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The long-time solutions of the Galerkin-truncated three-dimensional, incompressible
Euler equation relax to an absolute equilibrium as a consequence of phase space and
kinetic-energy conservation in such a finite-dimensional system. These thermalized so-
lutions are characterized by a Gibbs distribution of the velocity field and kinetic-energy
equipartition among its (finite) Fourier modes. We now show, through detailed numer-
ical simulations, the early stage triggers for the inevitable thermalization in physical
space. Furthermore, some aspects of this process are shown to be reduced to an ef-
fective one-dimensional problem, making comparisons with the more studied Burgers
equation feasible. Finally, we discuss how our understanding of the mechanism of ther-
malization can be exploited to numerically obtain dissipative solutions of the Euler
equations and evidence for or against finite-time blowup in computer simulations.
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I. INTRODUCTION

Inviscid equations of hydrodynamics which are constrained to have a finite number of Fourier
modes leads to thermalized flows, which are distinctly different from our more accustomed viscous
fluids. This is because Liouville’s theorem ensures that the projection of the inviscid equations on
a finite set of Fourier modes leads to, at long times, an inevitable thermalized, absolute equilibrium
Gibbs state [1–4]. Consequently, this is accompanied by an equipartition of kinetic energy across
Fourier modes �k [5–7], quite unlike the celebrated Kolmogorov scaling ∼k−5/3 associated with
turbulence in three dimensions (3D) or the k−2 scaling of the entropy solution in the one-dimensional
(1D) Burgers problem [8]. Therefore, such thermalized fluids are amenable to well-established
theories of equilibrium statistical physics, whereas, being intrinsically chaotic. Recently, such
nonlinear Hamiltonian systems have been used to settle questions in many-body statistical physics
of ergodicity and mixing [9] as well as, admittedly in 1D, understanding vexing questions of
complex-time singularities [10].

From the more specific vantage point of turbulence and fluid dynamics, the relevance of such
systems is more subtle and less immediately obvious. This is particularly so for 3D turbulence where
several fundamental questions remain unanswered. Hence, in the absence of the many theoretical
tools available for studying the 1D Burgers equation [11], it is tempting to exploit the advantages
of a 3D Galerkin-truncated incompressible Euler equation to make sense of real turbulent flows. Of
course, superficially, such equilibrium solutions are in stark contrast to those obtained in (driven-
dissipative) turbulence or in numerical solutions of the viscous Navier-Stokes equation. And yet the
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truncated equation retains the same nonlinear triadic structure as the parent inviscid partial differ-
ential equations, or indeed, in three dimensions, the viscous Navier-Stokes equation, which models
turbulent flow. Thus, in many ways, the 3D Galerkin-truncated incompressible Euler equation is
a compelling link between ideas of statistical physics for a Hamiltonian system with conserved
dynamics [12,13] and those which describe the behavior of out-of-equilibrium driven-dissipative
viscous turbulent flows [14–16]. In the past couple of decades or so, since the work of L’vov
et al. [17] and, subsequently, Frisch et al. [18], the generalization of the idea of Galerkin truncation to
fine-tune triadic interactions has led to a narrowing of the gap between equilibrium statistical physics
and turbulence. This, in particular, has been used most importantly in deepening our understanding
of central questions in 3D turbulence such as intermittency [19–25] and the issue of bottlenecks in
the energy spectrum [26–28]. Most recently, the possibilities of small-scale thermalization in real
flows [29] have provided further impetus to studying the interplay of equilibrium statistical physics
and turbulence, often in dimensions that are not necessarily integer [30,31].

There is another important reason why the Galerkin-truncated equation merits attention. One
of the outstanding questions at the interface of physics and mathematics is the existence of weak
or dissipative solutions [32–34] and the possibility of a finite-time blowup for the 3D Euler
equation [35–37]. Although a review of this subject goes well beyond the scope of the present paper,
suffice to say that probing the blowup problem numerically is a monumental challenge [5,38–62].
Indeed, conjectures remain speculative at best despite well-formulated criteria [63–70], which, in
principle, should be easily detectable in well-resolved direct numerical simulations (DNSs) [71].
The obstacle to this, however, is that simulations are necessarily finite dimensional: The commonly
used spectral simulations [72,73] solve the Galerkin-truncated and not the infinite-dimensional
partial differential equations of inviscid flows. Hence, in finite times, which may well precede
the time of blowup (as is the case for the inviscid one-dimensional Burgers equation [74,75]), the
solutions thermalize (starting with the smallest scales), making methods for singularity detection,
such as the analyticity strip approach [76], arduous [60,77]. Hence, for finite resolutions, in the
absence of convergence of such truncated solutions (which thermalize) to the actual (weak) solutions
of the Euler equations themselves, conjectures on blowups from DNSs [63,65,70,78] will remain
unsettled until mechanisms to circumvent Gibbs states in mathematically self-consistent ways are
discovered. The discovery of such methods is, of course, contingent on knowing how truncated
equations thermalize in the first place. It is useful to recall that such methods have been discovered
for the more academic 1D Burgers problem [10,79–82] owing to our thorough understanding of
how the one-dimensional equation thermalizes.

Thus, the long-time chaotic Gibbs solutions [9] of the Galerkin-truncated Euler equations play
contrasting roles in studies of fundamental problems in turbulence. On the one hand, they allow us
to connect ideas from statistical physics to turbulence, and on the other, they remain a stumbling
block in numerical methods for studying questions of blowup and dissipative solutions. This makes
understanding how such 3D flows thermalize particularly essential. As a result, in recent years,
since the pioneering work of Cichowlas et al. [6], a reasonably complete picture of how energy
equipartition happens in Fourier space has emerged [6,7,83–86]. However, unlike the case of the
1D Burgers equation [74,75,79,87], not much is known of the origins of thermalization in physical
space for the 3D problem.

II. THERMALIZATION

With this in mind, we perform detailed DNSs of the unit density, three-dimensional, Galerkin-
truncated incompressible (∇ · u = 0) Euler equation,

∂u
∂t

= −PkG [u · ∇u + ∇p]. (1)

The low-pass Galerkin projector PkG sets to zero all modes of the velocity field with wave numbers
larger than the prescribed Galerkin-truncation wave-number kG, that is PkG u(x) = ∑

|k|�kG
eı̇k·xûk.
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FIG. 1. (a) Log-log plots of the kinetic-energy spectrum at different times from a DNS (N = 256) of the
Galerkin-truncated Euler equation with generic large-scale initial conditions. (b) Pseudocolor plots of the strain
field component Syz (N = 512) on the XY plane at time t = 1.8 where thermalization is triggered in the flow
(inset at an earlier time t = 1.2). Although oscillatory structures are conspicuous by their absence for the former
(inset), coherent streaks of oscillations with wavelengths λG are clearly visible for the latter. See Ref. [88] for
an animation of the evolution of Syz from a nonthermalized to a fully thermalized state.

Our DNSs use a pseudospectral method with a fourth-order Runge-Kutta scheme for time
integration on 2π periodic domains with N3 collocation points (N = 256 and 512) and truncation
wave-number kG = N/3. We have checked that our results and conclusions are consistent across
simulations and choice of collocation points. We choose initial conditions (also projected on the
compact Fourier domain), which has an energy spectrum of the form E (k) ∼ k2 exp(−k4/k4

I ) to
ensure that the initial energy is concentrated in the largest scales, that is, kI ∼ O(1). Galerkin-
truncation ensures that the kinetic energy and phase space remain conserved for all times, which,
coupled with the finite dimensionality imposed by the cutoff wave-number kG, eventually leads to
a thermalized fluid with kinetic energy equipartitioned across all Fourier modes.

Given the choice of initial conditions that confines kinetic energy at large scales, the excitement
of the largest wave numbers requires some time. In Fig. 1(a), we show the evolution of the
kinetic-energy spectrum E (k) ≡ 1

2

∑k+1/2
q=k−1/2 |û(q)|2, through representative log-log plots at various

instances of time. Similar evolutions of the spectrum have been reported in the first study of this
kind by Cichowlas et al. [6].

Although a long-time thermalized fluid, through Liouville’s theorem with Gibbs statistics [9] is
obvious, the transition from a smooth initial condition that behaves, such as a “viscous” fluid for
finite times to one that is thermalized and essentially devoid of structure is far from obvious. A clue
may be found in plots of the isosurfaces of the vorticity fields as they evolve in time. In Fig. 2(a), we
show a plot of the vorticity (ω = ∇ × u) isosurface for σ � |ω|2 − ‖ω‖2

2 � 2σ , where σ (t ) is the
standard deviation of the enstrophy field, at early times (t = 0.5) when the largest available wave
numbers are still not fully excited. When seen in the energy spectrum [Fig. 1(a)] at the same time,
there is no sign of thermalization. These enstrophy isosurfaces are smooth and indistinguishable—as
indeed the kinetic-energy spectrum at such times—from what one would expect from an extremely
high Reynolds number Navier-Stokes simulations with similar initial conditions and at similar
times. At slightly later times, (t � 0.85), however, isosurfaces show minute but detectable os-
cillatory structures [Fig. 2(b)] with wavelengths λG = 2π/kG, reminiscent of what is seen for
the corresponding problem in the one-dimensional Burgers equation [74,75,89]. We recall that a
similar phenomenon was seen recently in simulations of the 3D, Galerkin-truncated axisymmetric
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FIG. 2. Isosurfaces of the vorticity field from DNS (N = 256) for σ � |ω|2 − ‖ω‖2
2 � 2σ at (a) t = 0.5,

(b) t = 0.85, and (c) t = 2.5. See Ref. [90] for an animation of the evolution of these isosurfaces from a
nonthermalized to a fully thermalized state.

incompressible Euler equation [60]. These initially localized (in both physical and Fourier space)
oscillations rapidly spread through the domain, with increasing amplitudes, whereas, becoming non-
monochromatic. A snapshot of these fully thermalized states [Fig. 2(c)] looks noisy [82] and bears
no resemblance to the well-formed isosurfaces that characterize fully developed turbulence or indeed
solutions of the truncated equation before the onset of thermalization [Fig. 2(a)]. Consequently,
the energy spectrum at such times and beyond converges to an equipartition [6] with E (k) ∼ k2

[Fig. 1(a)]
Although the signatures of thermalization are fairly obvious in plots such as those shown in

Fig. 2, the incipient thermalized phase is best captured in visualizations of the velocity gradient.
In Fig. 1(b), we show two-dimensional (XY plane) cuts of the strain field (Si j ≡ 0.5(∂ jui + ∂iu j )
that, at times when the effects of truncation are felt, show clear, organized oscillatory structures
[panel (b)], which were absent at earlier times [inset in panel (a)]. We recall that in the 1D)
inviscid Galerkin-truncated Burgers problem, the oscillatory structures that trigger thermalization
are initially localized at point(s) comoving with the shock(s) through a resonance effect [74]. The
flow we study now is fundamentally different: it is three dimensional and incompressible. So how
does thermalization onsets [Figs. 2(b) and 1(b)] in the 3D Euler equations and is there an analog of
resonance points or do the oscillations appear out of the blue?

The answer to this is delicate, and Fig. 1(b) is suggestive. Starting from initial conditions (such as
the ones we have) that concentrate energy at large scales, the nonlinearity of the systems generates
smaller and smaller scales in time and generates structures ranging from vortex sheets to tubes.
As smaller and smaller scales get excited, many of these structures can sharpen (as thin sheets
or tubes) [52,55,91] with a characteristic length scale ∼kG

−1. Such sharp structures, analogous to
preshocks in the 1D Burgers equation, act as a source of truncation waves of wavelength λG—indeed
the Fourier transform of the projection operator has a wave with wave-number kG—which travel
along the directions in which such structures are compressed. The oscillations, of course, ensure
the conservation of total kinetic energy that is a constraint in this Galerkin-truncated system. In the
representative snapshot shown in Fig. 1(b), the oscillations of varying amplitudes appear not all
over but in specific regions of the flow with wave vectors that, for this realization of the flow, are
quite often, but not always, normal to the intense structures seen in the domain. Of course, whether
such oscillations amplify or rapidly diminish in space and time is determined by the nature of the
strain field locallyas we illustrate below. For oscillations that do survive, the nonlinearity allows
other modes to get rapidly excited and the nonlocality of the incompressible equation allows a rapid
spread of these complex oscillations across the whole domain. This eventually leads to a chaotic
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thermalized fluid bereft of structure and an equipartition of kinetic energy across Fourier modes as
illustrated in Fig. 2(c).

This phenomenological picture, though compelling, is difficult to prove in numerical simulations
with the generic initial conditions that we use: The complexity of the spatial structures generated
does not allow an easy way to test the different ingredients that go into the argument constructed
above. In order to substantiate our theory on the genesis of oscillations in the first place, we resort to
DNSs, which are controlled in a way to isolate the two different effects at play: The sharpening of
velocity gradients ∇u ∼ kG

−1 and the consequent onset of thermalization along specific directions
relative to such intense structures.

III. THE ONSET OF THERMALIZATION: WHAT MODEL FLOWS TELL US

Among the many candidate flows—such as isolated vortex tubes and sheets—we choose to work
with an initial condition consisting of two separated, opposite-signed vortex sheets (parallel to the
YZ plane), located symmetrically at x = x1 and x = −x1, in a periodic box [−π, π ]3. Furthermore,
these sheets have a localized perturbing flow at their centers to disturb the sheet from equilibrium.
Such a flow configuration is generated by the following initial condition: For 0 � x � π ,

ux = P⊥

[
u0kβ (x − x1) exp

(
−1

2
k2

β[(x − x1)2 + y2 + z2]

)]
(2a)

uy =
√

2 tanh[γ kG(x − x1)] (2b)

uz = P⊥

[
u0kβz exp

(
−1

2
k2

β[(x − x1)2 + y2 + z2]

)]
. (2c)

To ensure periodicity in uy (ux, uz are localized within k−1
β ) for −π � x � 0 the velocity field is

chosen with the symmetry,

ui(x, y, z) = ui(−x, y,−z). (3)

To ensure incompressibility, the projection operator P⊥[f] = [1 − (∇−2
⊥ )∇⊥(∇⊥ · f )] on the XZ

plane (∇⊥ = {∂x, 0, ∂z}), is applied to the x and z velocities. The disturbance (ux, uz) here is
localized at x1 = (x1, 0, 0) and −x1; consequently, the vortex sheet uy is stretched for the former
and compressed for the latter. The parameter γ controls the intensity of the vortex sheet and is
chosen to be 1/4 to suppress any inherent Gibbs oscillations that arise as γ → 1. The vortex sheet
locations are chosen with x1 = π/2. We fine-tuned the extent of localization of the perturbation
through k−1

β , which, for the results presented here, was set to kβ = 4. Finally, the flow amplitude
u0 = 5 sets the energy of the perturbation field (∼10−3 relative to that of the vortex sheet) as well
as the timescale. This perturbing flow field with the large-scale background flow (which creates the
sheet) suppressed (for clarity) is illustrated in Fig. 3(a) with the two-dimensional velocity vectors
shown as green arrows superposed on the pseudocolor plot of ωz.

By using Eqs. 2 [Fig. 3(a)] as the initial condition, we solve the Galerkin-truncated equation with
kG = N/3 (N = 256). Given the specific configuration that we chose, the center of the left sheet (at
−x1) is compressed, whereas, the right sheet (at x1) is stretched [Fig. 3(b)]: As the steepening
velocity gradient at −x1 becomes comparable to the inverse of the truncation wave number, we
expect it to trigger the truncation waves in the dynamics, and the stretching at x1 should produce no
such effect. Then, the question is: how and where do the truncation waves manifest themselves in
the flow?

In the analogous 1D Burgers problem, these truncation waves emerge from the region of the
preshock and are constrained to travel along the one-dimensional velocity field, and it is straight-
forward to identify the location of the oscillations [74]. But for the three-dimensional flows such as
ours, there are infinitely many possible directions along which these oscillations, which trigger
thermalization, might emerge. Indeed, if such directions are chosen randomly by the truncated
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FIG. 3. Pseudocolor plots of the two-dimensional XZ plane cuts of ωz for the model flow [Eq. (2)] at
(a) t = 0 and (c) t = 0.15 with their one-dimensional (along z = 0) cuts (shown as black curves) in panels
(b) and (e), respectively. Shown in green are the (a) instantaneous velocity vectors (ux, uz ), (b) instantaneous
velocity component ux , and (e) the velocity gradient ∂xux fields. Panel (d) shows the line plot of ωz at t = 0.15
when the perturbations are applied separately: Compression (red) at −x1 and stretching (blue) at x1. The initial
(t = 0) profiles [panels (a) and (b)] are devoid of the λG − wavelength oscillations, which become conspicuous
at later (t = 0.15) times as seen either (c) in the pseudocolor plots of the ωz field or (e) in its one-dimensional
cut. Naturally, these oscillations are seen just as well in (d) for the special case of compressional perturbation
applied only at −x1. (Clearly, the stretching perturbation independently does not yield any oscillations as
expected.). The absence of oscillations in panel (e) near x1 is subtle and discussed in the text. Reference [92]
has links to an animation of the evolution of this flow to show the onset of thermalization.

dynamics, then, the problem of thermalization and, crucially, finding ways to circumvent it becomes
exceptionally hard. Fortunately, as we show below, the solution to this is perhaps simpler: assuming
the evidence from such model flows holds for generic initial conditions, the essential features can
be mapped to an effective one-dimensional problem.

Given that these are three-dimensional flows, it is reasonable to conjecture that since the
oscillations source from these sharp structures, for short times, they must be constrained to be in the
same direction along which the structure is compressed. Thus, the problem of knowing where in the
flow the first signs of thermalization appear may well be reduced to an effective one-dimensional
problem along very specific flow lines that generate sharp structures. This conjecture is easy to
check for simpler flow geometries [such as the one in Fig. 3(a) and its one-dimensional cut along
z = 0 shown in panel (b)] where the argument leads to the inevitable conclusion that within a short
time, oscillations of ωz with wave number kG appear along the z = 0 line (compressional direction)
stemming only from the perturbation at −x1.

In Fig. 3(c), we show the solution at time t = 0.15. Clearly and consistent with our prediction ωz

is oscillatory with wavelength λG along the z = 0 direction. Furthermore, the perturbations at −x1

and x1 are applied independently, and the resulting line plots of ωz along z = 0 line are shown in
Fig. 3(d) to stress the necessity of a compressive eigendirection across the structure to give birth to
the truncation waves.

We now return to the solution of Fig. 3(c) where both perturbations exist. By taking a one-
dimensional cut along z = 0 in Fig. 3(c), we obtain ωz, and the velocity gradient Sxx = ∂xux, both of
which are shown in Fig. 3(e). A careful reading of this figure brings to light the basic mechanism of
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the onset of thermalization. The kG − wave-number oscillations, born from the compression at −x1

(because of the reasons mentioned above), persist along the z = 0 direction and are sustained away
from −x1 as long as the velocity gradient at those points is strictly non-negative. In the regions of the
flow where the gradient is negative, the oscillations are suppressed. This is illustrated, for example,
in Fig. 3(e) where there is a region between 0 and x1 with a negative gradient where the oscillations
are nearly absent, in contrast with what is seen in Fig. 3(d) for the compressional case since no such
negative gradients exist there. This is because the squeezing effect of the negative gradient causes
the wave numbers to go beyond the truncation number kG, resulting in their elimination through
the Galerkin projector. It is important to note here that in the immediate vicinity of the source
[near −x1 in Fig. 3(e)], the negative gradient—an integral part of the compressive structure itself—
cannot suppress the oscillations. As is the case for the shock in the 1D Burgers problem, the kG −
wave-number oscillations are born continuously at −x1 and are, thus, always present. It is worth
reminding, en passe , that the sharp structure at −x1 can also give rise to a Gibbs phenomenon—
namely, the effect of summing a finite Fourier series in a region of (quasi-) discontinuity—and,
hence, further oscillations. Lastly, even when the gradients become positive [in the narrow layer
around x1 in Fig. 3(e)], the relative suppression of oscillations is due to the negative gradient on
either side of this positive gradient layer, which eliminates oscillations coming from the source.

To summarize, Fig. 3 brings out the two key mechanisms responsible for the onset of thermal-
ization in the 3D Galerkin-truncated Euler equations. First, truncation waves emerge at sharply
localized structures that have, at least, one direction of compression, which squeezes them further.
These play the same role as shocks do in the 1D Burgers problem [74]. Second, these oscillations,
away from their place of birth, are sustained only when the flow gradient is non-negative. Crucially,
the lack of a resonance effect ensures that (a) the oscillations are never spatially localized—in
contrast to the 1D Burgers problem—at special points but proliferate everywhere, and (b) a relative
suppression of oscillations in a positive-gradient region that lies ensconced within a negative-
gradient insulating layer. A final, subtle point, also emerges from this figure. Although imposing a
negative strain along their wave vector suppresses their growth [because of the truncation constraint,
see Fig. 3(e)], the strain from the other eigendirections can affect them subdominantly. This can be
seen in the bulge in the wave packet between x = −x1 and x = 0 [Figs. 3(d) and 3(e)] caused by
squeezing action from the uz component.

In order to test the robustness of the claim and conclusions drawn above from Fig. 3, we rotate
the disturbance field in arbitrary directions to see if the early-stage oscillations in ωz pick out
these directions every time. We choose an instance where the disturbance field ux, uz are rotated by
θ = π/3 from the normal of the sheet on the XZ plane for the right half of the domain 0 � x � π

and symmetrically [following Eq. (3)] θ = π/6 for the left half of the domain −π � x � 0. For
this new configuration, the perturbations lead to a squeezing of the vortex sheet along the new
compressional directions, which now are at an angle of π/6 at −x1 and π/3 at x1 away from the
horizontal [indicated in Fig. 4(a) by blue and red dashed lines, respectively]. We clearly see in
Fig. 4(b), consistent with our predictions, that ωz is oscillatory in the two directions of compression
for the two sheets. Thus, truncation waves are born along the compressional eigendirections as con-
jectured before. Although the compressional eigenvalues at both sheets are the same in magnitude by
construction, evidently the amplitudes are different as seen clearly from their one-dimensional cuts
along the dashed lines shown in Figs. 4(d) and 4(e). The reason is simply that the one-dimensional
process sees a thicker (smoother) structure at x1 than at −x1, or in other words, the component of
compressive strain across the normal direction of the sheet differs between the two cases. Although
our effective one-dimensional simplified view of the thermalization onset is true only for arbitrarily
short times and from a single source to illustrate how multiple sources interact, we present the
solution at a somewhat late time (t = 0.25) in Fig. 4(c).

In the model flow discussed above, the parallel vortex sheets were subject to imposed per-
turbations. However, to make the system a bit more realistic, we now immerse the two parallel
vortex sheets in a background Taylor-Green’s velocity field [6], given by uTG

x = cos x sin y cos z,
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FIG. 4. Pseudocolor plots of two-dimensional XZ plane cuts of ωz for the rotated model flow at (a) t = 0
[superimposed with the velocity vectors (ux, uz )], (b) t = 0.12, and (c) t = 0.25. Along the compressional
directions [dashed red and blue lines in panels (a) and (b)], clear oscillations of ωz are seen at times t > 0. This
is shown in panel (b) as well as illustrated further by their one-dimensional cuts, shown in panels (d) and (e). In
panel (c), which is at at later time, the surfacing of multiple truncation wave sources and lead to a proliferated
spread of oscillations in the domain. See Ref. [93] for an animation of the evolution of this flow to show the
onset of thermalization.

uTG
y = − sin x cos y cos z and evolve this system in time by using the Galerkin-truncated Euler

equation. Thus, the initial condition [Fig. 5(a)] for a periodic domain of (x, y, z) ε[−2π, 2π ] ×
[−π, π ] × [−π, π ], is of the form

ux = εuTG
x , (4a)

uy = εuTG
y + AuSH

y , uSH
y = 1 + tanh[γ kG(sgn(x)x − x1)], x1 = π, (4b)

uz = 0, (4c)

and the parameters are chosen to be γ = 0.4, x1 = 3π/2. The ratio of energy between Taylor-
Green’s flow and vortex sheet is taken to be 0.1. With total energy set to unity, this fixes ε and A in
Eq. (4).

Unlike the imposed localized perturbations before (see Fig. 3) that compresses the sheet directly
in this case the evolution of a large-scale background Taylor-Green’s flow causes the sheets to bend
initially, leading to thinning and compression. This can be seen from the initial condition [Eq. (4)],
where Sxx = 0 along both sheets (x = ±x1) and for t � 0 the component ux starts to bend the sheet,
followed by the shear from the component uSH

y . Hence, this compression leads to the development
of sharper gradients and the eventual trigger of λG − wavelength oscillations in the vorticity field
ωz. In Fig. 5(b), we show a representative snapshot of the ωz field at t = 0.8 where the bent sheets
get compressed and stretched in different regions. These compressed regions become sources of
truncation waves and produce streaks of oscillations in the ωz field.

The use of the background Taylor-Green’s flow validates our earlier predictions and conclusions
in a more general flow configuration. Figure 5(c) shows the strain field Sxx at t = 0.8, and we
observe that there is a clear correlation between regions with Sxx � 0 (in blue) and regions with
oscillations of ωz [see Fig. 5(b)]. [A caveat: Although the oscillations in Fig. 5(b) seem to be not
oriented horizontally, our choice of the strain field Sxx for comparison is motivated by the fact that
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FIG. 5. Pseudocolor plots of the two-dimensional XY cut of ωz for a pair of vortex sheets advected by a
Taylor-Green’s flow [Eq. (4)] at (a) t = 0 [along with the velocity vectors (ux, uz )], (b) t = 0.8, and (d) t = 1.5.
show a proliferation of oscillations in time. Shown in panel (c) is the strain component Sxx (at t = 0.8). A
correlation can be seen between positive strain Sxx > 0 ( blue ) and the sustained oscillations in ωz by comparing
panels (b) and (c). The link in Ref. [94] shows the full evolution of this flow up to the onset of thermalization.

initially almost all of the oscillations were along the x axis. Furthermore, the fact that the strain and
vorticity fields are coupled through the evolution equations leads to faint oscillations in Sxx as well.)
Finally, as seen in Fig. 5(d), this correlation persists even for a later time (t = 1.5) when there is
further amplification of thermalization hot spots.

As a final example featuring a different geometrical vortical structure, we simulate a vortex
filament (Fig. 6) under the Galerkin-truncated Euler equation to illustrate the nature of the onset
of thermalization in a one-dimensional intense structure. The initial condition we chose to study
is a stationary vortex filament together with a locally radially compressing flow: in cylindrical
coordinates,

uθ (r) = γ kGr exp

(
−1

2
(γ kGr)2

)
, (5a)

ur (r, z, θ ) = −u0kβr

(
1

2
− 1

2
(kβz)2

)
exp

(
−k2

β

2
[r2 + z2]

)
cos2 θ, (5b)

uz(r, z, θ ) = u0kβz

(
1 − 1

2
(kβr)2

)
exp

(
−k2

β

2
[r2 + z2]

)
cos2 θ. (5c)

Once again, this cylindrical vortex (uθ ), whose thickness is determined by γ = 0.25, is immersed
in a large-scale background flow (ur, uz), that perturbs the filament within a range of k−1

β = π/4
and with an amplitude of u0 = 10. Note that the presence of cos2 θ in Eq. (5) induces a generic
three-dimensional perturbation in an otherwise axi-symmetric flow. Hence, the radial velocity ur

compresses the filament near z = 0, most along the θ = 0 direction (x axis), gradually losing
strength all the way to zero for θ = π/2 as depicted in Fig. 6(a). Not surprising, the evolution of
this initial condition [Eq. (5)] with the truncated Euler equations leads to oscillations that are radial
with the filament at its core [Fig. 6(c)]. The difference in the compressive eigenvalue along different
radial lines [shown by red, orange, and blue lines in Fig. 6(a)] reflects in the corresponding strength
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FIG. 6. Pseudocolor plots of ωz at t = 0 across (a) XY (b) XZ planes; the green arrows indicate the
velocity components ur and uz, respectively. Panel (c) shows ωz at a later time t = 0.12 with radially spreading
oscillations. In panel (d), the asymmetry in the strength of the oscillations at different angles is illustrated in
the line plots of ωz across θ = 0 (red), θ = π/6 (orange), and θ = π/2 (blue); these directions were already
indicated as dashed lines with the same color in panel (a). See Ref. [95] for an animation of the evolution of
this flow to show the onset of thermalization.

of oscillations seen in the line plot of the vorticity ωz along those lines in Fig. 6(d). Furthermore,
the oscillations are amplified for r � π/2 because of the support from the background flow.

IV. THE PHENOMENOLOGICAL PICTURE

In all the model flows studied above, consistent with our hypothesis, the intense structures
become a source of truncation waves and sustain oscillations along the compressional eigendirec-
tion. It is crucial that we emphasize two important points in our findings: (1) The compressional
eigendirection of the strain field near the extreme structures need not be perpendicular to the
structures themselves, but the strength of the oscillations appearing is proportional to the component
of compressive strain along the normal [depicted in Figs. 4(d) and 4(e)]. (2) The oscillations born
along the compressional eigendirection grow in amplitude when the strain along the direction is
positive. Thus, whereas, the fluid has to be compressive (locally) only near the structure, along that
compressive eigendirection, far from the structure, the positive strain is essential to support and sus-
tain the growth of the oscillations and, hence, eventual thermalization. Indeed, a negative strain here
would lead to the damping of oscillations and the suppression of the onset of thermalization. The
corresponding problem for the 1D Burgers equation is actually a special case of this phenomenon:
In one-dimensional space, the flow is compressional, and, hence, the oscillations, trivially seen in
the velocity profile, accumulate at resonance points, leading to (at early times) spatially localized
structures christened tygers [74].

Therefore, we have now demonstrated, through numerical experiments with such specialized
initial conditions, that the onset of thermalization in a generic three-dimensional truncated system
can be seen as a superposition of processes that are essentially one dimensional: At very short times,
monochromatic oscillations arise along the compressional directions associated with fluid structures
with critical velocity gradients in regions supported by fluid strain. Although this was implicit for
generic large-scale initial conditions, which are used to solve the Galerkin-truncated Euler equation,
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the use of such special flows is essential to making this phenomenon evident. In more generic flows,
such extreme velocity-gradient structures proliferate the flow and emerge at different times. Hence,
each of these structures can act as a sources of truncation waves. Although, as our extensive analysis
of model flows suggests, these are born individually from each source, before long they superpose,
amplify, generate other harmonics, and eventually lead to thermalization.

To summarize, the onset of thermalization requires the conspiracy of two key ingredients. First,
sufficiently sharp fluid structures that are compressed lead to truncation waves and, hence, oscilla-
tions of wavelength λG. This is perfectly analogous to the role shocks play in the well-understood
problem of the 1D Burgers equation [74,75]. Second, in the vicinity of these structures, the flow
must have a non-negative strain to sustain such oscillations. This is essential because a negative
strain would lead to squeezing and the generation of harmonics with wave numbers in excess of
kG: Such higher harmonics would get expunged because of the truncation constraint that allows
only modes with wave numbers �kG. Although there are essential points of similarity between the
analogous 1D Burgers problem, there are also crucial differences. Apart from the complexity of
this phenomenon in three dimensions relative to the 1D problem—and, hence, the need to resort
to model flows—what makes the present problem unique is the lack of resonance points where
oscillations can accumulate and grow.

V. SUPPRESSING THERMALIZATION: DISSIPATIVE SOLUTIONS

This observation of the precise mechanism at the heart of thermalization in 3D flows is partic-
ularly important to devise numerical strategies to arrest thermalization for the reasons discussed
before. Understanding how finite-dimensional equations of hydrodynamics thermalize is one aspect
of this paper—but perhaps the more important question relates to whether this understanding can
be exploited to devise more efficient algorithms for numerical constructions of dissipative solutions
of the Euler equations and indeed conjectures for finite-time blowup through methods, such as the
analyticity strip [60,76,77].

Operationally, this would involve suppressing the oscillations that trigger the flow to
thermalize—making analyticity strip approaches to singularity detection [77] impractical—and
ensuring conservation of energy and, thus, the lack of dissipative solutions. From our DNSs, it seems
that a useful starting point would be a suitable filtering of the velocity gradient field to remove the
oscillatory structures.

We suggest an algorithm to be applied to the vorticity field ω, that reconstructs a new vorticity
field ω∗ in a self-consistent way that preserves the small-scale intense structures whereas, discarding
the oscillations. We adapt the method developed by Hamlington et al. [96] to decompose the strain
field into local and nonlocal (background) contributions. This is trivially performed for the vorticity
field in Fourier space via

ω̂(NL)(k) = f (kR)ω̂(k), (6)

ω̂(L)(k) = ω̂(k) − ω̂(NL)(k), (7)

where the hat denotes the Fourier space (k = |k|), the subscripts L and NL stand for the local and
nonlocal contributions, respectively, and the filter,

f (kR) = 3[sin(kR) − kR cos(kR)]

(kR)3
(8)

is the Fourier transform of the three-dimensional complementary Heaviside function in spherical
coordinates. Such a filter, by definition, ensures that the function on which it acts—namely, the
vorticity field in this case—is smoothed by averaging out over a sphere of radius R = λG. Evidently,
the local contribution ωL alone contains all the oscillations, and, hence, the “reconstructed” field
ω∗ ≡ ωNL with ωL suppressed should be free of oscillations. Hence, such a dynamic filtering
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FIG. 7. (a) Pseudocolor plot of the two-dimensional XZ plane cut of the reconstructed vorticity field ω∗
z

for the model flow [Eq. (2)] at t = 0.15. A comparison with the corresponding figure [Fig. 3(c)] for the
truncated simulation shows a significant suppression of the oscillations. This is quantified in panel (c) through
one-dimensional cuts (along z = 0) of ωz [same as in Fig. 3(e)] and ω∗

z as a function of x. Panel (b) shows
ωz at t = 1.5 extracted from the Taylor-Green’s flow [Eq. (4)] along the XZ plane. This is contrasted with
panel (d) showing the reconstructed vorticity field ω∗

z from it, which retains the intense structures, whereas,
significantly suppressing the oscillations, which would lead to thermalized solutions.

technique, namely, solving the truncated 3D Euler by recovering ω∗ and using this field to evolve at
every time step, should yield a nonthermalizing, dissipative flow.

However, such an approach has the disadvantage, that along with the oscillations, the small-scale
intense vortical structures are lost as well. We, therefore, adapt this idea of decomposing the field in
a way that preserves the small-scale structures as far as possible and yet suppresses the oscillatory
triggers of thermalization. Thus, we propose a reconstructed field as

ω∗(x) = ω(NL)(x) + �2m(x)ω(L)(x), (9)

�2m(x) := erf

[
|ω|2m

‖ω‖2m
2m

]
, (10)

where the additional regularization parameter �2m allows us to capture the essential, intense local
vortical regions, whereas, still filtering out the oscillations in the flow. The L2m norm used in
the definition of �2m controls threshold level of that vortical regions we want to retain in the
reconstructed field.

Although this method needs to be refined and rigorously examined in future studies for generic
flow fields, we provide results from preliminary tests conducted on the model flow defined by
Eq. (2). In Fig. 7(a), we show the reconstructed vorticity field at t = 0.15 for m = 4, corresponding
to the plot shown in Fig. 3(c). Similarly, in Figs. 7(b) and 7(d), the vorticity field ωz (along the XZ
plane) from the solution to the Taylor-Green’s initial condition [Eq. (4)] and its repaired field ω∗

z are
shown.

A visual comparison of the two vorticity fields shows that our reconstruction strategy indeed
leads to a significant reduction in the oscillations, whereas, still preserving the intense structures,
namely, the vortical sheets in this case. This is quantified in Fig. 7(c) by comparing the z component
of the vorticity along the x axis (z = 0) in the middle of the domain for the truncated (ωz) and
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reconstructed fields (ω∗
z ). We clearly see that the oscillations responsible for thermalization, seen

in ωz, more or less vanish on reconstruction as seen in the plot. Furthermore, our use of the
regularization parameter �2m does fully preserve the intense structure in the form of vortex sheets
as seen by the near overlap of ωz and ω∗

z at −x1 and x1.
Although Fig. 7(c) seems to underline the success of this strategy—at least, for such a curated

flow—the illustrative flow field shown in panels (a) and (d) still retains some traces of the oscil-
lations. There are, at least, two reasons why this is so: (1) In our tests, we have not filtered and
reconstructed the field at every time step, but, only as a proof of principle now, used this as a static
filter and reconstruction at t = 0.15 [for panel (a)] and at t = 1.5 [for panel (d)]. A dynamic filter
as discussed above, is essential, and perhaps the frequency—the time intervals between successive
filtering—with which the filter should be applied needs further investigation. The latter may well
be a delicate point as shown in Ref. [81] for Fourier space purging in the 1D Burgers equation. (2)
Our preliminary explorations with different sharpnesses of the regularization parameter �2m show
that this, not surprisingly, is critically important for more effective suppression of thermalization hot
spots, especially in the vicinity of flow structures with intense gradients. This will become crucial
when such strategies are investigated systematically in a generic 3D flows.

Our preliminary results, albeit based on such a static filter for the model flow, show encouraging
signs that such approaches may well diminish the precursor to small-scale thermalization and allow
(a) dissipative solutions and (b) extending the analyticity strip method for singularity detection to
longer times than currently possible. This approach, thus, complements other ongoing efforts such
as that by Fehn et al. [97], who use a discontinuous Galerkin discretization to obtain dissipative
solutions from simulations of the finite-dimensional Euler equation.
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