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Diffusion-driven flow is a boundary layer flow that results from the combined influence
of gravity and diffusion, which exists in density-stratified fluids whenever a gravitational
field is not parallel to the solid boundary. In this paper, we investigate the unsteady
diffusion-driven flows that emerge in a parallel-plate channel domain with a linear density
stratification. We first compute the time-dependent diffusion-driven flows and perturbed
density field using eigenfunction expansions under the Boussinesq approximation. In chan-
nel domain, the unsteady flow converges to a steady-state solution either monotonically
or nonmonotonically (highly oscillatory), depending on the relation between the Schmidt
number and the nondimensionalized stratified scalar diffusivity, while the flow in the
half-space inclined plane problem exhibits oscillatory convergence for all parameters. To
validate the Boussinesq approximation, we propose the quasi-Boussinesq approximation,
which includes transverse density variation in the inertial term. Numerical solutions show
that the relative difference between the Boussinesq and quasi-Boussinesq approximations
is uniformly small. We also study the mixing of a passive tracer induced by the advec-
tion of the unsteady diffusion-driven flow and present the series representation of the
time-dependent effective diffusion coefficient. For small Schmidt numbers, the effective
diffusion coefficient induced by the unsteady flow solution can oscillate with an amplitude
larger than the effective diffusion coefficient induced by the long-time-limiting steady-state
flow. Interestingly, the unsteady flow solution can reduce the time-dependent effective
diffusion coefficient temporally in some parameter regimes, below even that produced by
pure molecular diffusion in the absence of a flow. However, at long times, the effective
diffusion is significantly enhanced for large Péclet numbers.
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I. INTRODUCTION

Diffusion-driven flow is a boundary layer flow that results from the combined influence of gravity
and diffusion, which exists in the density-stratified fluids whenever the gravity field is not parallel to
the solid boundary. The hydrostatic equilibrium in the density-stratified fluid with diffusive solute
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requires two conditions. First, isopycnals should be perpendicular to the direction of gravity. Second,
the impermeable (i.e., no-flux) boundary condition requires that the isopycnals must always be
perpendicular to an impermeable boundary to ensure that there is no diffusive flux normal to the
boundary. Therefore, when the impermeable boundary is not parallel to the direction of gravity,
isopycnals cannot be perpendicular to both of them at the same time. The breaking of the hydrostatic
equilibrium yields the diffusion-driven flow.

The diffusion-driven flow is at the same scale as molecular diffusion due to the formation
mechanism, and as such could lead to interesting dynamics on long timescales or on small length
scales. Therefore, the study of diffusion-driven flow historically was motivated by understanding the
transport and mixing over geological timescales such as the ocean boundary mixing [1,2] and salt
transport in rock fissures [3–6]. The recent applications of diffusion-driven flow have been expanded
in many areas. The potential high-impact studies include the self-propulsion of immersed objects
[7,8], the molecular diffusivity measurement [9], the self-assembly of particles and self-induced
flow in a stratified fluid [10,11].

We find two points that have not been addressed well in the literature. First, the studies mentioned
above mainly concern the long-time stationary configuration of the diffusion-driven flow, but little
is known about the transient dynamics at the earlier stage of the diffusion-driven flow formation,
which can play an important role in some parameter regimes. Kistovich et al. [12] studied the
transient diffusion-driven flow induced by the inclined plane using Fourier series expansion. The
series representation of the flow converges rapidly at fixed time, but suffers from nonuniformity
in time as the truncations are all unbounded as time grows. Harabin [13] presented a different
perspective of the same problem. He derived the flow solution valid for all timescales using the
Laplace transform and demonstrate that the flow exhibits oscillatory behavior in its evolution for
small Schmidt (Prandtl) numbers.

Hence, the first goal of this study is to generalize those results to tilted parallel-plate channel
domain and to show how the flow properties change due to the boundary geometries. We explicitly
calculate the time-dependent flow solution and the perturbed density field starting from a uniform
linear density stratification using the eigenfunction expansion. Interestingly, for the channel case,
the time-dependent diffusion-driven flow exhibits oscillations for some parameters and decays
monotonically for other parameter combinations. This is different from the flows in the inclined
plane problem, which always includes oscillating terms.

Second, the evolution of a passive scalar is crucial in numerous fields including microfluidics
[14,15], biology [16,17], and oceanography[18]. Using the steady diffusion-driven flow solution,
[3,5] studied the optimal gap thickness and angle to maximize long time mixing of a passive scalar
advected by a steady flow arising in the tilted parallel-plate channel domain. Intuitively, unsteady
diffusion-driven flows generate different properties than their steady counterparts, while they are
less studied in the literature, and investigating them is the second goal of this work. Using the time-
dependent flow formula we derived, we calculate the effective diffusion coefficient of the passive
scalar, which is a fundamental quantity to characterize the passive scalar distribution. Similar as in
the steady case, the unsteady diffusion-driven flow solution could significantly enhance the tracer
dispersion. However, in some parameter regimes, the unsteady flow solution introduces considerably
large oscillations in the effective diffusion coefficient and can even decrease the mixing coefficient
temporally.

This paper is organized as follows. In Sec. II, we formulate the governing equation for the
diffusion-driven flow and document the nondimensionalization procedure. In Sec. III, we derive
the expression of the diffusion-driven flow and the coupled density perturbation. In Sec. IV,
we study the effective diffusion coefficient of the passive scalar induced by the diffusion-
driven flow and explore the optimal parameters for enhancing or reducing the effective diffusion
coefficient.
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FIG. 1. Schematic showing the setup for the diffusion-driven flow problem.

II. GOVERNING EQUATION AND NONDIMENSIONALIZATION

A. Governing equation

There could be two different types of scalars in the system we consider: the stratifying scalar, C
and a passive scalar T . The stratified scalar contributes to the density stratification, which creates
diffusion-driven flows. The system could also include passive scalars, such as a fluorescent dye.
The passive scalar will be passively advected by the fluid flow without changing the velocity field.
Both scalars satisfy the advection-diffusion equation with no-flux boundary conditions, and the
equation for the passive scalar takes the form

∂t T + u(x, t ) · ∇T = κp�T, T (x, y, 0) = TI (x, y), ∂nT |boundary = 0, (1)

where κp is the passive scalar diffusivity, TI (x, y) is the initial data, n is the outward normal vector
of the boundary. Figure 1 sketches two coordinate systems for a tilted parallel-plate channel domain
with a inclination angle θ which satisfies 0 � θ � π

2 . In this setup, x3-direction is parallel to the
direction of gravity, y1 direction is the longitudinal direction of the channel. � = {y3|y3 ∈ [0, L]} is
the cross-section of the channel. The relation between the laboratory frame coordinates (x1, x2, x3)
and the coordinates (y1, y2, y3) is[

y1

y3

]
=

[
cos θ sin θ

− sin θ cos θ

][
x1

x3

]
, y2 = x2. (2)

In (y1, y2, y3) coordinates system, the direction of gravity is (− sin θ, 0,− cos θ ). The experiment
methods described in Refs. [3,9] are realizable experimental setups for this study. The temperature-
stratified liquid gallium is another promising experimental setup.

We assume the fluid density linearly depends on the stratified scalar. For example, the density
of sodium chloride solution increases linearly as the concentration increases [19]. Therefore, the
density field ρ and the fluid flow ui satisfies the incompressible Navier-Stokes equation,

ρ(∂t ui + u · ∇ui ) = μ�ui − ∂xi p − ρgδi3, ui|∂� = 0, i = 1, 2, 3, ∇ · u = 0,

∂tρ + u · ∇ρ = κs�ρ, ∂nρ|∂� = 0, ρ||x3|→∞ = ρ0 − 
x3, (3)

where δi j is the Kronecker δ, g(cm/s2) is the acceleration of gravity, 
 (g cm−4) is the density
gradient, μ (g cm−1 s−1) is the dynamic viscosity, p (g cm−1 s−2) is the pressure, and κs (cm2/s)
is the molecular diffusivity of the stratified scalar. In this study, we make the assumption that the
background density function varies linearly with height. This assumption is a local approximation
to the scenario where the density function changes slowly with respect to height. By assuming this
linearity, we aim to simplify the analysis while still capturing the essential behavior of the system.
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B. Nondimensionalization

Since we are interested in the dispersion of the passive scalar, we use the diffusion timescale of
the passive scalar as the characteristic timescale of the whole system. With the change of variables

ρ0ρ
′ = ρ,

L2

κp
t ′ = t, Lx′ = x, Uu′ = u,

μU

L
p′ = p, κpκ

′ = κ,

ρ0

L

0 = 
, T ′(x′, t ′)L−3

∫
R×�

TI (x)dx = T (x, t ), (4)

we have

ρ0Uκp

L2
ρ ′∂t ′u′

i + ρ0U 2

L
ρ ′u′ · ∇x′u′

i = μU

L2
�x′u′

i − μU

L2
∂x′

i
p′ − ρ0gρ ′δi3, i = 1, 2, 3,

L2

κp
∂t ′T ′ + U

L
u∇x′T ′ = κp

L2
�x′T ′,

ρ0κp

L2
∂t ′ρ ′ + U ρ̃

L
u′ · ∇x′ρ ′ = κsρ̃

L2
�x′ρ ′. (5)

We can drop the primes without confusion and obtain the nondimensionalized version

Re

Pep
ρ∂t ui + Reρu · ∇ui = �ui − ∂xi p − Re

Fr2
ρδi3, i = 1, 2, 3,

∂t T + Pepu · ∇T = �T,
1

κ2
∂tρ + Pesu · ∇ρ = �ρ, (6)

where the nondimensional parameters are the nondimensionalized stratified scalar diffusivity κ2 =
κs
κp

, Péclet number Pes = UL
κs

and Pep = UL
κp

, Reynolds number Re = ρ0LU
μ

, Froude number Fr =
U√
gL

, and Schmidt number Sc = μ

ρ0κp
= Pep

Re . If the scalar field is the temperature field, then κp is the

thermal diffusivity and μ

ρ0κp
= Pep

Re is the Prandtl number.
It is convenient to consider the problem in (y1, y2, y3) coordinate system. We denote vi as the

velocity component along the yi direction. Since the initial condition and the boundary condition
are independent of y2, Eqs. (1) and (6) become

ρ

(
1

Sc
∂tv1 + Rev1∂y1v1 + Rev3∂y3v1

)
= �v1 − ∂y1 p − Re

Fr2
ρ sin θ,

ρ

(
1

Sc
∂tv3 + Rev1∂y1v3 + Rev3∂y3v3

)
= �v3 − ∂y3 p − Re

Fr2
ρ cos θ,

∂t T + Pepv · ∇T = �T,
1

κ2
∂tρ + Pesv · ∇ρ = �ρ,

ρ||y|→∞ = ρ0 − 
0(y1 sin θ + y3 cos θ ). (7)

We next consider some combination of experimental physical parameters, which could give
us the order of magnitude of the nondimensional parameters and help with the perturbation
analysis. The scaling relation for the characteristic velocity and the physical parameter varies for
different boundary geometries. According to the formula in Refs. [1,3], the characteristic velocity
of steady diffusion-driven flow in the parallel-plate channel is U = κ ( g


μκ
)

1
4 and the characteristic

boundary layer thickness is Lb = ( g

μκ

)−
1
4 . In an experiment with sodium chloride solution, the

parameters could be g = 980 cm/s2, μ = 0.01 g/(cm s), κs = 1.5 × 10−5 cm2/s, 
 = 0.007 g/cm4,
ρ = 1 g/cm3, we have U = 0.00123353 cm/s, Lb = 0.0121602 cm. If L = 0.1 cm, then we have

Re = 0.0123353, Pes = 8.22353, Fr = 0.000124605, Sc = 1000,
Re

Fr2
= 794468. (8)
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For a larger channel width L = 1 cm, we have

Re = 0.123353, Pes = 82.2353, Fr = 0.0000394036, Sc = 1000,
Re

Fr2
= 7.94468 × 107.

(9)

We can see that the Reynolds number is small, and the gravity term is important in the governing
equation.

III. FLOW EQUATION

The Boussinesq approximation is commonly employed in the analysis of buoyancy-driven flow
[20], as well as in previous studies of steady diffusion-driven flow [1,2]. This approximation is
valid when the relative change in density is small, i.e., ∂zρ/ρ � 1, which holds true for the above
given parameters where the value is 0.007. Therefore, adopting the Boussinesq approximation is a
reasonable choice. The Boussinesq approximation states that the density variation is only important
in the buoyancy term,

ρ0

(
1

Sc
∂tv1 + Rev1∂y1v1 + Rev3∂y3v1

)
= �v1 − ∂y1 p − Re

Fr2
ρ sin θ,

ρ0

(
1

Sc
∂tv3 + Rev1∂y1v3 + Rev3∂y3v3

)
= �v3 − ∂y3 p − Re

Fr2
ρ cos θ,

∂t T + Pepv · ∇T = �T,
1

κ2
∂tρ + Pesv · ∇ρ = �ρ,

ρ||y|→∞ = ρ0 − 
0(y1 sin θ + y3 cos θ ). (10)

Notice that, in this setup, the flow is invariant under the translation in y1 direction. Hence,
we can assume the velocity only depends on y3. Then, the incompressibility ∂y1v1 + ∂y3v3 = 0
becomes ∂y3v2 = 0 which implies v3 = 0. To further simplify the equations, we introduce the
density perturbation f (y3, t ) which satisfies

ρ = ρ0 + f (y3, t ) − 
0(y1 sin θ + y3 cos θ ). (11)

We also write the pressure as p = p0 + p̃, where p0 balances the background density and solves the
equation

∂y1 p0 = − Re

Fr2
sin θ [ρ0 − 
0(y1 sin θ + y3 cos θ )],

∂y3 p0 = − Re

Fr2
cos θ [ρ0 − 
0(y1 sin θ + y3 cos θ )]. (12)

Since the right-hand side of the above equation is curl-free, the solution p0 exists. In fact, we have

p0 = − Re

Fr2

(
ρ0y3 cos θ + ρ0y1 sin θ − 
0y1y3 cos θ sin θ − 
0

2
y2

3 cos2 θ − 
0

2
y2

1 sin2 θ

)
. (13)

Now, Eq. (10) becomes

1

Sc
ρ0∂tv1 = ∂2

y3
v1 − ∂y1 p̃ − Re

Fr2 f sin θ, v1|y3=0,1 = 0, v1|t=0 = 0,

0 = −∂y3 p̃ − Re

Fr2 f cos θ,
1

κ2
∂t f − ∂2

y3
f = Pes
0v1 sin θ,

∂y3 f |y3=0,1 = 
0 cos θ, f |t=0 = 0. (14)
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FIG. 2. (a) Normalized steady flow solution vs
γ

for various parameter γ . (b) The steady perturbed density
field fs for different γ .

Obviously, p̃ can be a function of y3 only. Due to the nondimensionalization, ρ0 = 1. We obtain the
following equation for analyzing

1

Sc
∂tv1 − ∂2

y3
v1 = − Re

Fr2 f sin θ, v1|y3=0,1 = 0, v1|t=0 = 0,

1

κ2
∂t f − ∂2

y3
f = Pes
0v1 sin θ, ∂y3 f

∣∣
y3=0,1 = 
0 cos θ, f |t=0 = 0. (15)

We can decouple f and v1 by differentiating the equation and obtain the following equations(
1

κ2
∂t − ∂2

y3

)(
1

Sc
∂t − ∂2

y3

)
v1 = −
0RePes(sin θ )2

Fr2 v1, v1|y3=0,1 = 0, v1|t=0 = 0,

(
1

Sc
∂t − ∂2

y3

)(
1

κ2
∂t − ∂2

y3

)
f = −
0RePes(sin θ )2

Fr2 f , ∂y3 f
∣∣
y3=0,1 = 
0 cos θ, f |t=0 = 0.

(16)

To focus on the transient dynamics, we decompose the density perturbation and velocity into the
steady part and the transient part, namely, f = fs + ft , v1 = vs + vt . We first consider the steady
solution, which satisfies the following equation:

∂4
y3
vs = −RePes

Fr2 (sin θ )2
0vs, vs|y3=0,1 = 0, ∂3
y3
vs

∣∣
y3=0,1

= Re

Fr2 
0 sin θ cos θ,

∂4
y3

fs = −RePes

Fr2 (sin θ )2
0 fs, ∂y3 fs

∣∣
y3=0,1 = 
0 cos θ, ∂2

y2
fs

∣∣
y3=0,1

= 0. (17)

We can solve it easily and obtain the solution

fs = 
0 cos θ{cos[γ (1 − y3)] cosh(γ y3) − cos(γ y3) cosh[γ (1 − y3)]}
γ [sin(γ ) + sinh(γ )]

,

vs = 2γ cot(θ )

Pes

sin(γ y3) sinh[γ (1 − y3)] − sin[γ (1 − y3)] sinh(γ y3)

sin(γ ) + sinh(γ )
, (18)

where γ = 1√
2
[ RePes (sin θ )2
0

Fr2 ]
1
4 , which is consistent with the steady solution presented in [1,3]. γ −1

indicates the thickness of the boundary layer. As shown in Fig. 2, both the flow and the perturbed
density are confined in a narrow region near the boundary for a large γ . In addition, both f and v1

are odd functions with respect to y3 = 1
2 .
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When the channel gap thickness approach to the infinity, the system should asymptotically
converge to the case with the inclined plane. Indeed, as γ → ∞, we have

fs = −
0 cos θ
e−γ y cos(γ y)

γ
, vs = 2γ cot(θ )

Pes
e−γ y sin(γ y), (19)

where is consistent with the solution presented in Ref. [1].
The transient part of the density perturbation ft satisfies the equation[(

1

Sc
∂t − ∂2

y3

)(
1

κ2
∂t − ∂2

y3

)
+ 
0RePes(sin θ )2

Fr2

]
ft = 0, ∂y2 ft |y3=0,1 = 0, ft |t=0 = − fs. (20)

We need one more condition to determine the solution. From ( 1
κ2

∂t − ∂2
y3

) f = Pes
0v1 sin θ , we

have ( 1
κ2

∂t − ∂2
y3

) f |t=0 = 0 which implies 1
κ2

∂t ft |t=0 = ∂2
y3

ft |t=0 + ∂2
y3

fs = 0. To shorten the expres-

sion, we denote φ0 = 1, λ0 = 0, and φn = √
2 cos nπy, ϕn = √

2 sin nπy, λn = n2π2, n � 1 as the
eigenfunctions and eigenvalues of the Laplace operator in the cross section of the parallel-plate
channel with no-flux boundary condition and pure absorbing boundary condition, respectively.
To be more specific, (λn − �)φn = 0, ∂y3φ|y3=0,1 = 0 and (λn − �)ϕn = 0, ϕ|y3=0,1 = 0. Either
{φn}∞n=0 or {ϕn}∞n=1 ∪ {1} form an orthogonal basis on the cross section � with respect to the inner
product 〈 f (y3), g(y3)〉 = ∫ 1

0 f (y3)g(y3)dy3. For the velocity, we prefer to use ϕn, since the linear
combination of them satisfies the boundary condition automatically. With the same argument, we
prefer to use φn to represent the perturbed density field. The straightforward calculation yields

ft = −
∞∑

n=1

〈 fs, φn〉φn(y3)e− 1
2 (Sc+κ2 )λnt

[
cosh

(
ant

2

)
+ λn(Sc + κ2)

an
sinh

(
ant

2

)]
,

an =
√

(Sc − κ2)2λ2
n − 16γ 4Scκ2,

〈 fs, φn〉 =
√

2
0 cos θ [(−1)n − 1][sin(γ )(π2n2 − 2γ 2) + sinh(γ )(2γ 2 + π2n2)]

(4γ 4 + π4n4)[sin(γ ) + sinh(γ )]
. (21)

Then the cosine expansion of v1 is available from the relation (15). We can obtain the sine expansion
of the velocity using the same strategy. The transient part of the velocity component in y1 direction
satisfies the equation[(

1

Sc
∂t − ∂2

y3

)(
1

κ2
∂t − ∂2

y3

)
+ 
0RePes(sin θ )2

Fr2

]
vt = 0,

vt |y3=0,1 = 0, vt |t=0 = −vs. (22)

We need one more condition to determine the solution. Based on ( 1
Sc∂t − ∂2

y3
)v1 = − Pe2

Fr2 f sin θ , we
have ( 1

Sc∂t − ∂2
y3

)v|t=0 = 0 which implies 1
Sc∂tvt |t=0 = ∂2

y3
vt |t=0 + ∂2

y3
vs = 0. We have the series

representation

vt = −
∞∑

n=1

〈vs, ϕn〉ϕn(y3)e− 1
2 (Sc+κ2 )λnt

[
cosh

(
ant

2

)
+ λn(Sc + κ2)

an
sinh

(
ant

2

)]
,

〈vs, ϕn〉 = −2γ cot(θ )

Pes

2
√

2πγ 2[(−1)n + 1]n[cos(γ ) − cosh(γ )]

(4γ 4 + π4n4)[sin(γ ) + sinh(γ )]
. (23)

In a system with the inclined plane, the transient part of the diffusion-driven flow decays
algebraically and exhibits oscillation behavior for all Schmidt numbers [13]. Unlike the semi-infinite
domain, here, the transient part of the flow vanishes exponentially. Moreover, vt can be a monotonic
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function for some parameters and oscillatory for other parameter combinations. For instance, in the
limiting case Sc = ∞, we have

ft = −
∞∑

n=1

e−tκ2( 4γ 4

λn
+λn )φn(y3)〈 fs, φn〉,

vt = −
∞∑

n=1

e−tκ2( 4γ 4

λn
+λn )ϕn(y3)〈vs, ϕn〉. (24)

In this case, an is a real number for all n. Since 〈vs, ϕn〉 is positive definite, v1 = vs + vt converges
to the steady solution vs monotonically.

When Sc = κ2, we have a simpler expression

ft = −
∞∑

n=1

〈 fs, φn〉φn(y3)e−λnκ2t

[
cos(2γ 2κ2t ) + λn

2γ 2
sin(2γ 2κ2t )

]
,

vt = −
∞∑

n=1

〈vs, ϕn〉ϕn(y3)e−λnκ2t

[
cos(2γ 2κ2t ) + λn

2γ 2
sin(2γ 2κ2t )

]
. (25)

In this case, an is a pure imaginary number for all n and the flow solution includes oscillatory terms.
It is easy to show that the oscillation terms only appear if a2

n < 0 for some n, which can only happen
when the parameters satisfy

∃n ∈ Z+,
κ2(8γ 4 − 4

√
4γ 8 + π4γ 4n4 + π4n4)

π4n4
< Sc <

κ2(8γ 4 + 4
√

4γ 8 + π4γ 4n4 + π4n4)

π4n4
.

(26)

The inclined plane can be considered as a tilted parallel-plate channel domain with the infinite
channel width. As the channel width L increases, Pes and γ increases. For a large γ , we have the
asymptotic expansion

κ2(8γ 4 − 4
√

4γ 8 + π4γ 4n4 + π4n4)

π4n4
=π4n4κ2

16γ 4
+ O(γ −6),

κ2(8γ 4 + 4
√

4γ 8 + π4γ 4n4 + π4n4)

π4n4
=16γ 4κ2

π4n4
+ 2κ2 + O(γ −1). (27)

Therefore, in the large channel width limit, we observe the oscillation for all Sc, which is consistent
with the conclusions for the inclined plane problem [13].

Next, we seek the parameters for observing pronounced oscillations in the time-dependent flow
solution. The flow transient timescale (set by the longest lived mode) is 2

(Sc+κ2 )π2 . The period of the

associated oscillating term is 4π√
16γ 4Scκ2−(Sc−κ2 )2π4

. We are interested in maximizing the number of

oscillations in this time interval which can be done by maximizing the ratio of these two timescales
2(Sc+κ2 )π3√

16γ 4Scκ2−(Sc−κ2 )2π4
, which is the number of periods that we can observed within the transient

timescale. In fact, when Sc = κ2, this quantity reaches its maximum value γ 2

π3 . Figure 3 shows the
evolution of the time-dependent diffusion-driven flow solution with Sc = κ2. The transient part of
the flow vt is large near the boundary at a short timescale and then has oscillations with a relatively
smaller amplitude. The oscillation amplitude is comparable to the magnitude of the steady solution.
Therefore, from Fig. 3(b), we can see that the full flow solution has visible fluctuations. We remark
that small values of Sc and κ2 are possible if the stratified scalar is the temperature and the passive
scalar is the salt solute, since the thermal diffusivity for liquid metals are generally of the order of
1 cm2/s, whereas the salt diffusivity is at the order of 10−5 cm2/s.
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FIG. 3. (a) The transient part of the diffusion-driven flow provided in Eq. (23). We use the terms with
n � 200 in the series. We verify the truncation error is small enough by doubling the number of terms. (b) The
unsteady diffusion-driven flow solution. The parameters are Sc = κ2 = 10−4, γ = 12π , Pes = 1, θ = π

4 .

Last, the original coupled equations for the velocity and perturbed density involve elliptic
operators and first-order time derivatives, and at first glance, may appear similar to elliptic equations.
However, the decoupled system (20) reveals a hyperbolic equation with a second-order time
derivative, leading to distinct properties compared with elliptic equations. To illustrate the different,
we compare Eq. (20) with the case of a second order diffusion problem with a Laplace-Beltrami
operator using eigenfunction expansion with modes, φn(y)e−λnt . According to the Sturm-Liouville
theory, the eigenfunction expansion has temporally decaying modes indexed by the well-ordered
eigenvalues of a one-dimensional Laplace-Beltrami operator, λn < λn+1. For each mode, λn, the as-
sociated eigenfunction, φn(y) has exactly n − 1 zeros, (notice that the higher dimensional results are
different [21]). Interestingly, the operator in Eq. (20) does not have this property. For example, when
κ2 = 1, γ = 3, Sc = 1

10 , the coefficients of ϕ1(y3) = √
2 cos(πy3) and ϕ2(y3) = √

2 cos(2πy3) in
Eq. (23) are, respectively,

〈vs, ϕ1〉e− 11π2t
20

⎡
⎢⎢⎢⎣

11π2 sin

(
1
2

√
648

5 − 81π4

100 t

)

10
√

648
5 − 81π4

100

+ cos

(
1

2

√
648

5
− 81π4

100
t

)⎤⎥⎥⎥⎦,

〈vs, ϕ2〉e− 11π2t
5

⎡
⎢⎢⎢⎣

22π2 sinh

(
1
2

√
324π4

25 − 648
5 t

)

5
√

324π4

25 − 648
5

+ cosh

(
1

2

√
324π4

25
− 648

5
t

)⎤⎥⎥⎥⎦

∼ 〈vs, ϕ2〉

⎛
⎜⎝ 22π2

10
√

324π4

25 − 648
5

+ 1

2

⎞
⎟⎠e( 1

2

√
324π4

25 − 648
5 − 11π2

5 )t

+ O
[

e−( 1
2

√
324π4

25 − 648
5 + 11π2

5 )t
]
, t → ∞. (28)

Since − 11π2

20 ≈ −5.42828 and 1
2

√
324π4

25 − 648
5 − 11π2

5 ≈ −4.88442, the coefficient of ϕ2 decays
slower than the coefficient of ϕ1 at long times, but has more spatial oscillations.
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A. Quasi Boussinesq approximation

In the preceding section, we demonstrated how the Boussinesq approximation can simplify the
problem and capture the nontrivial dynamics of the system, enabling us to obtain an exact solution
for the unsteady shear flow. This approximation assumes a constant density function, denoted by
ρ0, in the time derivative term in Eq. (7). To further improve our understanding and capture more
comprehensive behavior, we introduce an alternative approximation in this subsection that accounts
for density variations in the y3 direction, namely,

[ρ0 + f (y3, t ) − 
0y3 cos θ ]

(
1

Sc
∂tv1 + Rev1∂y1v1 + Rev3∂y3v1

)
= �v1 − ∂y1 p − Re

Fr2
ρ sin θ,

[ρ0 + f (y3, t ) − 
0y3 cos θ ]

(
1

Sc
∂tv3 + Rev1∂y1v3 + Rev3∂y3v3

)
= �v3 − ∂y3 p − Re

Fr2
ρ cos θ,

∂t T + Pepv · ∇T = �T,
1

κ2
∂tρ + Pesv · ∇ρ = �ρ,

ρ||y|→∞ = ρ0 − 
0(y1 sin θ + y3 cos θ ). (29)

This is a valid approximation when θ � 1, as ρ ≈ ρ0 + f (y3, t ) − 
0y3 cos θ . This approximation
retains the most advantages of the Boussinesq approximation in analysis. First, we can still find the
solution that only depends on y3, resulting the following equation:

1

Sc
(1 + f − 
0y3 cos θ )∂tv1 − ∂2

y3
v1 = − Re

Fr2 f sin θ, v1|y3=0,1 = 0, v1|t=0 = 0,

1

κ2
∂t f − ∂2

y3
f = Pes
0v1 sin θ, ∂y3 f

∣∣
y3=0,1 = 
0 cos θ, f |t=0 = 0. (30)

Here, ρ0 is set to 1 due to nondimensionalization. Second, we can also decouple f and v1 by
differentiating the equation and obtain the following equation:(

1
Sc (1 + f − 
0y3 cos θ )

Sc
∂t − ∂2

y3

)(
1

κ2
∂t − ∂2

y3

)
f = −4γ 4 f ,

∂y3 f |y3=0,1 = 
0 cos θ, f |t=0 = 0. (31)

Once we have obtained the perturbed density field, we can use it to compute the velocity field with
Eq. (30). The steady-state solutions of Eqs. (15) under the Boussinesq approximation is the same as
the solution of Eq. (30), but their transient dynamics differ. Due to the nonlinearity of the problem,
it is difficult to find an exact analytical solution of Eq. (30), and here we numerically compute
the solutions using NDSolve in Mathematica. We plot the relative difference between the solutions
obtained from Eqs. (15) and (30) in Fig. 4. For both large and small inclination angles, the relative
differences of the perturbed density field is around 10−4, demonstrating that the system dynamics
are not significantly affected by the transverse density variation in the time derivative term of the
governing equation in this parameter regimes. This demonstrates the validity of the Boussinesq
approximation for small angles.

IV. DISPERSION INDUCED BY THE UNSTEADY DIFFUSION-DRIVEN FLOW

In this section, we focus on the evolution of passive scalar under the advection of the unsteady
diffusion-driven flow. The well-known Taylor dispersion [22,23] shows that as the flow acts to smear
out the concentration distribution in the direction of the flow, it enhances the dispersion rate of
the concentration distribution at which it spreads in that direction. Additionally, many approaches
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FIG. 4. The relative difference between the solution of Eq. (15) and the solution of Eq. (31) with θ = π

4
in panel (a) and θ = π

40 in panel (b). The rest parameters are γ = 1, 
0 = 1, κ2 = 1, Sc = 1. The relative
difference is defined as f1− f2

maxy3 ,t ( f1 ) , where f1 denotes the solution of Eq. (15) and f2 denotes the solution of

Eq. (31).

demonstrated that the distribution of a diffusing passive tracer under the shear flow advection is
approximately governed by a diffusion equation with an effective diffusion coefficient at long-times,
such as Hermite polynomial series expansion [24], homogenization theory [25,26], Aris moment
approach [22,27–29], center manifold theory [30–32], and the moment reconstruction [33,34].

We first formulate the approximation theory of the Taylor dispersion. The reader can find more
details in [30]. The effective equation for the governing equation of passive scalar (6) at long times
is

∂t T + Pepv̄1∂y1 T = κeff (t )∂2
y1

T, κeff = 1 + Pep〈v1T1〉, (32)

where T1 is the solution of the auxiliary problem

∂t T1 − ∂2
y3

T1 = Pep(v1 − v̄1), T1(y3, 0) = 0, ∂y3 T1

∣∣
y3=0,1 = 0. (33)

We denote T̄ (y1, t ) = ∫ 1
0 T (y1, y3, t )dy3 as the cross-sectional average of the scalar field T .

Var(T̄ ) = ∫ ∞
−∞ T̄ y2

1dy1 − (
∫ ∞
−∞ T̄ y1dy1)

2
is the variance of the cross-sectional averaged concentra-

tion field T̄ . If the initial condition of the passive scalar is a Gaussian function T |t=0 = 1√
2πσ

e− y2
1

2σ ,
then we have the exact formula for the variance

Var(T̄ )(t ) = Var(T̄ )(0) + 2
∫ t

0
κeff (s)ds. (34)

For general initial conditions, we have more exponential decaying terms in the variance formula.
Equation (34) is a valid approximation at long times. The exact variance formula can be found in
[28,29].

Using the relation between the flow and density perturbation (15), we have

∂t T1 − ∂2
y3

T1 = Pep

(
1
κ2

∂t ft − ∂2
y3

ft

Pes
0 sin θ
+ vs

)
, T1(y3, 0) = 0, ∂y3 T1

∣∣
y3=0,1 = 0. (35)

The solution is

T1 = Pep

∞∑
n=1

[ 〈 fs, φn〉bn

Pes
0 sin θ
+ 〈vs, φn〉

(
1 − e−λnt

λn

)]
φn, (36)
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where

〈vs, φn〉 = − 2γ cot(θ )

Pes

√
2γ [(−1)n − 1][sin(γ )(2γ 2 + π2n2) + sinh(γ )(2γ 2 − π2n2)]

(4γ 4 + π4n4)[sin(γ ) + sinh(γ )]
,

bn = −1

κ2an
[
λ2

n(κ2 + Sc − 2)2 − a2
n

] (e−tλn
{
a3

n − anλ
2
n[Sc2 + κ2(−3κ2 − 2Sc + 4)]

}

+ e− κ2+Sc
2 λnt

{
a3

n

[
− cosh

(
tan

2

)]
− a2

nλn(3κ2 + Sc − 2) sinh

(
tan

2

)

+ anλ
2
n[Sc2 + κ2(−3κ2 − 2Sc + 4)] cosh

(
tan

2

)

+λ3
n(Sc − κ2)(κ2 + Sc − 2)(κ2 + Sc) sinh

(
tan

2

)})
. (37)

Then, we have the series representation of the effective diffusion coefficient

κeff = 1 + Pe2
p

∞∑
n=1

[ 〈 fs, φn〉
Pes
0 sin θ

bn + 〈vs, φn〉
(

1 − e−λnt

λn

)]

×
{

〈vs, φn〉 − 〈 fs, φn〉e− κ2+Sc
2 λnt

Pes
0 sin θ

[
sinh

(
tan

2

)
a2

n + λ2
n

(
κ2

2 − Sc2
)

2κ2an
+ λn cosh

(
tan

2

)]}
.

(38)

To understand the contribution from the transient part of the flow solution, we compare it with
the effective diffusion coefficient induced by the steady flow solution,

κeff,s = 1 + Pe2
p

∞∑
n=1

〈vs, φn〉2

(
1 − e−λnt

λn

)
, (39)

and the long time limit of the effective diffusion coefficient

κeff (∞) = 1 + Pe2
p cot2(θ )

2γ Pe2
s [sin(γ ) + sinh(γ )]2

{
5

2
sin(2γ ) + 6γ sin(γ ) sinh(γ )

+ 5 cos(γ ) sinh(γ ) + γ [cosh(2γ ) − cos(2γ )] − 5 cosh(γ )[sin(γ ) + sinh(γ )]}. (40)

As an example, in a realizable experiment of sodium fluorescein diffusing in stratified sodium
chloride solution, the parameters could be g = 980 cm/s2, μ = 0.01 g/(cm s), 
 = 0.007 g/cm4,
ρ = 1 g/cm3, θ = π

4 . The diffusivity of sodium fluorescein is κ2 = 4.2 × 10−6 cm2/s [35], and
the diffusivity of sodium chloride is κ2 = 1.5 × 10−5 cm2/s [36]. Based on the formula of the
effective diffusivity, we have κeff (∞) = 6.958 for L = 0.1 cm, κeff (∞) = 13.103 for L = 1 cm. The
difference between the diffusivities of passive scalar and stratified scalar could be much larger in
temperature stratified experiments, where the enhanced effective diffusivity will be more significant.

Figure 5(a) shows the effective diffusion coefficient induced by the unsteady flow present in
Fig. 3, where the passive scalar molecular diffusivity is much smaller than the stratified scalar
diffusivity. We can see that the effective diffusion coefficient induced by the steady flow converges
to the limiting value at the passive scalar diffusion timescale t = 1, while the effective diffusion
coefficient induced by the unsteady diffusion-driven flow persists huge oscillations with the am-
plitude that is around twice of the limiting value at relatively larger timescales. Figure 5(b) shows
the effective diffusion coefficient when the molecular diffusivity of passive scalar and stratified
scalar are same. In this case, the effective diffusion coefficients induced by the steady and unsteady
flow solution are closer. Interestingly, instead of enhancing the effective diffusion coefficient, the
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FIG. 5. Effective diffusion coefficient for various parameters. The red solid line indicates the time depen-
dent effective diffusion coefficient induced by the unsteady diffusion driven flow. The formula is provided
in Eq. (38). The blue dashed line is the effective diffusion coefficient contributed by the steady part of
the flow which is calculated by Eq. (39). The black dash-dot curve is the long time limit of the effective
diffusion coefficient. The formula is provided in Eq. (40). (a) The parameters are Sc = κ2 = 10−4, γ = 12π ,
Pep = Pes = 1, θ = π

4 . The corresponding velocity field is presented in Fig. 3. (b) The parameters are Sc = 50,
κ2 = 1, γ = 5, Pep = Pes = 1, θ = π

4 .

unsteady flow solution temporally reduces the effective diffusion coefficient below 1. In contrast,
the steady flow creates dispersion enhancement for all parameters, which can be easily verified
from Eq. (39). Additionally, we emphasize this dispersion reducing phenomenon is not observed in
the scalar transport with single-frequency time-varying periodic shear flows [27–29]. We think this
reduction is due to the interaction of different modes in the space-time decomposition of the shear
flow. In the Appendix, we present a simple shear flow example that consists of two modes and can
reduce the dynamic effective diffusion coefficient below 1 at the earlier stages of the evolution.

To further understand this phenomenon, we are interested in the dependence of the minimum
effective diffusion coefficient mint κeff (t ; Sc, γ ) and the time for reaching its minimum value
tmin = argmintκeff (t ; Sc, γ ) on Sc and γ . We numerically search the minimum value and the results
are summarized in Fig. 6. We have several observations. First, in this parameter regime, as κ2

decreases, minγ ,Sc(mint κeff ) decreases and tmin increases, which implies the dispersion reducing
phenomenon is more significant for small κ2, namely, when the passive scalar diffusivity is larger
than the stratified scalar diffusivity. Second, mint κeff (t ; Sc, γ ) is considerably less than 1 for
moderate γ (10 ∼ 20) and is closer to 1 for large γ .

Next, we focus on the dispersion enhancement at long times. First, we consider the dependence
of the enhancement on the parameter γ . We have the asymptotic expansion of the effective diffusion
coefficient for large and small γ ,

κeff (∞) = 1 + Pe2
p cot2(θ )

Pe2
s

[
1 − 5

2γ
+ O(e−γ )

]
, γ → ∞,

κeff (∞) = 1 + Pe2
p cot2(θ )

Pe2
s

[
γ 8

22 680
− 2 879γ 12

4 086 4824̇00
+ O(γ 13)

]
, γ → 0. (41)

These asymptotic expansions suggest that the effective diffusion coefficient is bounded by
Pe2

p cot2(θ )

Pe2
s

= ( κ2 cot(θ )
κp

)2. In fact, γ → 0 as the channel width L vanishes and γ → ∞ as L → ∞.
When the channel width is small, the diffusion-driven flow is too weak to enhance the scalar
dispersion. When the channel width is large, the diffusion-driven flow is confined in the region
near the boundary and is not efficient to transport the scalar located far away from the boundary.
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FIG. 6. The first row shows the minimum value of the effective diffusion coefficient mint κeff (t ) for
(γ , Sc) ∈ (0, 120] × (0, 400], three different κ2, θ = π

4 and Pep = Pes = 1. The black dot indicates the lo-
cation of the minimum value minγ ,Sc(mint κeff ) in this parameter regime. The optimal parameters for reaching
minγ ,Sc(mint κeff ) are γ = 12.9407 and Sc = 58.5349 for κ2 = 0.25, γ = 11.6999 and Sc = 166.6348 for
κ2 = 1, γ = 10.16 and Sc = 400 for κ2 = 4. The second row shows tmin for κeff reaching the minimum value.
We use the terms with n � 259 in the series.

Figure 7 shows the enhanced effective diffusion coefficient as a function of γ with Pep = 1. As we
expected, the enhanced effective diffusion coefficient is zero when γ = 0, and converges to one as
γ increases to infinity. This analysis shows that the dispersion of the stratified scalar can at most
be doubled in the presence of diffusion-driven flow. In contrast, the effective diffusion coefficient
of the passive scalar could be significantly enhanced by the diffusion-driven flow when the passive
scalar diffusivity κp is much smaller than the stratified scalar diffusivity κs, namely, Pep � Pes.

Second, we consider the dependence of effective diffusion coefficient on two different Péclet
numbers. The shear flow enhanced effective diffusion coefficient of a passive scalar is proportional
to the square of the Péclet number Pep, which has been demonstrated by many methods such as

FIG. 7. κeff − 1 against the nondimensional parameter γ = 1√
2
( RePes (sin θ )2
0

Fr2 )
1
4 . The parameters are Pep =

Pes = 1 and θ = π

4 .
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FIG. 8. κeff − 1 against the inclination angle θ . The parameters are Pep = Pes = 1. (a) γ1 = 1, (b) γ1 = 10.

homogenization theory [25,26], Aris moment approach [22,27–29]. All formulas of the effective
diffusion coefficient (38), (39), and (40) are consistent with this conclusion. In contrast, the effective
diffusion has a much more complicated dependence upon the stratified scalar’s Peclet number, Pes,
as is clear from the formula given in Eq. (40).

Third, we study the dependence of the effective diffusion coefficient on the inclination angle. For
fixed Péclet numbers and γ1 = 1√

2
( RePes
0

Fr2 )
1
4 , we have

κeff (∞) = 1 + Pe2
p

Pe2
s

[
γ 8

1 θ2

22680
+ O(θ5/2)

]
, θ → 0,

κeff (∞) = 1 + Pe2
p

(
θ − π

2

)2

2γ1Pe2
s

{
5

2
sin (2γ1) + 5 cos (γ1) sinh (γ1) − 5 cosh (γ1)[sin (γ1) + sinh (γ1)]

6γ1 sin (γ1) sinh (γ1) + γ1 + [cosh (2γ1) − cos (2γ1)]} + O
(
θ − π

2

)3
, θ → π

2
. (42)

Figure 8 plots the enhanced effective diffusion coefficient as a function of the inclination angle θ .
The enhanced effective diffusion coefficient vanishes at θ = 0 and π

2 , which is consistent with the
asymptotic expansions (41). The shape of this curve depends on the value of γ1. It is symmetric when
γ1 is small, and skewed when γ1 is large. Numerical calculation shows that the enhanced effective
diffusion coefficient reaches the maximum value κeff ≈ 0.0000109356 at θ ≈ 0.783409 < π

4 when
γ1 = 1, and reaches the maximum value κeff ≈ 13.6319 at θ ≈ 0.110802 when γ1 = 10. Figure 9
shows the optimal inclination angle θ0 for inducing the maximum effective diffusion coefficient
as a function of the parameter γ1. For small γ1, the optimal inclination angle is around θ = π

4 ≈
0.785398 which can be seen from Eq. (41). As γ1 increases, the optimal inclination angle decreases.
The dependence of the enhanced effective diffusion coefficient on the inclination angle and the
parameter γ1 is summarized in Fig. 10.

V. CONCLUSION AND DISCUSSION

This paper investigates the diffusion-driven flow in a tilted parallel-plate channel domain with
a linear density stratification and the effective mixing of a diffusing passive scalar transported by
this flow. Using an eigenfunction expansion under the Boussinesq approximation, we derived exact
expressions for the flow and established that the unsteady flow converges to the steady solution
monotonically or oscillatory depending on the relation between the Schmidt number and the nondi-
mensionalized diffusivity. In contrast, the flow in the half-space inclined plane problem exhibits
oscillatory convergence for all parameters. We demonstrated that the most observable oscillations
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FIG. 9. The optimal inclination angle θ0 for inducing the maximum effective diffusion coefficient as a
function of the parameter γ1 = 1√

2
( RePes
0

Fr2 )
1
4 . The parameters are Pep = Pes = 1.

in the flow evolution occur when κ2 = Sc. To validate the Boussinesq approximation, we proposed
the quasi-Boussinesq approximation, which incorporates transverse density variation in the inertial
term. This approximation retains the most advantages of the Boussinesq approximation in analysis.
First, we can still find the solution that only depends on the transverse coordinate of the channel.
Second, we can also decouple the perturbed density field and velocity field by differentiating and
obtain a fourth-order nonlinear equation for the perturbed density field, which significantly reduces
the computational cost. Our numerical solutions demonstrate that the relative difference between
the Boussinesq and quasi-Boussinesq approximations is consistently small, validating the use of the
Boussinesq approximation for a weak density gradient in our analysis.

Next, we computed the exact scalar distribution variance evolution and effective diffusion
coefficient for the passive scalar. Our formula shows that diffusion-driven flow can significantly
enhance the effective diffusion coefficient of the scalar, particularly when the molecular diffusivity
of the passive scalar is much smaller than the stratified scalar diffusivity. This enhancement could
have practical applications in geophysics and microfluidics. We discovered a nonlinear relationship
between the enhanced effective diffusion coefficient and the Péclet number of the stratified scalar,
which is distinct from the typical quadratic scaling relation for the passive scalar in a shear flow. For
small Schmidt numbers, the unsteady flow solution can cause the effective diffusion coefficient
induced by the unsteady flow to oscillate with an amplitude larger than the effective diffusion
coefficient induced by the long-time-limiting steady-state flow. Interestingly, the unsteady flow

FIG. 10. The enhanced effective diffusion coefficient as a function of the inclination angle and the parame-
ter γ1. The red solid line indicates the optimal inclination angle θ0 for inducing the maximum effective diffusion
coefficient when the parameter γ1 = 1√

2
( RePes
0

Fr2 )
1
4 is given. The parameters are Pep = Pes = 1.
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solution can temporarily reduce the time-dependent effective diffusion coefficient in some parameter
regimes, even below that produced by pure molecular diffusion in the absence of a flow

Future work includes several directions. First, the steady diffusion-driven flow has been
studied in many different boundary geometries [37–40]. We are interested in investigating the
time-dependent solution in those domains. Second, the current analysis assumes a linear strati-
fication to simplify the calculation. In future work, we are interested in analyzing the flow and
scalar evolution using full numerical simulations to further explore the validity of the Boussinesq
approximation. Third, the diffusion-driven flow might exist in the presence of other external force
fields as long as the direction of the external force field is not parallel to the impermeable boundary.
One possible external force field is the electric field, and therefore we expect the diffusion-driven
flow could be observed in some electrohydrodynamic problems. Last, there are several phenomena
that are not well-explained by the existing theory. For instance, Phillips [1] reported that an
insulating container of mercury with a “stable” thermal stratification could spontaneously generate
turbulent flow, which challenges our understanding of the flow behavior in such systems. Addi-
tionally, the experimental study on the inclined plane problem [41] found that the theoretical flow
solution diverges from the experimental results for angles below 5◦. Similarly, the experimental and
theoretical results for the diffusion-driven flow in a two parallel-plates channel domain may differ
when the inclination angle is small. We are keen to investigate these intriguing phenomena and
develop models that can better explain them.
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APPENDIX: REDUCTION OF THE EFFECTIVE DIFFUSION COEFFICIENT

We present a simple shear flow that explicitly demonstrates a case in which the dynamic effective
coefficient can be less than one on transient timescales. When v(y, t ) = √

2 cos πy(e−2t − e−t ), the
solution of Eq. (33) is

T1 = e−π2t {e(π2−2)t [(π2 − 2)(−et ) + π2 − 1] − 1}
2 − 3π2 + π4

. (A1)

The effective diffusion coefficient is given by

κeff (t ) = 1 − Pe2
p

e−(2+π2 )t (et − 1){e(π2−2)t [(π2 − 2)et + π2 − 1] − 2π2 + 3}
2 − 3π2 + π4

. (A2)

When Pep = 1, κeff (1) ≈ 0.986359 < 1, namely, the longitudinal dispersion is temporally reduced
by this time-dependent shear flow.
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