a close inspection of the PDFs indicates that ps in compressible
isothermal turbulence may be less intermittent than ps in incompressible turbulence. In Fig. 10(b),
we compare the PDFs of enstrophy in compressible isothermal turbulence with those in incom-
pressible turbulence. Figure 10(b) shows that the tails are increasing functions of the Reynolds
number and that the PDFs tails for incompressible turbulence are slightly heavier than those in
compressible isothermal turbulence. The spikes of enstrophy are related to the significant negative
values in pressure fluctuation (e.g., see Ref. [22]). Therefore, the less intermittent fluctuation of ps

in compressible isothermal turbulence is consistent with the less intermittent enstrophy fluctuations
compared with incompressible turbulence.
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FIG. 10. (a) PDFs of solenoidal pressure fluctuations in compressible isothermal turbulence are compared
with those of pressure fluctuations in incompressible turbulence. (b) The same as panel (a) but for the PDFs of
enstrophy � = |ω|2/2. The gray line in panel (a) represents a Gaussian distribution.

Finally, velocity divergence θ is examined as a statistic that characterizes compressible turbu-
lence. In the present DNSs, all the compressible turbulent fields are obtained under almost the same
conditions, i.e., Mt ≈ 0.3 and δ ≈ 0.4. The PDFs of the normalized θ in Fig. 11(a) demonstrate that
the larger the value of Rλ, the stronger the intermittency of the distribution of θ in compressible
isothermal turbulence. The result is consistent with previous results of compressible nonisothermal
turbulence [10,24,77]. As demonstrated in previous studies [36,37], we explored the resolution-level
dependence of the intermittency in θ distribution and confirmed that the higher the resolution level,
the stronger the intermittency (figure omitted). In Fig. 11(b), we compare the PDFs of θ/θrms in
compressible isothermal turbulence with those in compressible nonisothermal turbulence using the
data at the same resolution level (at kmaxη ∼ 1.0). The result implies that the isothermal assumption
weakens the intermittency in velocity divergence in compressible turbulence. However, as revealed
in the spectral analysis in Fig. 3, this suggestion should be examined using the DNSs with higher
resolution levels (at kmaxη � 2.0).

D. Dilatational flow structures

We observed in Fig. 4(c) that the dilatational component of the energy spectrum in the DNS of
the highest resolution level of kmaxη = 8 exhibits a power law Ed (k) ∝ k−3 at a high k region. Wang

FIG. 11. (a) Reynolds number dependence of the PDFs of normalized velocity divergence in compressible
isothermal turbulence at a resolution level (kmaxη ∼ 2). (b) PDFs of normalized velocity divergence in com-
pressible isothermal turbulence at a resolution level (kmaxη ∼ 1) are compared with those obtained by the DNSs
of compressible nonisothermal turbulence [24].
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FIG. 12. Visualization of θ/θrms on a slice of the field for (a) C1024-2 and (b) C4096-8.

et al. [8,12] observed a k−2 scaling in the compressive component of the kinetic energy spectrum in
a hybrid numerical simulation of compressible turbulence at Mt = 0.62. They argued that the k−2

spectrum was given rise to as a consequence of the generation of large-scale shock waves. A k−3

scaling (steeper than the k−2 scaling) at a high k region can be explained by the existence of such a
velocity profile expressed locally as

u(x) ∝
{√|x/η| (x < 0),

−√
x/η (x � 0),

where u is the x component of the velocity. This velocity profile has an infinite derivative at x = 0
and the resulting energy spectrum exhibits the k−3 scaling that unboundedly spreads toward high
wave numbers. A velocity profile with a finite derivative at x = 0 can be obtained by smoothing.
Therefore, analogous (smoothed) local velocity profiles may explain the occurrence of large nega-
tive absolute values of θ , i.e., shocklets, and the approximate k−3 scaling observed in Fig. 4(c).

Figure 12 shows contour plots of θ/θrms obtained by C1024-2 and C4096-8. In both plots, we can
observe several thin shocklets (thin regions with large negative absolute values of θ/θrms). The two
plots are almost indistinguishable because the run parameters are the same except for the resolution

FIG. 13. Samples of the spatial variation of the values of θ/θrms in the direction approximately normal
to the shocklet around its large negative absolute values (40 and 80) in runs (a) C1024-2, (b) C2048-4, and
(c) C4096-8.
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FIG. 14. Samples of the shocklet structure with various amplitudes of θ/θrms in C4096-8.

level. However, a close inspection shows that shocklets observed in C4096-8 generally look thinner
than those observed in C1024-2. To understand the resolution dependence, we compare in Fig. 13
the spatial variation of θ/θrms near the relatively strong shocklets in runs C1024-2, C2048-4, and
C4096-8. Figure 13 demonstrates the following: (i) Oscillation of θ/θrms is observed on both sides of
its large negative absolute value (local minimum). (ii) Amplitude of the oscillation becomes larger
with the increase of the absolute value of the local minimum (from 40 to 80). (iii) The amplitude
of the oscillation becomes smaller with the increase of the resolution level. (iv) The thickness of
the shocklet (defined as the distance between the two local maxima nearest to the large negative
absolute value) becomes smaller with the increase of the resolution level.

As shown in Fig. 11(a), the spatial volume in which θ/θrms < −40 is already very small.
However, as suggested by the stretched exponential form of the negative side of the (θ/θrms)’s
PDF, much stronger shocklets (much smaller values of θ/θrms) are expected to exist in the whole
computational domain. A thorough survey of the fields revealed that the minimum values for runs
C1024-2, C2048-4, and C4096-8 are θ/θrms = −110,−252, and −405, respectively. This result
indicates that the higher the resolution level the larger the absolute value of the minimum of θ/θrms

in the compressible turbulent flow field (at Mt ≈ 0.3 and εr ≈ 0.1). Figure 14 illustrates that the
larger the absolute values of the local minima of θ/θrms in C4096-8 the larger the amplitude of
the oscillations. As we have already observed in Fig. 13, for a fixed value of the local minimum of
θ/θrms, the amplitude of the oscillations becomes smaller as the resolution level increases. Our result
indicates that high spatial resolution simulations can capture thin and relatively strong shocklets
which are not captured by low spatial resolution simulations. However, it is not known at present
whether the k−3 scaling unboundedly spreads toward high wave numbers as the resolution level
further increases. Also, it is not known how the oscillation accompanied by the minimum of θ/θrms

(the strongest shokelet) behaves as the resolution level further increases. To answer these questions,
we need further large-scale computations.

IV. CONCLUSION

A series of the DNSs (maximum number of grid points N3 = 40963) of compressible isothermal
turbulence with the Mach number Mt ≈ 0.3 and the ratio of dilatational to solenoidal rms velocities
δ ≈ 0.4 was conducted, and the Reynolds number (Rλ) and resolution (kmaxη) dependence of the
statistics of compressible turbulence in the ranges of Rλ = 183–853 and kmaxη = 1–8, respectively,
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was investigated. Furthermore, the statistics of compressible isothermal turbulence were compared
with those of incompressible turbulence and those of compressible nonisothermal turbulence. As
a general conclusion, it was shown that the statistics computed using the solenoidal component of
compressible turbulence agree well with those of incompressible turbulence.

As shown in Ref. [15], the classical incompressible scaling did not hold for the total energy dissi-
pation field in compressible turbulence. Our DNSs confirmed that, as in the case of incompressible
turbulence, the normalized solenoidal energy dissipation of compressible turbulence asymptotically
takes a finite nonzero value (≈0.4) at high Reynolds numbers, i.e., in a range of the solenoidal Taylor
Reynolds number Rs

λ = 168–761. However, the normalized dilatational energy dissipation values
do not approach zero, as opposed to that expected in Ref. [15]. Instead, the values asymptotically
approach a finite value at high Reynolds numbers (or may approach zero too slowly to observe in the
range of the Reynolds numbers up to Rd

λ = 453). Spectral analysis of the energy dissipation reveals
that the main contribution to solenoidal and dilatational energy dissipation for the case of Mt ≈ 0.3
comes from the wave-number range at kη ≈ 0.3. Furthermore, it was shown that the energy spectra
obtained from the DNSs with a resolution level higher than 2 are convergent for kη < 1 in the case
of Mt ≈ 0.3.

The energy spectra for the compressible isothermal turbulence at Mt ≈ 0.3 were found to expand
to a higher wave-number range with increasing the resolution levels of the DNS. The solenoidal
components of the energy spectra almost converge for kmaxη � 4. Conversely, the dilatational
components of the energy spectra at high wave numbers do not converge even for kmaxη > 4
and spread toward the high wave-number side suggesting a k−3 scaling. Note, however, that the
changes in the spectrum become relatively smaller as the resolution levels increase. These results
indicate that very high-resolution simulations are required to accurately resolve the behavior of the
dilatational component at small scales in compressible turbulence (at Mt ≈ 0.3).

As for the energy spectra of compressible isothermal turbulence for kη < 1, both the solenoidal
and dilatational components are not very sensitive to the resolution levels provided that kmaxη � 2.
We confirmed that the solenoidal component of the energy spectrum normalized using solenoidal
energy dissipation is consistent with the compensated energy spectrum of incompressible turbulence
in the bump (B) range and in the tilted (T) range. To observe the flat (F) range in the energy
spectrum of compressible turbulence, we need much larger-scale DNSs of compressible turbulence.
The dilatational component of the energy spectra exhibits neither the k−2 scaling nor the k−5/3

scaling in the inertial range. Comparison with the previous studies [9,12] shows that the amplitude
of the normalized dilatational component of energy spectra strongly depends on the turbulent Mach
number and the forcing scheme, as suggested by Refs. [14,24].

The properties of the pressure fluctuations in compressible isothermal turbulence are consistent
with the previous study based on the DNSs of compressible nonisothermal turbulence in Ref. [24].
The PDFs of the solenoidal component ps of pressure fluctuations are consistent with those of
incompressible turbulence. However, a precise comparison of the PDFs of ps and enstrophy in com-
pressible isothermal turbulence with those in incompressible turbulence shows that the solenoidal
pressure and enstrophy fluctuations in compressible isothermal turbulence are consistently less
intermittent than those in incompressible turbulence. Furthermore, we compared the PDFs of
the normalized velocity divergence θ/θrms in compressible isothermal turbulence with those in
compressible nonisothermal turbulence using the data at a similar resolution level (at kmaxη ∼ 1).
The result indicates that the isothermal assumption weakens the intermittency in velocity divergence
in compressible turbulence. However, we should check this result using the DNSs with higher
resolution levels at kmaxη � 2.
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TABLE III. Simulation parameters and turbulence characteristics.
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C1024-2-30 10243 1.93 0.5 30 304 0.33 0.30 0.096 8.96 3.96
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APPENDIX: EFFECT OF BULK VISCOSITY ON THE KINETIC ENERGY SPECTRUM

The kinetic energy spectra in compressible isothermal turbulence with no bulk viscosity were
investigated in the main text. The result showed that the dilatational component of the spectrum in
high wave-number regions depends on the resolution levels of the DNSs. In this Appendix, we study

FIG. 15. Effect of bulk viscosity on (a) compensated kinetic energy spectrum and its (b) solenoidal and
(c) dilatational components.
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the effect of bulk viscosity on the kinetic energy spectra. In the DNSs of compressible isothermal
turbulence with bulk viscosity, the viscous stress tensor is replaced by

τi j = μ

(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3
θδi j

)
+ μbθδi j, (A1)

where μb is the bulk viscosity [78,79]. Here, the ratio of the bulk viscosity μb to the shear viscosity
μ is set as μb/μ = 0, 1, 30. The values μb/μ = 0, 1, and 30 correspond to the cases of no bulk
viscosity, air, and H2, respectively [78]. The DNS parameters and turbulence characteristics are
summarized in Table III. The last number in run names in Table III represents the values of μb/μ.
The compressible dissipation per unit mass is defined as εd = ((4/3)μ〈θ2〉 + μb〈θ2〉)/〈ρ〉 [78].

Figure 15(a) shows that the compensated kinetic energy spectrum in the high wave-number range
depends on the value of bulk viscosity. The effect of bulk viscosity is more pronounced, especially in
the case of high spatial resolution. As observed in high spatial resolution results shown in Figs. 15(a)
and 15(c), the bulk viscosity suppresses the dilatational component of the energy spectrum at a high
k region and makes the scaling of the spectrum at the high k region steeper. However, it can be
observed from Fig. 15(b) that bulk viscosity does not affect the solenoidal component of the energy
spectrum. Thus, the suppression of the energy spectrum is solely because of the change of the
dilatational component affected by the bulk viscosity.
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