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Turbulence modeling within the Reynolds-averaged Navier-Stokes (RANS) equations’
framework is essential in engineering due to its high efficiency. Field-inversion and
machine-learning (FIML) techniques have attempted to improve RANS turbulence mod-
els’ predictive capabilities for separated flows. However, FIML-generated models often
lack interpretability, limiting physical understanding and manual improvements based
on prior knowledge. Additionally, these models typically struggle with generalization in
flow fields distinct from the training set. This study addresses these issues by employing
symbolic regression (SR) to derive an analytical relationship between the correction factor
of the baseline turbulence model and local flow variables, enhancing the baseline model’s
ability to predict separated flow across diverse test cases. The shear-stress-transport (SST)
model undergoes field inversion on a curved backward-facing step case to obtain the
corrective factor field β, and SR is used to derive a symbolic map between local flow
features and β. The SR-derived analytical function is integrated into the original SST
model, resulting in the SST-SR model. The SST-SR model’s generalization capabilities are
demonstrated by its successful predictions of separated flow on various test cases, including
2D-bump cases with varying heights, periodic hill case where separation is dominated by
geometric features, and the three-dimensional Ahmed-body case. In these tests, the model
accurately predicts flow fields, showing its effectiveness in cases completely different
from the training set. The Ahmed-body case, in particular, highlights the model’s ability
to predict the three-dimensional massively separated flows. When applied to a turbulent
boundary layer with ReL = 1.0 × 107, the SST-SR model predicts wall-friction coefficient
and log layer comparably to the original SST model, maintaining the attached boundary-
layer prediction performance.
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I. INTRODUCTION

Accurate simulation of flow turbulence in computational fluid dynamics (CFD) plays a crucial
role in many engineering applications. In airfoil design, understanding turbulence helps engineers
minimize flow separation and reduce drag. In the field of automobile engineering, accurate tur-
bulence prediction aids in the development of streamlined body shapes, controlling the vortices
formed at the rear of the car. Direct numerical simulation (DNS), large-eddy simulation (LES),
and Reynolds-averaged Navier-Stokes equations (RANS) are typical ways to simulate the flow
turbulence. DNS and LES can give a high-fidelity prediction of complex turbulent flows, but the
computational cost is quite high. On the contrary, RANS simulation is fairly cheap and efficient,
making it preferable for engineering design applications where dozens of different configurations
should be evaluated by CFD in a limited amount of time.
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However, the RANS models frequently fail in complex turbulent flows, especially in the
prediction of flow separation. In periodic hills, widely used RANS models such as the shear-stress-
transport ST) model and Spalart-Allmaras model predict an erroneously delayed reattachment point
[1]. Similar problems can be seen in the curved backward-facing step (CBFS) [2], NASA hump [3],
and the iced airfoil [4]. In three-dimensional cases such as the Ahmed body, typical RANS models
also fail in predicting the complex three-dimensional vortices formed by separated flows in the wake
of a blunt body [5], which is of particular interest in automobile aerodynamics.

Efforts have been made to improve RANS models’ ability to predict separated flows, expanding
their applications in engineering design. Some researchers have derived correction terms for existing
turbulence models based on fundamental turbulence laws and astute physical insights. Rumsey, for
instance, argued that delayed reattachment of separated flow results from underpredicted turbulence
activity in the separated shear layer where nonequilibrium turbulence dominates [1]. By adding
an analytical correction factor to the destruction term in ω’s equation, Rumsey’s SST-sf (separated
flow) model achieved superior predictions in various 2D separated flows. Similarly, Li et al. [4,6,7]
derived a novel correction term for the k−v2 − ω turbulence model, based on Rumsey’s observation,
resulting in a model that accurately predicts separated flows on a wide range of iced airfoils
and wings. Although these models have clear physical meaning and broad application, deriving
correction terms solely from physical arguments can be challenging and heavily reliant on the
modeler’s experience, potentially introducing bias and hindering the discovery of new features that
could enhance model performance.

Data-driven approaches, including uncertainty quantification and machine learning, have re-
cently been applied to turbulence modeling. In uncertainty quantification, Xiao et al. [8,9] used the
ensemble Kalman filter to estimate k−ω model’s Reynolds stress error based on high-fidelity DNS
velocity data. Duraisamy et al. [10–13] employed an optimization-based field-inversion technique to
obtain the multiplicative discrepancy term β(x) in the transport equations’ destruction and produc-
tion terms. The optimized β(x) distribution minimizes errors between predicted quantities of interest
(QoI) and high-fidelity data-derived QoI. These methods allow efficient, formal error quantification
in existing models without heavy reliance on physical arguments or empirical observations, enabling
error correction proposals for improved performance. Machine learning is now commonly used to
map flow features to correction terms. Yan et al. [14,15] utilized artificial neural networks (ANN)
within the field-inversion and machine-learning (FIML) framework to map local flow features to
the multiplicative discrepancy term β(x). Yin et al. [16] proposed a novel set of input features for
ANN model to predict Reynolds stress, which achieved good results in periodic hills. Yin et al.
[17] also developed an innovative iterative data-driven turbulence modeling framework using the
random forest (RF) model. Additionally, probabilistic models like Gaussian process regression
(GPR) predict the multiplicative discrepancy term with uncertainty [18].

Although these models excel in test cases similar to their training set, they struggle with
generalization. For instance, field-inversion and machine-learning (FIML)-generated models often
exhibit unwanted behavior in entirely different test cases, as argued by Rumsey et al. [19], even
failing in predicting simple turbulent boundary-layer flows. Additionally, machine-learning models,
with their thousands of parameters, lack physical interpretability, resembling a black box to users.
This makes it difficult to incorporate physical a priori knowledge during training and impedes
post-training improvements based on physical insight. Furthermore, these models lack portability,
hindering their use in different solvers from where they were trained. Recognizing these limitations,
Spalart [20] called for a refined framework to develop more universal and portable RANS turbulence
models from data.

Recently, symbolic regression (SR), a classic machine-learning method, has been introduced to
physical applications, offering a distinct advantage over traditional turbulence modeling. Unlike
ANN, RF, and GPR models, SR distills a list of compact analytical expressions with varying
complexity between inputs and outputs from datasets, rather than relying on black-box models with
excessive parameters. Some SR frameworks [21–23] allow modelers to assign input features and
element functions, reflecting their physical understanding of output properties such as boundedness
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FIG. 1. Framework of field inversion and symbolic regression.

and monotonicity. Final expressions can be discovered using classic genetic algorithms or novel
deep-learning-based [24] frameworks.

Applying SR to turbulence modeling enables the generation of short symbolic expressions for
correction terms with different complexities. Strong inductive bias and a priori physical knowledge
can be injected through input features and element functions, potentially yielding expressions with
better generalization ability than black-box models like ANN. Compared to traditional turbulence
modeling, which relies on pure physical argument, SR leverages data-driven techniques to quantify
and source errors in existing models while still resulting in short correction-term expressions. SR
has been used for discovering algebraic Reynolds-stress models [25] and nonlinear eddy viscosity
relations in multiphase flows [26]. However, in these works, the SR-derived expressions have a
relatively simple polynomial form, and their potential generalizability remains underexplored.

In this study, we present a data-assisted turbulence modeling framework to generate an in-
terpretable and generalizable analytical correction term to enhance the baseline model’s ability
to predict turbulent separated flows. We call this framework FISR (field inversion and symbolic
regression). First, the field inversion is performed on a curved backward-facing step (CBFS) to
derive the multiplicative correction term β of the SST model. Then, SR is performed on the
CBFS dataset to generate an analytical expression of the correction term β. The expression is then
interpreted and partly modified based on our physical knowledge of non-equilibrium turbulence.
The expression β(w) is then integrated into the code of the SST model to get the SST-SR model.
The SST-SR model is then applied to test cases completely different from the training set (CBFS),
including 2D bumps with various heights, periodic hills, and 3D Ahmed body. The results show that
the SST-SR model outperforms the baseline SST model in all cases, indicating its generalizability.
The model also gives similar results as the baseline model for a simple turbulent boundary layer with
ReL = 1.0 × 107, showing that the correction term does not affect the baseline model’s performance
in simple flows.

II. FRAMEWORK OF FIELD INVERSION AND SYMBOLIC REGRESSION

In this study, field inversion is used to derive the β-field dataset and SR is used to generate the
expression of β with respect to flow features, as is shown in Fig. 1. The outline of the field inversion
and the symbolic regression techniques will be introduced in the following section.

A. Field inversion

The shear-stress-transport (SST) model [27] is widely used in industrial applications. It con-
tains one transport equation for turbulent kinetic energy (TKE) k and one for specific dissipation
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rate ω:

∂ (ρk)

∂t
+ ∂ (ρu jk)

∂x j
= P − β∗ρωk + ∂

∂x j

[
(μ + σkμt )

∂k

∂x j

]
∂ (ρω)

∂t
+ ∂ (ρu jω)

∂x j
= γ

νt
P − θρω2 + ∂

∂x j

[
(μ + σωμt )

∂ω

∂x j

]
+ 2(1 − F1)

ρσω2

ω

∂k

∂x j

∂ω

∂x j
. (1)

The production term P is defined as

P = min

(
τi j

∂ui

∂x j
, 10β∗ρkω

)
τi j = μt

(
2Si j − 2

3

∂uk

∂xk
δi j

)
− 2

3
ρkδi j

Si j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
(2)

Turbulent kinetic eddy viscosity can be computed from k and ω:
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Wall distance d at a point (x, y, z) is defined as the distance between the point and the nearest
wall. γ1, γ2, σk1 , σk2 , σω1 , σω2 , θ1, θ2, β∗, and a1 [27] are model constants. All the constants in
Eq. (1) should be blended by the function F1:

φ = F1φ1 + (1 − F1)φ2 (5)

The SST model is famous for its robustness and has been applied to a wide range of scenarios.
However, the model’s ability to predict separated flows is limited. Corrections have been made to
enhance the SST model’s prediction ability, such as the SST-sf model [1] (for separated flow) and
SST-RC-Hellsten [28] (for rotation and curvature effect). In these works, the correction term is
usually multiplied by the destruction term of the ω’s transport equation:

−θρω2 → − f (w)θρω2. (6)

f (w) is a correction factor and w represents some flow-field features such as strain rate, rotation
rate, and so on. Since our goal is also to improve the baseline SST model’s ability in predicting the
separated flow, following the strategy in Ref. [1], a spatially distributed multiplicative correction
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factor β(x) is added to the destruction term of ω’s transport equation:
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Then we can adjust β’s distribution to make the QoI (i.e., velocity) predicted by the SST model
match the high-fidelity data (i.e., experiment or DNS). In this study, the optimum β distribution is
obtained by solving the optimization problem below (in discrete form):

min
β

J = λobs

∑
i

(di − hi(β))2 + λprior

∑
j

(β j − 1)2. (8)

β j is the value of β on the jth grid cell in CFD computation, β is a vector whose jth element
is β j , di is the ith QoI from high-fidelity data, hi(β) is the ith QoI predicted by the SST model
with β distribution corresponding to β, and λobs, λprior are constants. The first term means that we
attempt to minimize the error between the predicted QoI and the high-fidelity data. The second
term means that we do not want β to diverge too far from its original value in the baseline model,
1. λobs ≈ [

∑
i (di − hi(1))2]

−1
so that the first term is approximately 1 when β j = 1, ∀ j. λprior

reflects the trade-off between minimizing the error of QoI and preserving the smoothness of the β

distribution. The larger λprior is, the smoother the β distribution is and the larger the QoI error is.
λprior is often set to a value around 1 × 10−6 ∼ 1 × 10−3.

In this paper, we use the gradient-based optimization program SNOPT [29] to solve the problem
defined by Eq. (8). The adjoint method, which is suitable for optimization problems involving partial
differential equations, is used to compute the gradient of the objective function [30]. Specifically,
the discrete adjoint method is used in this paper due to its flexibility [31]. The algorithm of the
discrete adjoint method is introduced in the following paragraph.

In CFD computations, the objective function J in Eq. (8) and the residual of the discretized gov-
erning equations R (note that R is a vector-valued function, and the dimension of it is approximately
mN , with m representing the number of governing equations and N standing for the total number
of grid cells) can be abstractly written as the functions of β and flow variable w (which is also a
vector):

J (w,β), R(w, β). (9)

But in fact, w is also a function of β defined by the implicit relation

R(w(β),β) = 0. (10)

Equation (10) simply states that for every β, the corresponding flow-field variable w is a
converged solution of the discretized governing equations R. Applying chain rules to Eq. (10),
we get

∂R
∂w

dw

dβ
+ ∂R

∂β
= 0. (11)

By multiplying the inverse of the square matrix ∂R/∂w (note that the dimension of R should be
equal to the dimension of w, otherwise the discrete governing equations cannot be solved), we can
arrive at the differential equation system satisfied by the function w(β):
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(
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∂w
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∂R
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(12)

So, the gradient of J can be expressed by using chain rules and Eq. (12):
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If we define the adjoint variable ψ as follows:(
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∂w

)T
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)T

, (14)

then Eq. (13) can be written as
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. (15)

The discrete adjoint method includes the following steps:
(1) After the CFD computation is converged [i.e., R(w(β),β) = 0 is satisfied], ( ∂R

∂w
)
T

and ( ∂J
∂w

)
T

are obtained by using automatic differentiation [32].
(2) The linear equation (14) is solved to acquire the adjoint variable ψ.
(3) The gradient of the objective function J is computed by using Eq. (15).
In this paper, the RANS solver and the discrete adjoint solver are developed based on the open-

source code DAFOAM [33–37]. It should be noted that the RANS solver of DAFOAM is nearly identical
to OPENFOAM [38], and OPENFOAM ’s SIMPLEFOAM solver is used in all the test cases of this paper.
The secondary development is quite convenient thanks to the easily extensible code structure of
DAFOAM and the flexibility of the autodifferentiation package CODIPACK [39].

B. Symbolic regression

Like the ANN, RF, and other widely used models, we need a dataset to train an SR model (an
analytical expression). The output label of the SR model is the deviation of the optimum correction
term found by field inversion from its prior value (βopt − 1). The input of the model, i.e., the local
physical features, should be calculated using the flow variables corresponding to βopt [w(βopt )].
The selection of the input features partly represents the modeler’s physical understanding of the
correction term βopt and may impact the performance of the trained model. In this paper, the
following six nondimensional features are chosen as input [1,4,40]:
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2
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|�| is the norm of rotation tensor:

|�| = √
�i j�i j, �i j = 1

2

(
∂ui

∂x j
− ∂u j

∂xi

)
, (18)

d is the distance to the nearest wall. P is the production term of the TKE. The definition can be
found in Eq. (2). ε in Eqs. (16) and (17) is defined as

ε = β∗ωk, β∗ = 0.09. (19)

The first three features in Eq. (16) are based on Pope’s tensor representation theory of Reynolds
stress. There are five independent tensor invariants for tensor Ŝ and �̂ for 3D flows; they are named
λi, i ∈ {1, 2, 3, 4, 5} by Pope:

λ1 = tr(Ŝ
2
), λ2 = tr(�̂2), λ3 = tr(Ŝ3), λ4 = tr(�̂2Ŝ), λ5 = tr(�̂2Ŝ

2
). (20)
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FIG. 2. Computational domain of CBFS case.

λ2 and λ4 are identically zero in 2D flows. x0 = λ1, x1 = λ2, and x2 = λ5 are the three nonzero
invariants among them in 2D flows. Similar features were used in Ref. [17] to construct a black-box
model for separated flows and achieved good results. The fourth feature is used to measure the
rotation of the fluid. The fifth feature was used by Ref. [4] to detect off-wall regions where the shear
(or the rotation) is quite strong. It was also used in Ref. [12] to construct the machine-learning model
to predict airfoil stall. The sixth feature reflects the nonequilibrium characteristic of turbulence,
which was used by Rumsey [1] and Li et al. [4]. All the features are chosen based on successful
black-box models, analytical corrections, and our experience.

In this paper, the open-source symbolic regression software PYSR [21–23] is used to discover
the analytical relationship between xi, i = 0, 1, · · · , 5, and β−1. PYSR allows the user to define
custom element functions that are used to build the final analytical expression. It also supports
adding various constraints to prevent unreasonable function nesting (i.e., exp[exp(x1)]). Element
functions that are usually encountered in traditional turbulence modeling are selected for SR.

In the training process, the sum of the squared error (SSE) is used to measure the accuracy of the
expression:

SSE =
∑

i

[(βi − 1) − yi,pred]2. (21)

The sum is taken over all training samples. yi,pred is the value predicted by the symbolic
expression. Note that we train the symbolic expression to fit the difference between β and 1.

PYSR allows the user to define the complexity of variables, constants, and operators. To make
the expression more interpretable, we avoid the expression from containing too many variables by
setting the complexity of the variable to 2 and setting the complexity of operators and constants to
1. PYSR then computes the complexity of every expression evaluated in the training process by

C(E ) = 2Nvar + Nconst + Nop. (22)

Nvar, Nop, and Nconst are, respectively, the number of variables, operators, and constants in the
expression, E represents the expression being evaluated, and C(E ) is the complexity of it. The
maximum allowable C(E ) is set to 16 and any expressions more complex than that will be discarded
during training.

PYSR uses the following loss function:

loss(E ) = SSE(E ) exp (frecency[C(E )]), (23)

to keep the expressions in the population having diverse complexities. f recency[C(E )] is the
number of expressions that have complexity identical to E generated in a given period divided by
a constant. PYSR keeps track of the best expression (elite) in every complexity level in the training
process and outputs all the elites when the training completes. The final choice is made by the
modeler by weighing the complexity, the loss, and the physical interpretability of the expressions.
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FIG. 3. Sample points used in field inversion.

III. FIELD INVERSION AND THE SR MODEL TRAINING ON THE CBFS CASE

In this section, we introduce field inversion for the multiplicative correction factor β and the
SR process. We discuss the physical meaning of the selected symbolic expression and make manual
revisions based on a priori physical knowledge. The revised expression is integrated into the original
SST model, forming the SST-SR model. When applied to the training set (CBFS), the SST-SR model
demonstrates superior results compared with the original SST model.

A. Field inversion on the CBFS case

The computational domain of the CBFS case is shown in Fig. 2. Fully developed boundary-layer
velocity profile is imposed at the inlet. The maximum velocity at the inlet is 1 m/s. The height
of the step is 1 m and the Reynolds number based on the height is approximately 13 700. For the
RANS simulation, 37 093 cells are used. The height of the first grid layer satisfies �y+ < 1. The
grid applied in this case is made available by Ref. [2]. Reference [2] used the SIMPLEFOAM RANS
solver, which was also used in this study, and demonstrated that the grid for the CBFS case here is
adequately grid-converged.

The LES simulation was carried out by Bentaleb et al. [41] and was made available by McConkey
et al. [2]. In this paper, these LES data are used as high-fidelity data to perform field inversion.
For the baseline SST model, the separation zone mainly lies in the blue-shaded area in Fig. 3. To
correct the predicted separation, 30 sample points are randomly placed in the blue-shaded region
and high-fidelity x-direction mean-velocity data are extracted from them. All the sample points are
at least 0.05 m away from the solid wall. The objective function for field inversion is

min
β

J = 2.0
∑

i

(ui − ui(β))2 + 1.0 × 10−4
∑

j

(β j − 1)2. (24)

The J value for the baseline SST model (β = 1) is 1.15. Note that we choose the velocity data as
the target QoI mainly because we assume the underestimated mixing of momentum in the separated
shear layer leads to the error of the baseline SST model, and the correction factor β is suitable
for quantifying this error based on the previous experience [1,4]. Figure 4 shows the convergence
history. The optimization converges after 55 iterations with a 90% decrease in the objective function.

Figure 5 shows that β is increased in the separated shear layer. This is consistent with Rumsey’s
observation that turbulence activity is often underpredicted in the shear layer by the RANS models

FIG. 4. Convergence history of field inversion on CBFS case.
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FIG. 5. Optimized β distribution.

[1,4]. The streamline plot in Fig. 6 shows graphically that field inversion has significantly suppressed
the separation zone. The reattachment point moves upstream by about 1.6 m. Figure 7 shows the
details of the velocity distribution in the recirculation area. Compared with the baseline result, the
velocity profile agrees very well with the LES data.

B. Symbolic regression using field-inversion data on the CBFS case

The data obtained by field inversion in the previous section are used to train the SR model. SR
does not require too much training data. To construct the training data, 1000 points are randomly
extracted near the separation zone and another 1000 points are selected from the mainstream, as
shown in Fig. 8. This downsampling strategy helps the SR model learn to distinguish where to
activate the correction term and where not to do it. Since the geometry and the separation structure
are simple in this case, this simple random-choosing strategy is applicable. For more complicated
geometry (i.e., 3D models and 3D separations), more elaborated training set construction and
undersampling technique such as the one used in Ref. [15] might be required.

The features used are listed in Eq. (16). Table I shows the element functions used. After 130
generations of evolution that take about 5 min using 10 processors of Intel Xeon Silver 4120R, 15
optimized symbolic expressions with different complexities are generated. All the expressions are
listed below in Table II.

For the expressions with complexity C(E ) � 15, nested tanh(·), power function, and too many
other constants emerge, hindering the interpretation of the expression. Furthermore, the decreasing
rate of the SSE as complexity grows drops substantially after C(E ) � 15 [from d[SSE(E )]

d[C(E )] ≈ 0.001

at C(E ) = 14 to d[SSE(E )]
d[C(E )] ≈ 0.0005 at C(E ) = 15). So, increasing complexity cannot decrease the

SSE sufficiently after C(E ) � 15. Therefore, we chose the expression with a complexity smaller
than 15 and a minimal SSE, i.e., the expression that had a complexity of 14. Figure 9 displays the β

profiles at various stations adjacent to the separated shear layer. Both the selected expression and the
most complex expression demonstrate improved fitting to field-inversion results downstream within
the separated shear layer and in the region above the separated shear, where β is approximately
equal to 1. However, the expressions with lower complexities overpredicted β above the separated
shear layer.

FIG. 6. Separation zone predicted by baseline SST model and field inversion.
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FIG. 7. Velocity profiles at different x standpoints in separation zone.

The chosen expression (complexity = 14) can be written as

βSR = χSR + 1 = 1 + tanh

(
λ2λ5

Re�

)(
P

ε
− 0.244

)
. (25)

Equation (25) can be interpreted as follows. We first analyze the physical characteristic of the
first parenthesis in Eq. (25). In two-dimensional incompressible flow, λ2 and λ5 can be written as

λ2 = tr(�̂2) = −|�̂|2, λ5 = tr(�̂2 · Ŝ
2
) = − 1

2 |�̂|2|Ŝ|2. (26)

Using the condition that �̂ is asymmetric, Ŝ is symmetric, and ∇ · u = 0, Eq. (26) can be proved.
In the viscous sublayer, applying boundary-layer theory and Eq. (17), we have

|�̂| = |Ŝ| = 1√
2

∣∣∣∣∂u

∂y

∣∣∣∣k

ε
. (27)

Consequently,

λ2λ5 = 1

16

∣∣∣∣∂u

∂y

∣∣∣∣6(k

ε

)6

. (28)

On the other hand, combining Eqs. (16)–(18), and (30), Re� can be expressed as follows in the
viscous sublayer:

Re� = |�|d2

ν
= 1√

2

∣∣∣∣∂u

∂y

∣∣∣∣ d2

ν
. (29)

FIG. 8. Trivial samples and nontrivial samples.
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TABLE I. Element function used in symbolic regression process, i, j ∈ {0, 1, 2, 3, 4, 5}.

Operator type Operators

Unary operators exp(xi ), tanh(xi ), 1
1+xi

, 1
xi

Binary operators xi + x j, xi − x j, xi ∗ x j,
xi
x j

, x
x j
i , min(xi, x j ), max(xi, x j )

Note that for binary operators, one of their inputs can also be a constant. Constraints are added to prevent
tanh(·) and exp(·) from nesting in function exp(·).

Using Eqs. (28) and (29), and inserting the definition of ε in Eq. (19), λ2λ5
Re�

can be expanded as

λ2λ5

Re�

∝ ν

d2ω6

∣∣∣∣∂u

∂y

∣∣∣∣5

. (30)

Furthermore, ω can be expressed as follows near the wall [42]:

ω = αν/d2, (31)

where α is a constant. Inserting (31) into (30), we have

λ2λ5

Re�

∝
∣∣∣∣∂u

∂y

∣∣∣∣5
ν

d2ω6
∝

(∣∣∣∣∂u

∂y

∣∣∣∣d2

ν

)5

. (32)

Equation (32) shows that λ2λ5/Re� tends to zero rapidly near the wall (as d tends to zero near
the wall), making χSR approach zero ∼ O(d10)) in the viscous sublayer.

In mainstream away from the boundary layer, we define:

Tt = k/ε. (33)

The physical meaning of Tt is the timescale of turbulence. If we assume the timescale of the
mean flow can be expressed as

1

|�| ,
1

|S| ≈ Tm, (34)

TABLE II. Expressions of different complexities generated by SR on CBFS case.

C(E ) SSE(E ) Equation

1 0.108 64 0.105 013
4 0.032 793 x2 ∗ −0.005 959 66
6 0.031 996 min(x2 ∗ −0.006 259 24, 2.641 318 6)
7 0.031 969 min(x2 ∗ −0.006 319 242, x5)
8 0.027 482 x2 ∗ (−0.005 123 291 6 − 1/x4)
9 0.027 481 x2 ∗ (−0.005 123 291 6 − tanh(1/x4))
10 0.025 439 min(1.559 334 8, (x1/x4)x2)
11 0.021 756 min((x1/x4) x2, x5)
12 0.019 893 tanh((x2x1)/x4)x5

13 0.018 482 tanh(tanh((x2x1)/x4))x5

14 0.017 053 tanh((x2x1)/x4)(x5−0.243 844 63)
15 0.016 371 (tanh(tanh( x1x2

x4
)) x5)1.277 043 2

17 0.015 853 (tanh(tanh( (4.976 726 − x2 )x3
x4

))x5)
1.357 363 2

19 0.015 689 (tanh(tanh( (5.226 354 – x2 )x3
x4

))x5)
1.357 363 2 − 0.019 771 826

20 0.015 293 (tanh(tanh( (4.976 726−x2 )min(x3, x0 )
x4

)) x5)
1.346 702 6
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FIG. 9. β profiles predicted (offline) by expressions with different complexities on multiple standpoints
along separated shear layer.

then λ2λ5 can be rewritten using Eqs. (17) and (26):

λ2λ5 ∼
(

Tt

Tm

)6

, (35)

and Re� can also be rewritten:

Re� = d2

Tmν
. (36)

Consequently, λ2λ5/Re� can be expressed as follows by combining Eqs. (35) and (36):

λ2λ5

Re�

≈
(

Tt

Tm

)5 Ttν

d2
. (37)

In typical CFD computations with k and ω given at the inlet, Tt remains constant in the mean
flow away from the wall. In the absence of strain, expansion, or compression in the mean flow,
Tm ≈ 1/|S| approaches infinity, and with large d , 1/d tends towards zero. Consequently, Eq. (28)
generally tends to zero in the mainstream where fluid deformation is weak (in the CBFS case, it
is about 1 × 10−3 in the mainstream). In separated shear layers, the strain is large, and Tm ≈ 1/|S|
is nearly comparable to Tt . Additionally, the shear layer is close to the wall, making 1/d2 large.
Therefore, λ2λ5/Re� is approximately O(1) in the separated shear layer (it is about 1 ∼ 10 in the
CBFS case). After applying the tanh(·) operator, it remains O(1) but does not exceed 1. These
arguments suggest that tanh( λ2λ5

Re�
) acts as an activation function, turning the correction term on in

regions with strong strain and not far from the wall, and off in the mainstream where no deformation
occurs.

We now examine the second parenthesis in Eq. (24). Given the first parenthesis acts as an activa-
tion function with values between 0 and 1, this term indicates that when tanh( λ2λ5

Re�
) is activated (∼1),

the correction term’s magnitude depends linearly on P/ε, representing turbulence nonequilibrium.
In separated shear layers, nonequilibrium turbulence prevails [1,4]. Larger P/ε results in a greater
β, causing stronger ω destruction and weaker k dissipation, thereby increasing turbulence activity
(higher k). This elevation in TKE leads to a rise in μT , enhancing momentum exchange between the
separated shear layer and the mainstream and promoting reattachment by increasing the momentum
of the shear layer. The physical process above is illustrated in Fig. 10.

As shown in Fig. 10, the correction term promotes turbulent activity in nonequilibrium turbu-
lence. Consequently, the correction term is physically consistent with Rumsey’s observation [1],
which states that the RANS models often underpredict the turbulence activity in nonequilibrium
turbulence (i.e., P

ε
> 1).
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FIG. 10. Physical mechanism of increasing reattachment ability of separated shear layer implied by
correction term.

The discussion above analyzed every term in Eq. (25) physically, demonstrating good inter-
pretability of the model (expression) generated by SR. However, the expression in Eq. (25) is not
perfect. The activation term tanh( λ2λ5

Re�
) is about 1 near the edge of the attached boundary layer,

which is not preferable. Furthermore, in the region of expansion or compression (such as the sudden
expansion after the backward-facing step), |S| �= 0, making tanh( λ2λ5

Re�
) ∼ O(1). To prevent these

wrongly activated correction, two other switches are added to the final expression:

βSR = χSRsλ5 sI + 1.0,

sλ5 = 1
2 tanh

[
Cλ5,1

(
λ5 − Cλ5,2

)] + 1
2 , sI = 1

2 tanh[CI,1(I − CI,2)] + 1
2 ,

I = k/|u|2,
Cλ5,1 = −5.0, Cλ5,2 = −27.0, CI,1 = 800, CI,2 = 0.007. (38)

An illustration of the function 1
2 tanh[C1(q − C2)] + 1

2 is shown in Fig. 11. The curve jumps
from 0 to 1 at q = C2, and C1 is proportional to the tangent at q = C2. The larger |C1| is, the more
abrupt the jump. Consequently, 1

2 tanh[C1(q − C2)] + 1
2 can be viewed as an activation function that

switches between 0 and 1 as q varies. By multiplying sλ5 to χSR, it means that the correction will
be activated only if |λ5| is larger than |C2|. It is based on our observation that |λ5| is significantly
higher in the separated shear layer than in the boundary layer. On the other hand, multiplying sI to
χSR can deactivate the correction term where the turbulence intensity (I) is smaller than CI,2. The

FIG. 11. Illustration of switch function sq.
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FIG. 12. Residual plots in converging history of SST model and SST-SR model.

physical meaning of sI is that χSR should not be turned on in the region where turbulence activity is
very weak (i.e., the expansion of mainstream). All the constants are calibrated on the CBFS case.

C. CFD-coupled prediction using the SST-SR model on the CBFS case

We integrate the modified SR expression, Eq. (38), into OPENFOAM by simply typing the
expression into the source code of the original SST model. We call this modified SST model the
SST-SR model. Then, the SIMPLEFOAM solver coupled with the SST-SR model is used to predict the
flow in the CBFS case. The convergence levels of the SST-SR model and the SST model are shown
in Fig. 12, which are approximately the same (the residual drops to 1 × 10−11 after 5000 iterations),
with the SST model converging faster. On the other hand, it takes the SST-SR model about 33%
more time to complete 5000 iterations compared with the SST model (24 cores of Intel Xeon 4210R
CPU are used). This is caused by extra gradient evaluation and tensor algebra calculation required
by the features used by the correction term βSR. Since we did not try to optimize the performance
of our code, the space for speedup still exists.

The contour of the predicted βSR is shown in Fig. 13(a). It is quite similar to the β field obtained
by field inversion, which is shown in Fig. 5. The predicted separation zone in Fig. 13(b) is nearly
identical to the results given by the field inversion in Fig. 6(b) and is substantially improved
compared with the results given by the original SST model. The difference between the reattachment
point predicted by SST-SR and field inversion is only 0.1 m. The velocity profile shown in Fig. 14
shows that the SST-SR model outperforms the SST model substantially, agreeing well with the LES
data.

The result above indicates that the modified SR expression gives satisfactory results when it
performs CFD-coupled prediction, even though the expression itself is rather simple.

IV. DISTINCT TEST CASES OF THE SST-SR MODEL

In this section, the SST-SR model is tested on various test cases completely different from the
training set. Strong generalizability of the SST-SR model is shown in these tests.

FIG. 13. Predicted βSR and flow separation by SST-SR model.
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FIG. 14. Comparing velocity profiles predicted by different methods with LES data.

A. Two-dimensional bump with various height

The SST-SR model is applied to two-dimensional parametric bumps with maximum heights of
42, 38, 31, and 26 mm [43]. The Reynolds number of these test cases ranges from 17 240 to 27 850.
Figure 15 illustrates the bump geometries. Several differences exist between this test case and the
training set (the CBFS case):

(1) The geometry differs significantly. In the CBFS case, the flow undergoes expansion due to
the step, while in the 2D-bump case, it experiences both expansion (deceleration) and compression
(acceleration).

(2) The separation-zone characteristics vary. The CBFS case exhibits a large separation covering
most of the step and extending downstream, while in the 2D-bump case, a low bump height results
in a small separation zone, with the flow essentially remaining attached to the wall.

(3) The flow variable numerical values are distinct. In the CBFS case, the maximum inlet
velocity and step height are both normalized to 1, whereas in the 2D-bump case, they are not
normalized, with Uin ≈ 18 m/s and h ∈ [26 mm, 42 mm]. As a result, the |S| in the CBFS case
around the separated shear layer is about 3 ∼ 6, whereas in the 2D-bump case, |S| is about 1000 in
the separated shear layer.

The mesh used is shown in Fig. 16. It contains 72 100 cells. The meshes for all bump cases
are taken from Ref. [2]. Reference [2] used the same RANS solver (SIMPLEFOAM) to study the
mesh convergence and found that the mesh applied for 2D-bump cases is grid converged. The inlet
velocity profile is specified based on the boundary-layer thickness in the LES computation [43].
The zero-gradient boundary condition is specified at the upper boundary and the right boundary.
The bottom boundary is treated as a solid wall. Field inversion is performed on all 2D-bump cases

FIG. 15. Two-dimensional parametric bumps with different maximum height.
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FIG. 16. Mesh of 2D bump case, h = 31 mm.

using the available LES data in Ref. [2]. For each case, 30 random sample points are chosen from
the recirculation zone as high-fidelity data. For field inversion, the prediction error for velocity
decreases by over 90%. The velocity field obtained by field inversion serves as a reference for
qualitatively evaluating the SST-SR model’s accuracy. Results for h = 42 mm and h = 31 mm are
discussed here, while computations for h = 38 mm and h = 26 mm are presented in the appendix
for clarity.

In the h = 42 − mm case, Fig. 17 demonstrates that the recirculation zones given by field
inversion and the SST-SR model both align with the LES data well, while the SST model incorrectly
predicts a delayed reattachment. With the reattachment point provided by LES at approximately
xreattach = 0.340 [43], the SST-SR model reduces the reattachment-point prediction error by 80.0%.
As depicted in Fig. 18, βSR increases to around 2 in the region above the separated zone, which
corresponds well with the observation of nonequilibrium turbulence prevailing over the shear layer
in Ref. [43]. Figure 19 presents the velocity profiles in the recirculation zone from different methods,
revealing that the SST-SR model significantly outperforms the SST model and more closely matches
the LES data. The TKE profile is shown in Fig. 20. The result given by the SST-SR model agrees
well with the LES data, while the SST model gives a peak TKE deviating from the LES data.

FIG. 17. Separation zone of h = 42 mm case given by different methods: (a) field inversion, (b) the SST-SR
model, (c) the LES data from Ref. [43], (d) the SST model.
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FIG. 18. βSR distribution in h = 42 − mm case predicted by SST-SR model.

FIG. 19. Velocity profile predicted by different methods, h = 42 mm.

FIG. 20. TKE profile predicted by SST and SST-SR model, h = 42 mm.
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FIG. 21. Separation zone of h = 31 mm case given by different methods: (a) field inversion, (b) the SST-SR
model, (c) the LES data from Ref. [43], (d) the SST model.

In the h = 31 mm case, the SST-SR model, similar to the h = 42-mm case, predicts a smaller
recirculation zone than the SST model, better aligning with the field-inversion results and the
LES data as shown in Fig. 21. Based on the LES results from [43] (xreattach = 0.303 m), the
reattachment-point error is reduced by 95%. Figure 22 reveals that the region with high βSR is over
the separated shear layer, mirroring the h = 42-mm case. The velocity profile in Fig. 23 showcases
the SST-SR model’s enhanced ability to predict the recirculation zone compared to the SST model.
Figure 24 also shows that the TKE profile predicted by the SST-SR model matches the LES data
better compared with the SST model.

In summary, the 2D-bump test case demonstrates that the SST-SR model can generalize to cases
with varying geometry, separation shape, Reynolds number, and numerical values.

B. Periodic hill

In this section, we evaluate our model on the periodic hill using available DNS data [44], with
the Reynolds number based on the hill’s height, ReH = 5600. In Ref. [44], a series of periodic hills
are defined with different geometric variables α. In this paper, the geometry that has a height of
Ly = 3.036 and a length of Lx = 3.828α + 5.142 = 8.228 is chosen, corresponding to the α = 0.8
case in [44]. The mesh (Fig. 25) consists of 14 751 cells, and cyclic boundary conditions are applied
on the left and right boundaries, while solid-wall conditions are enforced on the upper and lower
boundaries. We call this mesh the medium mesh. A coarser mesh consisting of approximately

FIG. 22. βSR distribution in h = 31 mm case predicted by SST-SR model.
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FIG. 23. Velocity profile predicted by different methods, h = 31 mm.

7000 cells and a finer mesh with about 25 000 cells are also made for grid convergence study.
The results of this section are mainly from the medium mesh, but we will show that enough grid
convergence is achieved by the medium mesh. Figure 26 reveals an increase in βSR (1.3 ∼ 2.0)
near the separated shear layer and at the windward side of the second crest due to strong curvature
effects. Figure 27 shows that the flow reattaches at x = 5.2 according to DNS data, while the SST
model predicts reattachment in the middle of the second hill. The SST-SR model suggests a slightly
delayed reattachment point at x = 6.2.

Figure 28 presents a scatter plot of all 14 571 data points extracted from cell centers, where the
x axis represents the mean ux from DNS data and the y axis represents the mean ux from various
RANS models. Greater model accuracy is indicated by data points clustering near the 45 ° line. The
SST-SR model demonstrates higher accuracy, with data points aligning more closely to the 45 ° line.
Its mean-squared error (MSE) for predicted mean velocity is only 34.6% of the SST model’s MSE.
Data points in the blue-shaded region represent overpredicted recirculation (true ux > 0, predicted
ux < 0). The SST-SR model exhibits fewer data points in this region, indicating a reduced false
recirculation zone. The velocity profiles given by the SST model and the SST-SR model on the
coarse mesh, medium mesh, and the fine mesh are shown in Fig. 29. Results given by different
mesh are very close, indicating a good grid convergence is achieved on the medium mesh. On the

FIG. 24. TKE profile predicted by SST and SST-SR model, h = 31 mm.
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FIG. 25. Computational mesh (medium) of periodic hill case.

other hand, the SST-SR model gives a more accurate prediction of velocity compared with the SST
model. Figure 30 shows the TKE profiles on the medium mesh; the SST-SR model also outperforms
the SST model in the accuracy of TKE.

C. Ahmed body (3D)

The SST-SR model is applied to the Ahmed body [45] to evaluate its ability to predict three-
dimensional complex separated flows. Often employed as a simplified car model, the Ahmed body
helps understand the flow field surrounding an automobile. Figure 31 presents the geometry of
the Ahmed body, with a Reynolds number based on body length (ReL) of 2.78 × 106 and a slant
angle (φ) of 25.0 °. The computational domain is depicted in Fig. 32, utilizing a half model with a
symmetry plane at y = 0. No-slip boundaries are established on z = 0 and the Ahmed body, while
far-field conditions are applied to all other boundaries. The mesh near the Ahmed body is shown in
Fig. 32, with approximately 3.6 × 106 hexahedral cells used.

The findings in [46,47] demonstrated that both the SST model and the detached eddy simulation
(DES) method predict an extensive separation zone originating from the slant’s beginning and a
broad wake defect. Our calculations using the SST model, as depicted in Fig. 33(a), also reveal
a complete flow separation on the slant, resulting in a massive recirculation zone nearly as high
as the Ahmed body. However, the experiment [45] indicated that the flow remains attached to the
slant in the symmetry plane, yielding a comparatively narrow wake defect. Figure 33(c) presents
the particle image velocimetry (PIV) results (near-wall data are unavailable). Note that Fig. 33(c)
is generated by Ref. [47] based on the data in Ref. [45]. Figure 33(b) displays the wake predicted
by the SST-SR model, which features a substantially reduced separation region compared to the
SST model, aligning better with experimental data. To study if the solution (with about 3.6 million
cells) is grid converged, we increase the number of cells to obtain a finer mesh (with about 6.3
million cells) and apply the SST-SR model to it. Figure 34 shows that the velocity profiles obtained
by the SST-SR model on the original mesh and the finer mesh are very close, demonstrating good
grid convergence of the solution on the original mesh. Figure 34 also shows that the SST-SR model
outperforms the SST model on both meshes, obtaining a smaller wake defect that matches better
with the experimental data.

FIG. 26. βSR distribution, medium mesh.
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FIG. 27. Separation zone predicted by different methods on the medium mesh: (a) the SST model, (b) the
SST-SR model, (c) DNS.

FIG. 28. Scattered plot of ux predicted by DNS and RANS models in every cell, medium mesh. Left: the
result of the SST model; right: the result of the SST-SR model.

FIG. 29. Velocity profiles at different standpoints in separation zone. Results on coarse mesh, medium
mesh, and fine mesh are compared.
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FIG. 30. TKE profiles on medium mesh given by SST-SR model and SST model.

Figure 35 visualizes the 3D structure of the flow field by displaying the vorticity magnitude |�|
on multiple slices in the wake (data have been mirrored against the symmetry plane). Two powerful
vortices, often referred to as C-pillar vortices in the automotive industry, are generated by the slant’s
edge. In the SST model’s results, the |�| contour expands along the y and z axes, signifying a wider
and taller separation zone. In contrast, the SST-SR model presents a more concentrated distribution
of |�|, indicative of a smaller recirculation in the wake.

The correction term βSR in the SST-SR model is primarily activated on the slant, where an
adverse pressure gradient dominates. Figure 36 depicts βSR distribution in multiple y = const planes
intersecting the slant. In this region, βSR increases to 2 ∼ 3, reducing turbulence dissipation and
promoting momentum mixing near the slant, allowing the flow to remain attached in most areas.

In summary, the SST-SR model surpasses the SST model in the Ahmed-body case, illustrating
its capability to predict complex 3D separation structures. This also highlights the generalization
power of the data-driven turbulence model provided by SR.

D. Turbulent boundary layer on a flat plate

The baseline SST model, already validated for benchmark flows like turbulent boundary layers,
should not be negatively impacted by our correction. However, as shown in Ref. [19], typical

FIG. 31. Geometry of Ahmed body.
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FIG. 32. Computational domain and mesh: (a) the computational domain, (b) the mesh near the body.

ANN correction models derived from standard FIML procedures to improve accuracy in separated
flows often underperform in simple attached flows such as zero-pressure-gradient (ZPG) turbulent
boundary layers. We assess the data-driven SST-SR model on a ZPG turbulent boundary layer over
a flat plate with ReL = 1.0 × 107, using a rectangular grid and a �y+ of 0.05 for the first grid
layer to accurately resolve the viscous sublayer. About 2 × 105 cells are used for the simulation.
Figure 37 illustrates the computational domain and the boundary condition. Figure 35 displays
the velocity profiles at Rex = 0.25 × 107 and Rex = 0.5 × 107, with the SST and SST-SR models
yielding nearly identical profiles and effectively resolving the viscous sublayer and log layer.

The Cf distribution plot in Figs. 38 and 39 reveals that the SST-SR model’s results align well with
experimental data [48]. To check if the grid used here is fine enough to achieve grid convergence, a
finer mesh with �y+ ≈ 0.025 is generated. The number of cells is approximately 4 × 105 (refined
in both directions compared with the baseline mesh). The result on the finer mesh is also plotted in
Fig. 39. It shows that the difference between the finer mesh’s result and the original result is very
small, demonstrating good grid convergence of the solution on the original mesh. The Cf given
by the SST-SR model is lightly larger than the SST model near the flat plate’s leading edge. This
is attributed to the increased βSR in a small region at the front of the plate (see Fig. 40), which
intensifies turbulence activity, as demonstrated in Fig. 41. The region with increased βSR extends
only to about Rex = 1 × 105 and βSR remains 1 elsewhere. The adverse pressure gradient depicted
in Fig. 42 near x = 0.01 m, caused by the leading edge, is a primary reason for the elevated βSR.
Figure 43 illustrates the physical mechanism that causes the adverse pressure gradient at leading
edge of the plate.

FIG. 33. Streamline plot near slant and wake, on symmetry plane, given by (a) the SST model, (b) the
SST-SR model, (c) PIV. PIV result in (c) is from Ref. [47]. Note that streamline plot made in Ref. [47] is based
on data in Ref. [45].
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FIG. 34. Velocity profiles on symmetry plane.

FIG. 35. Vorticity magnitude slices near the wake given by (a) the SST model and (b) the SST-SR model.

FIG. 36. βSR is increased to 2 ∼ 3 at beginning of slant.
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FIG. 37. Computational domain of ZPG flat plate.

FIG. 38. Velocity profile at Rex = 0.5 × 107.

FIG. 39. Cf distribution along flat plate.

FIG. 40. βSR distribution at frontmost part of flat plate.
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FIG. 41. TKE (k) distribution given by (a) the SST model and (b) the SST-SR model.

FIG. 42. Adverse pressure gradient near leading edge of flat plate.

FIG. 43. Physical mechanism that forms region with adverse pressure gradient.
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FIG. 44. Separation zone of h = 26 mm case given by different methods: (a) field inversion, (b) the SST-SR
model, (c) the LES data from Ref. [43], (d) the SST model.

FIG. 45. Velocity profiles in separation region, h = 26 mm.
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FIG. 46. TKE profiles near separated region, h = 26 mm.

FIG. 47. βSR contour, h = 26 mm, predicted by SST-SR model.

FIG. 48. Separation zone of h = 38 mm case given by different methods: (a) field inversion, (b) the SST-SR
model, (c) the LES data from Ref. [43], (d) the SST model.

084604-28



ENHANCING THE SHEAR-STRESS-TRANSPORT …

FIG. 49. Velocity profile in separation region, h = 38 mm.

V. CONCLUSIONS

In this study, we present a generalizable data-driven turbulence model developed through field
inversion and symbolic regression. Field inversion is performed on the CBFS case to obtain the
optimized β distribution. Using the optimized β and flow features w, we applied the symbolic
regression algorithm to derive a compact, interpretable (as demonstrated in Sec. II B) analytical
expression for β [βSR = βSR(w)]. This expression was integrated into OPENFOAM, resulting in the
SST-SR model. We then tested the SST-SR model on its training set (the CBFS case) and various
distinct cases. The following conclusions can be drawn from the results:

(1) The SST-SR model surpasses the SST model in both the 2D-bump case and the periodic
hill case, demonstrating its ability to generalize to 2D separated flows with characteristics entirely
different from the training set.

(2) In the 3D Ahmed-body case, the SST-SR model produces milder separation, more closely
aligning with the PIV data compared to the SST model. This highlights the SST-SR model’s
capability to predict 3D complex separated flow, which also greatly differs from its training set.

FIG. 50. TKE profiles near separated region, h = 38 mm.
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FIG. 51. βSR contour, h = 38 mm, predicted by SST-SR model.

(3) The SST-SR model’s predictions for friction coefficient and velocity profiles in the turbulent
boundary-layer case align well with experimental data and theory, showing no signs of weakening
the baseline model’s ability to predict ZPG attached flows.

In conclusion, the data-driven SST-SR model, generated using symbolic regression, demonstrates
a strong generalization ability. The results also reveal the potential of the FISR framework to dis-
cover physically interpretable models, suggesting an approach for data-driven turbulence modeling
that produces more physically based, generalizable, and portable models.
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APPENDIX: TWO-DIMENSIONAL BUMP RESULTS OF h = 26 mm AND h = 38 mm

Four 2D bump cases with different heights are calculated in this study. Two of them are discussed
in Sec. IV A and another two of them (h = 38 mm and h = 26 mm) are shown here. The separation
zone at h = 26 mm is shown in Fig. 44. The reference separation zone given by field inversion and
the LES data is very small, which is very similar to the result of the SST-SR model. However, the
SST model gives a significantly larger separation zone. The velocity profile in Fig. 45 also shows
that the SST-SR model’s prediction aligns with the LES data better than the SST model. The TKE
profiles given by the SST-SR model are also better, shown in Fig. 46. As shown in Fig. 47, βSR is
increased to about 2.5 over the separation region, and extends downstream. The result of h = 38 mm
illustrated in Fig. 48, Fig. 49, and Fig. 50 is quite similar, with the SST-SR model overperforming
the SST model, fitting better with the LES data. βSR is also increased over the separated layer as
plotted in Fig. 51, but the distribution is more concentrated.
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