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The coherent structures play a significantly important role in the spatial evolution of
turbulent wakes. The spatial distribution and the organization of the coherent structures
in a self-similar axisymmetric turbulent wake are numerically discussed by using the data
from the previous simulation [Zhou and Vassilicos, Related self-similar statistics of the
turbulent/non-turbulent interface and the turbulence dissipation, J. Fluid Mech. 821, 440
(2017).], in which it was found that the radial positions of the turbulent/nonturbulent
(T/NT) interface at different downstream locations exhibits a self-similar form normalized
by the wake width δ. The Liutex method is used to automatically identify the vortex core
center and compute the direction of the vortex axis. The probability density functions
(PDFs) of the radial distance of the vortex core center Rc at different streamwise locations
can be superimposed on the same curve, and the PDFs of Rc scale with δ. There is a
discernible preference for the vortex axis to be normal to the mean direction of the flow,
and the PDFs of the polar angle α at different downstream locations collapse onto a single
curve. The PDFs of the separation distance Rct between the T/NT interface and the nearest
vortex core center are also self-similar and scale with δ. The averaged radial distance Rct

is of the order of the Taylor microscale. The results reported in this work suggest that the
coherent structures are orderly distributed and also regularly organized in a self-similar
axisymmetric turbulent wake.

DOI: 10.1103/PhysRevFluids.8.084603

I. INTRODUCTION

According to Townsend’s hypothesis, all free-shear flows eventually will possess turbulence
statistics exhibiting a self-similar profile [1]. Self-similarity is an important concept for the in-
vestigation of turbulent shear flows. More specifically, self-similarity here refers to the fact that
for a free-shear flow, the statistical distributions of a one-point statistic at different downstream
locations can be superimposed on the same curve when normalized by the corresponding local
statistical parameters. Consider, for instance the case of an axisymmetric turbulent wake. The mean
streamwise velocity U (x, r) is a function of the streamwise distance x and the radial distance r.
The mean velocity can be expressed as U∞ − U (x, r) = u0(x) f (x, η), where U∞ is the free
stream velocity, u0 = U∞ − U (x, r = 0) is the mean velocity deficit along the centerline, and
η(x) = r/δ(x) is a nondimensional scale normalized by a characteristic wake width δ(x) with
δ2(x) = 1

u0

∫ ∞
0 (U∞ − U )r dr. If f (x, η) is independent of x and a function only of η, f (x, η)
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could be simplified to f (η), then the mean streamwise velocity is self-similar. A more detailed
definition of the self-similarity behavior of a quantity can be found in the textbook by Pope [2]. It is
well-known that it can be faster for a low-order variable (e.g., mean velocity) to become self-similar
when compared with high-order/complex variables (e.g., Reynolds shear stress, dissipation rate,
and kinetic energy) [1].

Parallel to the statistical theory of free shear flows, another line of enquiry, concerns the so-called
coherent/vortex structures in the instantaneous turbulent flow field. The study on coherent structures
goes back to Helmholtz [3], who proposed the concept of vortex tube/filament. Küchemann [4]
described the vortex motions as “the sinews and muscles of fluid motions”. She et al. [5] presented
the early numerical evidence for the existence of the long-lived tubelike structures, which is closely
related to the spatial intermittecy, by means of direct numerical simulation (DNS). Hussain [6]
viewed the coherent structures as a connected, large-scale turbulent fluid mass with phase-correlated
vorticity over its spatial extent. We now know that there are multiscale vortex structures in various
kinds of turbulence (i.e., the small-scale streamwise vortex structures and the very large–scale vortex
structures), which are more formally called coherent structures [7].

Over the past three decades, various vortex identification criteria [8] have been proposed, includ-
ing Q (i.e., the second invariant of velocity gradient tensor) [9], λ2 (i.e., a pressure Hessian criterion)
[10], and λci (i.e., the imaginary part of complex conjugate eigenvalue) criterion [11]. These
methods (e.g., Q, λ2, λci) are generally based on Cauchy-Stokes decomposition and the velocity
gradient tensor eigenvalue, and can be used for some qualitative understanding of turbulence. The
coherent structures can be visualized by the isosurface of vorticity or other methods, but all these
methods mentioned rely on a subjective selection of the identification threshold [8].

Based on the research of Li et al. [12], Liu et al. [13], and Wang et al. [14] recently proposed the
so-called Liutex method, which provides strict mathematical definitions of the local rigid rotation
of a fluid point (e.g., rotational vector, the local rotation axis, and also rotation strength). Gao et al.
[15] further used the Liutex method and the intersection point of Liutex magnitude gradient line to
identify the vortex core center and the vortex axis. The Liutex method allows us to quantitatively
study the spatial distribution and also the organization of the coherent structures.

Quite recently, axisymmetric turbulent wake behind a bluff plate with irregular/fractal edges
has been studied numerically [16–18] and experimentally [16–19]. Nedić et al. [19] reported a
nonequilibrium similarity scaling law concerning energy dissipation in an axisymmetric turbulent
wake. Employing an assumption of constant anisotropy and the nonequilibrium energy dissipation
law, Dairay et al. [16] derived a universal scaling of the wake-width and the velocity deficit. Zhou
and Vassilicos [17] have proved that in an axisymmetric turbulent wake the probability density
function (PDF) of the radial positions of the turbulent/nonturbulent (T/NT) interface at different
downstream locations is self-similar and further investigated the energy transfer near the T/NT
interface [18]. They found that the interscale energy transfer near the T/NT interface is mainly
from small scale to large scale in the direction near the tangent plane of the interface, suggesting
that fluid motions are mostly stretching.

As a continuation of the previous studies [17,18], the main purpose of this paper is to study the
spatial distribution of coherent structures in a self-similar axisymmetric turbulent wake by resorting
to the vortex identification method proposed by Liu et al. [13]. The coherent structures provide a
possible means to connect between scales in multiscale physical processes (see for instance, Motoori
and Goto [20]), and the spatial distribution of the vortex core center and the origination of vortex axis
are important physical features of the coherent structures. It is worth mentioning that the turbulence
statistics in the axisymmetric wake acquire the self-similar behavior within a limited downstream
range [16], which enables us to numerically explore the characteristics of coherent structures in
the self-similar region of a spatially developing wake. The organization of this paper is as follows.
In Sec. II, we briefly introduce the simulation conditions and numerical methods. In Sec. III, the
T/NT interface and the vorticity field are visualized. The coherent structures are visualized by the
Omega method [21] and the vortex core center and vortex axis are identified by the Liutex method
[22]. The statistics of the positions of the vortex core center, the direction of the vortex axis, and
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TABLE I. Geometry details and numerical parameters.

Rein Xp/Lb Lx/Lb Ly/Lb Lz/Lb Nx Ny Nz

5000 10 120 15 15 3841 480 480

the radial distance between the interface and the nearest vortex core center are calculated and the
corresponding scaling laws are obtained. Finally, the main conclusions are given in Sec. IV.

II. NUMERICAL DETAILS

In this work, DNS is performed to investigate the spatial distribution of coherent structures
in a spatially developing axisymmetric turbulent wake. Table I shows the geometric details and
numerical parameters. The geometry details of the mimicked bluff fractal plate (e.g., the fractal
dimension D f = 1.5 and the surface area A) and numerical parameters are exactly the same as
those developed by Dairay et al. [16] and Zhou and Vassilicos [17]. The inlet Reynolds number
determined by the inlet mean velocity U∞ is Rein = U∞Lb/ν = 5000, where ν is the (constant)
kinematic viscosity and the reference length Lb is defined as Lb = √

A. The Cartesian coordinate
system (O; x, y, z) is adopted for the numerical simulation. The coordinates x, y, and z represent
the streamwise, vertical, and spanwise directions, respectively. The Xp is the streamwise distance
from the inlet to the bluff plate, which is placed normal to the incoming laminar free stream, and
the origin of the coordinate system O is placed at the center point of the bluff plate. The lengths
Lx, Ly, and Lz represent the dimensions of the computational domain in the x, y, and z directions,
respectively. The size of the computational domain is Lx × Ly × Lz = 120Lb × 15Lb × 15Lb with
the corresponding mesh grids of Nx × Ny × Nz = 3841 × 480 × 480.

The incompressible Navier-Stokes equations are solved using the high-fidelity massive-parallel
code Incompact3d [23,24], which is based on the sixth-order compact schemes for spatial dis-
cretization on a Cartesian mesh and a third-order Adams-Bashforth scheme for time advancement.
The collection of turbulent statistics is obtained over a time of T = 4000Lb/U∞ corresponding to
approximately 436 vortex shedding periods. One can find further descriptions and the validation of
the DNS of the axisymmetric turbulent wake in Dairay et al. [16] and Zhou and Vassilicos [17].

III. RESULTS AND DISCUSSION

A. Flow Visualization

Before delving into the spatial distribution of coherent structures in the self-similar axisymmetric
turbulent wake, the visualization of the coherent structures and the method used to identify the
vortex core center and the vortex axis are given.

In previous studies [25–27], the magnitude of vorticity |ω| (i.e., ω represents the vorticity vector)
is used to detect the T/NT interface. It should also be mentioned that throughout this paper, the bold
letters represent vectors and the operator “| |” represents the magnitude of a vector. The magnitude
of vorticity |ω| is defined as |ω| = (ωiωi )1/2 with ωi = εi jk∂uk/∂x j [28]. For the instantaneous
velocity components ui, the indices i = 1, 2, and 3 denote the instantaneous velocity components in
the x, y, and z directions, respectively. Similarly, the notations x1, x2, and x3 represent the x, y, and
z directions, respectively.

Following Zhou and Vassilicos [17], we also use the vorticity threshold |ω|th/|ω|max = 4 × 10−4

to identify the outer edge of the T/NT interface with |ω|max being the instantaneous maximum
magnitude of vorticity on a streamwise cross section. Figures 1(a) and 1(b) show randomly selected
snapshots of the vorticity field and the outer edge of the T/NT interface at x/Lb = 50 and 80 at
the same time, respectively. The outer edge of the T/NT interface is represented by the white solid
line, which separates the turbulent region and the non-turbulent region. At both locations, the outer
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FIG. 1. Visualization of the vorticity field and the T/NT interface in the y-z plane at (a) x/Lb = 50 and
(b) x/Lb = 80 at a same time, i.e., T = 1000U∞/Lb.

edge of the T/NT interface has a convoluted shape. It can been seen that in the turbulent region
starting from the outer edge of the interface the magnitude of vorticity |ω| increases rapidly as
that has already been extensively reported in previous studies [25–27]. Owing to the existence of
intermittent structures, even in the deep turbulent region far away from the interface the magnitude
of vorticity |ω| is not uniformly distributed.

To identify the coherent structures, throughout this paper, the isosurface of a scalar variable

 proposed by Liu et al. [22] is visualized. Note that the scalar variable 
 is not a part of the
Liutex method. The variable 
 can be expressed as 
 = ( 1

2ωiωi )/( 1
2ωiωi + si jsi j + m), where

si j = 1
2 (∂ui/∂x j + ∂u j/∂xi ) denotes the symmetric part of the velocity gradient tensor. This scalar

variable reflects the ratio of the square of the vorticity to the sum of the squares of the vorticity
and the deformation. The correction parameter m = 0.001 × ( 1

2ωiωi − si jsi j )max is used to avoid
the influence of nonphysical noise on the identification of the vortex structure [29]. Following
previous studies [21,22,29], the threshold 
 = 0.52 is adopted for the identification of the coherent
structures. The reason for using the threshold 
 = 0.52 is that it has been argued to be rather robust
and applicable to a variety of turbulent flows [21,22,29].

Figures 2(a) and 2(b) show the coherent structures visualized by the isosurface of 
 = 0.52
and by the threshold with |ω| = 0.4U∞/Lb in the streamwise range 50 � x/Lb � 100 at the same
time as Fig. 1, respectively. In Figs. 2(a) and 2(b), we observe remarkably similar contours of the
three-dimensional coherent structures. The spatial distribution of coherent structures are periodical.
Obviously, the periodical pattern is caused by the large-scale vortex shedding behavior. The spiral
tubelike structures shown in Fig. 2 are highly intermittent and not uniformly distributed. It can be
also seen that the coherent structures swirl around the centerline with downstream distance.

The spatial distribution of the vortex core center and the organization of the vortex axes are im-
portant physical characteristics of the coherent structures. We adopt to the Liutex method mentioned
in the introduction section to quantitatively study the spatial distribution of the coherent structures.
The Liutex method is based on the idea that albeit the vorticity is always related to the fluid rotation,
it cannot correctly (or accurately) describe the local fluid rotation at a given spatial point. Liu et al.
[22] further argued that the vorticity vector ω can be decomposed into two parts: the rotational
vector (also known as Liutex vector) R and the nonrotational vector S (shear and/or deformation of

a fluid element). The rotational vector R = |R|r = {〈ω, r〉 −
√

〈ω, r〉2 − 4λ2
ci}r, where 〈ω, r〉 is the

magnitude of vorticity in the direction of r with r = [r1, r2, r3]T being a unit vector parallel to the
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FIG. 2. Instantaneous visualization of the coherent structures in the range of 50 � x/Lb � 100. Isosurfaces
with (a) 
 = 0.52 and (b) |ω| = 0.4U∞/Lb.

rotational vector R and λci being the imaginary part of complex conjugate eigenvalue of the velocity
gradient tensor [21]. The detailed formula of computing r can be found in the Appendix and also
Liu et al. [13] [see Eq. (29) therein]. The nonrotational vector S is as follows:

S = ω − R. (1)

The correlation between the vorticity vector ω, the rotational vector R, and the non-rotational vector
S can be expressed as follows:

|ω|2 = |R|2 + |S|2 + 2|R||S| cos θ, (2)

where θ is the angle between R and S. Note that the magnitudes of R and S (i.e., |R| and |S|)
represent the local rotational strength and nonrotational strength of fluid motions, respectively.

The vortex core center is mathematically defined as a fluid point where the cross product of ∇|R|
and R equals zero, that is, ∇|R| × r = 0 [15]. The vortex axis is a line that aligns the Liutex magni-
tude gradient vector ∇|R| and the rotational vector R, where ∇|R| = (∂|R|/∂x, ∂|R|/∂y, ∂|R|/∂z)
[15]. The vortex axis can be computed by integrating R passing through the vortex core center. For
further information concerning the identification of the vortex core center and vortex axis, one could
refer to previous relevant studies (see, for example, Liu et al. [22], Dong et al. [29], and Wang et al.
[30]).

Figures 3(a) and 3(b) show the snapshots of the magnitude of Liutex field |R|, the outer edge of
the T/NT interface, and the vortex core center in the y-z plane at two different streamwise locations
x/Lb = 50 and 80, respectively, which is taken at the same time T = 1000U∞/Lb as Fig. 1. The
solid black points shown in Fig. 3 represent the vortex core centers, which are given by ∇|R| ×
r = 0. The vortex core center is sparsely distributed within the interface and is surrounded by the
strong rotational region. From Eq. (2), it is obvious that the square of the magnitude of vorticity
|ω|2 contains three parts: |R|2, |S|2, and 2|R||S| cos θ . In the turbulent region, there is not only the
rotational motion with |R| > 0 but also the pure shear motion with |R| = 0 and |S| > 0, and the
pure shear motion mainly occurs near the outer edges of the T/NT interface (the white solid lines),
as shown in Fig. 1.

Previous numerical studies [31–33] have revealed that the T/NT interface is composed of two
different sublayers: viscous superlayer (a thin inner layer close to the outer edge of the T/NT
interface) and turbulent sublayer (a layer with a sharp increase in the vorticity but slightly away
from the T/NT interface). In the viscous superlayer, viscous diffusion effects are dominant in the
increase of the vorticity magnitude, whereas in the turbulent sublayer the inviscid vortex stretching
becomes significant [34,35]. Figures 3(a) and 3(b) clearly suggest that in the viscous superlayer
close to the outer edge of the T/NT interface, we have |ω|2 = |S|2, implying that the influence
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FIG. 3. Visualization of the magnitude of Liutex field, the outer edge of the T/NT interface, and the vortex
core center at two different streamwise locations; (a) x/Lb = 50 and (b) x/Lb = 80. In (b), the boxed area
presents the high vorticity region with |ω| = |S|.

of the pure shear motions is dominant. When comparing Fig. 1(a) and Fig. 3(a) [or equivalently
Fig. 1(b) and Fig. 3(b)], another interesting finding is that even though in the turbulent core regions
where the magnitude of the vorticity is high, there exist some regions with the same characteristics
as the viscous superlayer (e.g., the boxed region in Fig. 3(b)].

Figures 4(a) and 4(b) show an enlargement of the content of the white dashed box in Fig. 3(a)
(i.e., two-dimensional distribution of the magnitude of the Liutex field) and also the isosurface of
the three-dimensional coherent structure of 
 = 0.52 along with the corresponding internal rotation
axis, respectively. It should also be mentioned that the vortex core region A in Fig. 4(a) represents
the same high Liutex region as indicated by region A in Fig. 4(b) (the same case for region B). The
streamline (the black solid line) in the partial y-z plane at x/Lb = 50 is also included in Fig. 4(a). It
is suggested that the streamline forms a vortex pattern with its center being designated as the vortex

FIG. 4. (a) Instantaneous magnitude of Liutex field |R| and (b) the coherent structures and the internal
rotation axis at the streamwise location of x/Lb = 50.
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FIG. 5. (a) Coherent structures within the streamwise range 47.5x/Lb � 52.5 and (b) the corresponding
vortex axes on the transparent section of x/Lb = 50 at the same time shot as Figs. 3 and 4.

core center [36]. The center of the two chosen streamlines can be superposed with the vortex core
center, which proves that the vortex core center can be indeed accurately identified. As shown in
Fig. 4(b), the transparent white part with 
 = 0.52 represents the coherent structures, and the color
of the internal rotation axis represents the rotational strength |R|, where the internal rotation axis
is also known as the vortex axis. One may draw the conclusion that the internal rotation axis can
reflect the general contour of the corresponding coherent structure, at least to some extent.

Figure 5(a) shows the distribution of coherent structures (represented by the white isosurface with

 = 0.52) in the three-dimensional subdomain within the streamwise range 47.5 � x/Lb � 52.5 at
the same time shot as Figs. 3 and 4. In Fig. 5(b), the corresponding vortex axes with ∇|R| × r = 0
and |R| > 0, which intersect the lateral plane at x/Lb = 5 are plotted. There are a considerable
number of intermittently distributed spiral coherent structures along with the corresponding vortex
axes, which enables us to quantitatively study the organization and also spatial distribution of the
coherent structures and will be discussed in detail below.

B. Spatial distribution and the organization of coherent structures

Following the study of Zhou and Vassilicos [17], we concentrate attention in the region of
50 � x/Lb � 100 where the time-averaged area of turbulent region scales with δ2 and the PDF
of the radial locations of the T/NT interface is self-similar. Note that previous studies [16,17]
have confirmed that the profiles of the one-point turbulence statistics (e.g., the streamwise mean
velocity, Reynolds shear stress, turbulent kinetic energy, and turbulent dissipation) and the PDF
of radial interface location RI in the axisymmetric turbulent wake are self-similar in the range of
10 � x/Lb � 100, that is the so-called self-similar region. In the following subsection, the spatial
distribution of coherent structures in the self-similar region is discussed. Considering the fact
that the choice of the threshold for the identification of the coherent structures can be somewhat
arbitrary, the radial positions of the vortex core center Rc of the coherent structures at different
streamwise locations are computed. For a given vortex center in the y-z at the streamwise location
x, the corresponding radial distance Rc is defined as the radius distance locations of the vortex core
center away from the centerline. In order to compute the conditional statistics of the organization
of the coherent structures, we define a new local coordinate system, in which the origin is exactly
the vortex core center and the selection of the three coordinates is the same as the old coordinate
system, i.e., x, y, and z. Based on the new local coordinate system, the organization of the coherent

084603-7



YIN, TAO, NAGATA, ITO, SAKAI, AND ZHOU

FIG. 6. PDFs of the radial positions of the vortex core center; (a) P(Rc; x) versus Rc at different streamwise
locations and (b) δ(x)P(Rc; x) versus Rc/δ(x) at different streamwise locations.

structures [i.e., the polar angle α and the azimuthal angle ϕ of the vortex axes with α ∈ [0, π ]
and ϕ ∈ [0, 2π )] at different streamwise locations can be explored. The polar angle α is the angle
between the streamwise direction and the vortex axis and the azimuthal angle ϕ of the vortex axis
is in the y-z plane normal to the wake centerline. It should also be mentioned that the vortex axis in
Fig. 4(b) can be also extracted by connecting the vortex core center in a given coherent structure.

Figure 6 shows the PDFs of the radial distribution of the vortex core center Rc in the range of
50 � x/Lb � 100, where one of P(Rc; x) versus Rc at different streamwise locations and one of
δ(x)P(Rc; x) versus Rc/δ(x) at different streamwise locations. The radial locations of the vortex
core center Rc are obtained from the intersections of the vortex core center with radial straight
lines at various azimuthal angles γ in the y-z plane at x. As shown in Fig. 6(a), the profiles of the
PDFs of Rc are quite different from each other. In contrast, Fig. 6(b) shows that the PDFs of Rc

at different streamwise locations can be superimposed on the same curve when normalized by the
wake width δ, which indicates that the PDF P(Rc; x) takes a self-similar form. In other words, with
the different streamwise locations, the PDFs of Rc scale with δ. The probabilities of Rc at different
streamwise locations reach the maximum value at Rc ≈ 1.16δ. The exceedance probability of Rc

by Rc = 3δ drops to less than 0.007, as calculated by integrating the distribution function from
3δ to positive infinity and nearly all of the vortex core centers are located within this separation
distance. Figure 6(b) further reveals that the coherent structures are not randomly distributed in the
self-similar region, and this is closely related to the wake width δ. It has been investigated that the
averaged interfacial radius RI (x) (the overbar denotes an average over the azimuthal angle γ and
time T ) in the lateral y-z plane normal to the streamwise direction proposed by Zhou and Vassilicos
[17] is a function of x [i.e., RI (x) ≈ 1.6δ(x)]. The radial interface locations RI are obtained from the
intersections of the interface with radial straight lines at various azimuthal angles γ in the y-z plane
at x. The averaged radial distance Rc(x) of the vortex core center satisfies the following relation:

Rc(x) ≈ 1.22δ(x). (3)

The scaling Rc(x) ≈ 1.22δ(x) suggests that there is an intrinsic connection between the mean
streamwise velocity and the spatial distribution of the coherent structures.

Another interesting finding related to the radial distribution of the core center is that the prob-
ability distributions are generally in accord with the Reynolds shear stress profiles 〈uxur〉 and for
both distributions the maximum values are found at the radial position with R/δ ≈ 1.1 (see Fig. 18
in Dairay et al. [16]). It should also be mentioned that the main purpose of this work is to study
the spatial distribution of the coherent structures. The intrinsic correlation between the distributions
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FIG. 7. Contributions of the four quadrants to the Reynolds shear stress 〈uxur〉 at two downstream locations
(a) x/Lb = 60 and (b) x/Lb = 90.

of the coherent structures and the one-point statistics in free shear flows can also be of significant
importance.

The generation of Reynolds shear stress in wall-bounded flows, such as channel flow and
turbulent boundary layers, has been extensively studied through quadrant analysis [37]. It has
long been known that the contributions of the ejection and sweep events (i.e., Q2 events and Q4
events) to Reynolds shear stress are dominant in a turbulent boundary layer and both Q2 and Q4
events are closely related to the coherent structures [38–40]. In an axisymmetric turbulent wake, the
Reynolds shear stress, that is the product of the streamwise and the radial velocity fluctuations
ux and ur , can also be divided into four categories: Q1 (ux > 0, ur > 0), Q2 (ux < 0, ur > 0),
Q3 (ux < 0, ur < 0), and Q4 (ux > 0, ur < 0) with Q2 and Q4 corresponding to the ejection and
sweep events, respectively [37,41,42]. Figures 7(a) and 7(b) depict the conditional averages of the
Reynolds shear stress for the four quadrants, representing the contributions to the Reynolds shear
stress at two different downstream locations: x/Lb = 60 and 90, respectively. The magnitudes of the
conditional Reynolds stress corresponding to Q1, Q3, and Q4 quadrants are comparable. In contrast,
the contribution of Q2 (i.e., ejection events) is significantly large, suggesting the dominance of
outward momentum transport. It should also be mentioned that this observation does not necessarily
contradict the case of turbulent boundary layers. For the turbulent boundary layers only in the near
wall region is the influence of Q4 significantly larger than Q2, and as the distance from the wall
increases, the reverse occurs [37,41].

Figure 8 shows the contributions of the four quadrants to the Reynolds shear stress conditioned
on being part of a coherent structure with |ω| � 0.4U∞/Lb, i.e., 〈uxur ||ω| � 0.4U∞/Lb〉. The
conditional averaged results are fluctuating for the limited sample data at the downstream location
x/Lb = 90. It is assumed that the conditional average magnitude is zero for the quadrant where no
fluid points with |ω| � 0.4U∞/Lb. A preference for Q2 events is also evident, as shown in figure 7,
and the conditional strength of Q2 is comparable to the unconditional magnitude. Therefore, the
coherent structures are not quiescent patches but are indeed related to Q2 events.

Another significant finding is that the profiles of the conditional Reynolds stress are similar to
each other for both streamwise locations x/Lb = 60 and 90. Additionally, the most intense ejection
events are observed at approximately 1.5δ. This location is slightly different from the averaged
radial distance of the vortex core center Rc(x) ≈ 1.22δ(x). One possible explanation is that in
this work coherent structures are identified based on the instantaneous velocity fields, while the
Reynolds shear stress is directly determined by the velocity fluctuations and influenced by the
mean velocity gradients. It should also be mentioned that although only the conditional averages
of the Reynolds stress at two locations are plotted for the sake of space economy, we confirm that
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FIG. 8. The same as Fig. 7 but conditioned on being part of a coherent structure with |ω| � 0.4U∞/Lb.

the scaling RQ4,max (x) ≈ 1.5δ(x) can be applied to other downstream locations within the range
of 50 � x/Lb � 100. The above discussion lends credence to the existence of a close relationship
between the distributions of the coherent structures and the one-point statistics.

Figures 9(a) and 9(b) show the PDFs of the polar angle α and the azimuthal angle ϕ of the
vortex axis in the range of 50 � x/Lb � 100, respectively. It can be seen that the PDFs of the polar
angle α between the vortex axis and the streamwise direction at different streamwise locations
collapse onto a single curve, which indicates that the PDF P(α; x) takes a self-similar form. The
probabilities of α at different streamwise locations reach the maximum value at α = π/2, implying
a noticeable preference for the vortex axis (or equivalently coherent structures) to be normal to
the mean direction of the flow. As shown in Fig. 5, the visualized spiral structures show a discernible
tendency to be parallel to the y-z plane (or equivalently perpendicular to the mean direction of the
flow). This observation is consistent with PDF distribution of the polar angle α [see Fig. 9(a)].
The azimuthal angle ϕ in the lateral y-z plane is uniformly distributed in the range [0, 2π )
since all the curves in Fig. 9(b) can be superimposed on a single horizontal straight line as it
should be.

Figures 10(a) and 10(b) plot the joint PDFs of the polar and azimuthal angles, i.e., α and ϕ at
x/Lb = 50 and 80, respectively. Figure 10 suggests that at both streamwise locations considered for

FIG. 9. PDFs of the polar angle α and the azimuthal angle ϕ about the vortex axis; (a) P(α; x) versus α at
different streamwise locations and (b) P(ϕ; x) versus ϕ at different streamwise locations.
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FIG. 10. Joint PDFs of α and ϕ at two different downstream locations; (a) x/Lb = 50, (b) x/Lb = 80, the
four contour levels plotted are 3 × 10−2, 5 × 10−2, 7 × 10−2, and 9 × 10−2, respectively.

a given polar angle α, the probability distribution of the azimuthal angle ϕ is approximately uniform,
and vice versa. The correlation ρ(α, ϕ) equals to 0.5% and 0.2% at x/Lb = 50 and 80, respectively,
implying that there is no statistical correlation between the polar angle α and the azimuthal angle ϕ.
Comparing Figs. 9 and 8, it can be concluded that the coherent structures are regularly organized in
space, i.e., the PDF P(α; x) and P(ϕ; x) take the self-similar form and with no discernible correlation
between α and ϕ.

C. Coherent structures near the turbulent/non-turbulent interface

Previous numerical studies by da Silva and Taveira [43] and da Silva and dos Reis [44] have
already found that the radial size of the coherent structures define the contorted shape of the nearby
interface, and the coherent structures can influence the viscous dissipation of kinetic energy near the
outer edge of the T/NT interface, which clarifies a close relationship between the coherent structures
and the T/NT interface. In this section, we shall explore the mean radial distance between the T/NT
interface and the coherent structures nearby.

Figure 11(a) shows the three-dimensional visualization of the T/NT interface and the coherent
structures in the range of 47.5 � x/Lb � 52.5 from a different time shot as in Fig. 1. The translucent
blue represents the T/NT interface, and the coherent structures are visualized by the isosurface
(white) of 
 = 0.52. The T/NT interface is convoluted and envelops the coherent structures, and
the T/NT interface is close to the exterior surface of the coherent structures. Figure 11(b) shows the
snapshot of the magnitude of Liutex field |R|, the outer edge of the T/NT interface and the vortex
core center in the selected translucent dark blue in the y-z plane in Fig. 11(a). It has been reported
that the PDF of the radial interface location [17] and the PDF of the radial distribution of the vortex
core center are self-similar in the range of 50 � x/Lb � 100. The intrinsic correlation between the
T/NT interface and the vortex core center can be further analyzed by the radial separation distance
Rct between the T/NT interface and the nearest vortex core center at different azimuthal angles γ

[see Fig. 11(c) on the calculation of Rct ]. For a given azimuthal angle γ we have Rct = RI − Rc. It
is worth mentioning that there are other different definitions of the thickness of the T/NT interface
(e.g., distance between the outer edge of the T/NT interface and the maximum conditional mean
vorticity [43,44] and the derivative of the conditional mean vorticity [45,46]). Furthermore, previous
investigations [43–46] on the conditional statistics of the thickness are based on the contour of the
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FIG. 11. (a) Three-dimensional visualization of the T/NT interface and coherent structures in the range
of 47.5 � x/Lb � 52.5 (|ω|th/|ω|max = 4 × 10−4), (b) visualization of the magnitude of Liutex field, the outer
edge of the T/NT interface, and the distribution of the vortex core center, and (c) the schematic diagram on the
calculation of Rct .

T/NT interface, whereas in our work a fixed cylindrical coordinate is used to estimate Rct [see
Fig. 11(c)].

Figures 12(a) and 12(b) show the PDFs of the distance Rct between the T/NT interface and
the nearest vortex core center in the range of 50 � x/Lb � 100, where one of P(Rct ; x) versus Rct

at different streamwise locations and one of δ(x)P(Rct ; x) versus Rct/δ(x) at different streamwise
locations. Comparing with Fig. 12(a), it can be seen that the PDFs of Rct at different streamwise
locations can be superimposed on the same curve when normalized by the wake width δ as shown
in Fig. 12(b). In other words, with the different streamwise locations, the PDFs of Rct scale with
δ. The probabilities of Rct at different streamwise locations reach their maximum value at Rct ≈
0.2δ and we have Rct (x) ≈ 0.48δ(x). The radial interface location RI is determined by the radial
separation distance Rct and the radial location of the corresponding nearest vortex core center Rc

(i.e., RI = Rct + Rc). One could reasonably argue that the PDF distribution of the nearest vortex
core center Rc also scales with δ. To some extent, the reasonably good collapse in Fig. 12(b) could
explain the finding reported in Zhou and Vassilicos [17] that the PDF of the radial interface location
scales with the wake width δ.

Figure 12(c) shows the PDFs of Rct at different streamwise locations normalized by the Taylor
microscale λ along the centerline, where λ = √

15v/ε
√

2K/3 with K being the turbulent kinetic
energy and ε being the turbulence dissipation rate. The probabilities of Rct at different streamwise
locations reach the maximum value at Rct ≈ 0.8λ. Similar to Fig. 12(b), the normalized profiles of
Rct are reasonably well collapsed, and the averaged distance Rct (x) satisfies the relation: Rct (x) ≈
2.0λ(x). The approximate relation Rct (x) ≈ 2.0λ(x) is in accord with the assertion made in da Silva
and Taveira [43] that in free shear flows the thickness of the T/NT interface is of the order of the
Taylor microscale λ. The non-equilibrium scaling laws Cε ∼ (ReG/Rel )m with ReG = (U ∞Lb)/ν
being the global Reynolds number and Rel = (

√
Kδ)/ν being the local Reynolds number can be

used to explain the collapse of the normalized profiles in Fig. 12(c). For the current wake flow
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FIG. 12. PDFs of the distance between T/NT interface and nearest vortex core center: (a) P(Rct ; x) versus
Rct , (b) δ(x)P(Rct ; x) versus Rct/δ(x) and (c) λ(x)P(Rct ; x) versus Rct/λ at different streamwise locations.

considered, the local Reynolds number is relatively low and m = 0.5 [16]. However, within the
downstream range 50 � x/Lb � 100, the value of Cε(Rel/ReG) varies by no more than 10%, ranging
from 0.037 to 0.034 (see Fig. 23(b) in Dairay et al. [16]). One could easily derive the scaling law
λ ∼ δ when Cε(Rel/ReG) = const , which is indeed the case for the turbulent wake with a sufficient
high local Reynolds number. Therefore, the fairly satisfactory collapse observed in Fig. 12(c) is
reminiscent of the nonequilibrium dissipation law [47,48].

IV. CONCLUSION

The current study can be somewhat regarded as a continuation of the previous investigations
[17,18] on turbulence characteristics and the property of T/NT interfaces in an axisymmetric
turbulent wake. The main purpose of this work is to shed light on the spatial distribution and
organization of the coherent structures in a self-similar axisymmetric turbulent wake.

We firstly explore the spatial distribution and also the organization of the coherent structures (i.e.,
the direction of the vortex axis). The PDF of the radial distribution of the vortex core center Rc is
self-similar and scales with δ, which indicates the spatial distribution of the coherent structures is
self-similar. Concerning the organization of the coherent structures, it is concluded that the PDFs
of the polar angle α and the azimuthal angle ϕ at different streamwise locations collapse onto a
single curve. There is a significant preference for the coherent structures to be normal to the mean
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direction of the flow and no discernible correlation between the polar angle α and the azimuthal
angle ϕ.

The correlation between the T/NT interface and vortex core center and the PDF of the distance
Rct between the T/NT interface and the nearest vortex core center are also investigated. The
numerical results show that the PDF of Rct is also self-similar and scales with δ. The Gaussian
distribution of the radial positions of the T/NT interface reported in Zhou and Vassilicos [17] may
be related to the scaling Rct (x) ≈ 0.48δ(x).

The current study suggests that for an axisymmetric turbulent wake, there is an intrinsic con-
nection between the self-similar distributions of the one-point statistics and the spatial distribution
of the coherent structures. The above observations indeed confirm the assertion by Küchemann
[4] that coherent structures are “the sinews and muscles of fluid motions” and further suggest
that the coherent structures in a self-similar axisymmetric turbulent wake are orderly distributed
and also regularly organized. Future investigations should be performed to check whether this
conclusion can be generalized to other free shear flows (e.g., plane jets, plane wakes, mixing
layers).
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APPENDIX: DEFINITION OF THE LIUTEX VECTOR R

The Liutex-Shear decomposition method, i.e., ω = R + S is adopted to identify the vortex core
center and compute the direction of the vortex axis. The existence of the rotational vector R can be
proven using Schur decomposition theory. The procedure for computing the rotational vector R and
the corresponding unit vector r is briefly introduced in this Appendix. More detailed explanations
can be found in the works of Liu et al. [13] and Tian et al. [49].

It can be mathematically proven that there exists a transformation matrix Q which projects the
velocity gradient tensor ∇v from the original coordinate system xyz onto ∇V in a new coordinate
system XY Z , which is rotated around the rotational vector r axis, that is, the Z axis is parallel to r.
We now have

∇v =

⎡
⎢⎣

∂u/∂x ∂u/∂y ∂u/∂z

∂v/∂x ∂v/∂y ∂v/∂z

∂w/∂x ∂w/∂y ∂w/∂z

⎤
⎥⎦, (A1)

∇V =

⎡
⎢⎣

∂U/∂x ∂U/∂y ∂U/∂z

∂V/∂x ∂V/∂y ∂V/∂z

∂W/∂x ∂W/∂y ∂W/∂z

⎤
⎥⎦, (A2)

∇V = Q∇vQ−1. (A3)
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Using the quaternions method [50] yields

Q =

⎡
⎢⎢⎢⎢⎢⎣

r2
y + r2

z + rz

1 + rz
− rxry

1 + rz
−rx

− rxry

1 + rz

r2
y + r2

z + rz

1 + rz
−ry

rx ry rz

⎤
⎥⎥⎥⎥⎥⎦, (A4)

with r = rxi + ry j + rzk.
Owing to the fact that we assume the unit rotational vector r in the original coordinate system is

parallel to the Z axis in the new coordinate system XY Z , the Z axis serves as a local rotation axis
with ∂U/∂Z = 0 and ∂V/∂Z = 0. By making further use of Eqs. (A1)–(A4), we now get

∂U/∂Z =
(

1 − r2
x

1 + rz

)(
∂u

∂x
rx + ∂u

∂y
ry + ∂u

∂z
rz

)
− rxry

1 + rz

(
∂v

∂x
rx + ∂v

∂y
ry + ∂v

∂z
rz

)

− rx

(
∂w

∂x
rx + ∂w

∂y
ry + ∂w

∂z
rz

)
= 0, (A5)

∂V /∂Z = − rxry

1 + rz

(
∂u

∂x
rx + ∂u

∂y
ry + ∂u

∂z
rz

)
+

(
1 − r2

y

1 + rz

)(
∂v

∂x
rx + ∂v

∂y
ry + ∂v

∂z
rz

)

− ry

(
∂w

∂x
rx + ∂w

∂y
ry + ∂w

∂z
rz

)
= 0, (A6)

Combining the formula r2
x + r2

y + r2
z = 1 and making use of Eqs. (A5) and (A6), we could now

compute the unit vector r, the transformation matrix Q and the velocity tensor ∇V .
With respect to the rotation strength, i.e., the magnitude of the rotational vector |R|, one needs

to use a second coordinate rotation in the X–Y plane, which is normal to the rotation axis. By
introducing a rotation matrix, the rotation strength |R| can be expressed in the form of

|R| =

⎧⎪⎨
⎪⎩

2(β − α), if α2 − β2 < 0, β > 0

2(β + α), if α2 − β2 < 0, β < 0

0, if α2 − β2 � 0

(A7)

with α = 1
2

√
( ∂V

∂Y − ∂U
∂X )2 + ( ∂V

∂X + ∂U
∂Y )2 and β = 1

2 ( ∂V
∂X − ∂U

∂Y ).
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