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We investigate the mechanisms by which inertial particles dispersed at semidilute
conditions cause significant drag-reduction in a turbulent channel flow at Reτ = 180.
We consider a series of four-way-coupled Euler-Lagrange simulations where particles
having friction Stokes number St+ = 6 or 30 are introduced at progressively increasing
mass loading from M = 0.2 to 1.0. The simulations show that St+ = 30 particles cause
large drag-reduction by up to 19.74% at M = 1.0, whereas St+ = 6 particles cause large
drag increase by up to 16.92% at M = 1.0. To reveal the mechanisms underpinning
drag-reduction or drag-increase, we investigate the stress distribution within the channel
and the impact of the dispersed particles on the near-wall coherent structures. We find a
distinctive feature of drag-reducing particles which consists in the formation of extremely
long clusters, called ropes. These structures align preferentially with the low-speed streaks
and contribute to their stabilization and suppression of bursting. Despite the additional
stresses due to the particles, the modulation of the near-wall coherent structures leads to a
greater reduction of Reynolds shear stresses and partial relaminarization of the near-wall
flow. In the case of the drag-increasing particles with St+ = 6, a reduction in Reynolds
shear stresses is also observed, however, this reduction is insufficient to overcome the
additional particle stresses which leads to drag increase.
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I. INTRODUCTION

Inertial particles introduced in wall-bounded turbulent flows play a significant role in the
transport of mass and momentum in many engineering applications. Examples include cyclone
separators, fluidized bed risers, sediment transport in pipelines, and dust ingested in engines. In the
case of gas-solid flows, semidilute particle concentrations, i.e., particle volume-fraction typically
10−6–10−3, may be sufficient to cause significant modulation of the flow structures [1]. Provided
that the mass loading is O(1), the dynamics of the two phases in the semidilute regime are controlled
by the two-way coupling between the particles and fluid, whereas particle-particle collisions play a
secondary or negligible role. In this paper, we show that semidilute inertial particles introduced in
a turbulent channel flow may cause significant skin-friction-drag increase or reduction, depending
on particle concentration, inertia, and how particle clusters interact with near-wall coherent flow
structures.

Inertial solid particles, or liquid droplets small enough to be dominated by surface tension,
dispersed in gas may drastically alter the carrier flow properties. Due to their inability to follow fluid
streamlines, these particles exert microstresses on the carrier fluid. If the particles are sufficiently
concentrated, then the collective action of these microstresses may amount to a large macroscopic
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force capable of modifying the carrier flow properties. Taking homogeneously sheared turbulence
(HST) as a simplified proxy for general turbulent shear flows, Kasbaoui [1] and Kasbaoui et al. [2]
showed that introducing inertial particles at semidilute concentration, characterized by an average
particle volume fraction φ0 = 10−6–10−3 and mass loading M = O(1), may cause an attenuation or
augmentation of the turbulent kinetic energy. Whether the latter is increased or decreased depends
on particle inertia. Ahmed and Elghobashi [3] showed that turbulence modulation in HST is due
to a reverse cascade of energy, whereby energy injected into the flow by particles at their scale
propagates up to the macroscales. The resulting particle-laden turbulence has distinctively different
characteristics from turbulence in single-phase flows as shown by Gualtieri et al. [4] who found that
the energy cascade in particle-laden HST departs from the traditional −5/3 law [5].

In wall-bounded turbulent flows, inertial particles are expected to have disproportionally larger
impact on near-wall flow structures. Inertial particles tend to migrate to regions of lower turbulent
fluctuations, a process called turbophoresis. The latter leads to the accumulation of particles near
bounding walls. In simulations of dilute particle-laden turbulent channel flows, Sardina et al. [6], and
later Nilsen et al. [7] and Yuan et al. [8], showed that the particle concentration in the viscous layer
may be one or two orders of magnitude larger than the mean. The highest wall accumulation happens
for particles with inertia characterized by friction Stokes number St+ = τpu2

τ /ν in the range 10–50.
Here, uτ , ν, and τp refer to the friction velocity, kinematic viscosity, and particle response time.
Further, such inertial particles disperse in a highly inhomogeneous way leading to the formation of
clusters even in the near-wall region where most particles accumulate [6]. Clusters found therein
tend to be elongated structures that may be several orders of magnitude longer than the particle
diameter [9]. Because inertial particles accumulate into such long clusters, they are able to modulate
flow structures on scales as large as the cluster scales, which may exceed even the largest turbulence
scales [1]. Hence, provided that the particle concentration is sufficiently large to yield meaningful
feedback force on the flow, the dispersed particles are expected to modulate near-wall flow structures
and alter the turbulence structure in wall-bounded flows.

The near-wall coherent flow structures have a large impact on skin-friction drag. The existence
of these structures, their evolutionary dynamics and their role in the generation of shear stress
in particle-free wall-bounded turbulent flows have long been under study. Fiedler [10] describes
the existence of these structures within the boundary layer as a “zoo of structures” ranging
from “horseshoe- and hairpin-eddies, pancake- and surfboard-eddies, typical eddies, vortex rings,
mushroom-eddies, arrowhead-eddies, etc.” In turbulent channel flows, Jeong et al. [11] found that
flow structures in the buffer region are dominated primarily by elongated quasistreamwise vortices.
The latter are arranged antisymmetrically with vortices of opposite directions arranged next to each
other [12,13]. The so-called low-speed streaks are regions of slow moving fluid that have been
identified in various studies, and were later shown to be nested in the space between a pair of
quasistreamwise vortices [14–16]. The spanwise spacing of low-speed streaks is a characteristic of
turbulence in channels, since its value of ∼100 wall units was found to vary little with Reynolds
number [14,17–19]. Bursting occurs when the quasistreamwise vortices become unstable [20].
The formation and breakdown of these structures is part of a self-sustaining process that repeats
periodically. Willmarth and Lu [21] showed that bursting events are among the largest contributors
to the Reynolds stress production. Thus, reducing skin-friction drag hinges on the ability to suppress
bursting and stabilizing quasistreamwise vortices as has been shown in drag-reduced polymeric
channel flows [22–25].

To the best of our knowledge, parameters leading to reproducible skin-friction-drag reduction
using inertial particles have not yet been identified. The majority of older studies point to an
increase of skin-friction drag or negligible effect [26,27]. Li et al. [28] are among the first to
provide evidence of skin-friction-drag reduction in simulations with the point-particle method.
The authors showed that particles with friction Stokes number St+ = 192 dispersed in a vertical
channel at Reτ = uτ h/ν = 125, where h is the channel half-height, increase the fluid mass flow rate
by ∼5% for mass loadings as small as M = 0.2. Note that an increase in fluid mass flow rate is
equivalent to a reduction in skin-friction drag. Later, Zhao et al. [29] showed that inertial particles
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with St+ = 30 at mass loading M = 0.36 increase the fluid mass flow rate by approximately 15%
in a turbulent channel flow at Reτ = 180. However, these results may not be representative of
a stationary state, since the latter requires much longer integration time than what is reported
by Zhao et al. [29]. A followup study by Zhou et al. [30] in an identical configuration shows
negligible drag reduction, about ∼0.2% at M = 0.4 and 2.8% at M = 0.75. Recently, Costa et al.
[31] revisited the semidilute particle-laden channel flow at Reτ = 180 using particle-resolved direct
numerical simulations (PR-DNS). Contrary to the aforementioned work, Costa et al. [31] found that
inertial particles with St+ = 50 at M = 0.34 cause a large increase in skin-friction drag by about
∼16% compared to a particle-free channel. One should also note that despite the higher numerical
resolution offered by PR-DNS, the greater computational cost constrained Costa et al. [31] to use
significantly smaller computational domain. With volume about 1/4 of that used in prior simulations
with the point-particle method [29,30], the computational box used by Costa et al. [31] may be too
small to allow a natural development of particle clusters and their interaction with near-wall coherent
structures.

Given the conflicting results previously reported, the questions of whether inertial particles can
induce significant skin-friction-drag reduction, and if they do, how, have not been settled yet. In
this paper, we address these questions using Euler-Lagrange simulations of particle-laden turbulent
channel flow at Reτ = 180 while varying the characteristics of the particle phase. Although there is
a multitude of nondimensional numbers that can be used to characterize the particle-fluid interaction
[32], our past work shows that Reynolds number, Stokes number, and Mass loading are the most
relevant nondimensional numbers that control the dynamics in the semidilute regime [1,2,33–36].
For this reason, we focus on varying the Stokes number St+ and mass loading M separately. In
Sec. II, we describe the mathematical framework, numerical methods, and simulation parameters
used in this study. To highlight the flow modulation induced by inertial particles, we provide a brief
review of the characteristics of particle-free turbulent channel flow at Reτ = 180 in Sec. III, namely,
in terms of velocity statistics, stress balance, and coherent flow structures. In Sec. IV, we analyze
the particle-laden channel flows, in particular, the induced flow modification (Sec. IV A), stress
balance (Sec. IV B), and interplay between particle clusters and near-wall coherent flow structures
(Sec. IV C). Finally, we provide concluding remarks in Sec. V.

II. SIMULATION SETUP AND PARAMETERS

In this section, we present the parameters and methods used in our Euler-Lagrange simulations
of semidilute particle-laden turbulent channel flow. Section II A provides an overview of the mathe-
matical framework, while Sec. II B provides details about the configuration and flow parameters in
this study.

A. Mathematical formulation

The particle phase is treated in a Lagrangian frame, where each individual particle is tracked. For
a particle “i,” the dynamics are given by [37]

dxi
p

dt
= ui

p, (1)

dui
p

dt
= fd

[
u f

(
xi

p, t
) − ui

p

]
τp

+ 1

ρp
∇ · τ

(
xi

p, t
) + F i

p→p + F i
w→p, (2)

where ρp, dp, τp = ρpd2
p/(18μ), xi

p, ui
p, F i

w→p, and F i
p→p are the particle density, diameter, response

time, position, velocity, particle-wall collisional acceleration, and particle-particle collisional accel-
eration, respectively. The fluid stress tensor τ is given by

τ = −pI + μ
[∇u f + ∇uT

f − 2
3 (∇ · u f )I

]
, (3)
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where the hydrodynamic u f is the fluid velocity, p is pressure, and μ is the dynamic viscosity.
I is the identity tensor. The first term on the right-hand side of Eq. (2) accounts for the drag force
exerted by the fluid on the particle. To accurately capture this force for particles with finite Reynolds
number Rep = |u f − up|dp/ν and particles that may be located within clusters, we use a nonlinear
drag correction factor fd modeled with the correlation by Tenneti et al. [38]. The latter accounts
for particle Reynolds number Rep and local particle volume fraction φ. The second term on the
right-hand side of (2) represents the acceleration due to resolved fluid stresses on the particle phase.
Although this term is included for completeness, its effect is negligible in the semidilute regime
due to the high density ratio ρp/ρ f = O(103). For the same reason, other hydrodynamic forces
are ignored. Note that particle-particle collisions, while typically negligible in dilute flows with
average particle volume fraction φ0 < 10−3, are included due to the tendency of inertial particles to
accumulate into clusters with local volume fraction as high as φ ∼ 10−2. The particle-particle and
wall-particle collisions are performed using the soft-sphere collision model described in [39], and
originally proposed Cundall and Strack [40], with a restitution coefficient e = 0.9. The unperturbed
fluid velocity at the particle location is computed using the method of Ireland and Desjardins [41].
Further, to isolate inertial effects, gravity is ignored. The carrier turbulent flow is described using
volume-filtered incompressible Navier-Stokes equations [39,42],

∂

∂t
(1 − φ) + ∇ · [(1 − φ)u f )] = 0, (4)

ρ f

{
∂

∂t
[(1 − φ)u f ] + ∇ · [(1 − φ)u f u f ]

}
= −∇p + μ∇2u f + (1 − φ)A + F p + ∇ · Rμ, (5)

where u f is the fluid velocity, p is pressure, F p is the momentum exchange between the two-phases,
and A is a constant pressure gradient that drives the flow within the channel. This forcing is a
function of the wall shear stress τw and the channel half height h, such that A = (τw/h)ex, where
ex is a unitary vector oriented in the streamwise direction. The tensor Rμ arises from filtering the
fluid stress tensor [39], and is closed using the effective viscosity model Rμ = μ f [(1 − φ)−2.8 − 1]
[∇u f + ∇uT

f − 2
3 (∇ · u f )I] of Gibilaro et al. [43]. This term, included here for completeness,

is negligible in the semidilute regime considered. Likewise, the presence of the volume fraction
φ in Eqs. (4) and (5) accounts for volume excluded by the particle phase [42]. This effect is
typically neglected in the semidilute regime [44]. However, we retain the volume fraction φ in
our equations since turbophoresis and preferential concentration may lead to local accumulation of
the particles resulting in volume fractions one or two orders of magnitude higher than the average
[6–8]. Consistently with Eq. (2), the particles exert a feedback force on the fluid given by

F p = −φρp fd
u f |p − up

τp
− φ∇ · τ|p, (6)

where up(x, t ) is the Eulerian particle velocity at the location x, u f |p is the fluid velocity at the
particle location, and τ|p is the total fluid stresses at the particle location. These Eulerian fields are
computed from the Lagrangian quantities in Eqs. (1) and (2) using a filtering procedure that reads

φ(x, t ) =
N∑
i

Vpq
(∣∣∣∣x − xi

p

∣∣∣∣), (7)

φup(x, t )(x, t ) =
N∑
i

Vpui
pq

(∣∣∣∣x − xi
p

∣∣∣∣), (8)

φu f |p(x, t ) =
N∑
i

Vpu f
(
xi

p(t ), t
)
q
(∣∣∣∣x − xi

p

∣∣∣∣), (9)

where Vp = πd3
p/6 is the particle volume and q is a Gaussian filter kernel. As discussed above,

drag force dominates the momentum exchange in the semidilute regime. From a scaling analysis
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TABLE I. Summary of the nondimensional parameters.

Runs Reτ St+ M φ0 d+
p ρp/ρ f h/dp Np

A 180 6 0.2 2.4×10−4 0.36 833 500 6.03×106

B 180 6 0.6 7.2×10−4 0.36 833 500 18.1×106

C 180 6 1.0 1.2×10−3 0.36 833 500 30.1×106

D 180 30 0.2 2.4×10−4 0.80 833 225 4.93×106

E 180 30 0.6 7.2×10−4 0.80 833 225 14.8×106

F 180 30 1.0 1.2×10−3 0.80 833 225 24.7×106

of Eq. (6), one can see that the particle feedback force scales with mass loading M = φ0ρp/ρ f .
Consequently, the feedback force from the particle phase onto the fluid phase is negligible if M � 1.
In this case, the flow dynamics are independent from those of the particle phase, essentially behaving
as in particle-free conditions. However, as M approaches unity, the coupling between the two-phases
strengthens resulting in flow and particle dynamics that are mutually interlinked. The dynamics
resulting from the joint evolution of the particle and fluid phases at M = O(1) are the subject of this
study.

B. Channel flow configuration

We consider six monodisperse particle-laden turbulent channel flows at varying particle-phase
properties. Table I provides a summary of the flow and simulation parameters. In all these simula-
tions, the friction Reynolds number is fixed at Reτ = ρ f uτ h/μ = 180, where uτ = √

τw/ρ f is the
friction velocity and τw is the wall shear stress. Two particle diameters are considered yielding
nondimensional diameters d+

p = 0.36 and 0.80. The superscript + denotes a quantity that has
been nondimensionalized using inner wall scaling. These particles are sufficiently small to make
any finite-size effects negligible. The friction Stokes number, which measures particle inertia, is
St+ = τpu2

τ /ν = 6 and St+ = 30 for the particles with d+
p = 0.36 and d+

p = 0.80, respectively. In
both cases, particle inertia is significant such that one may expect these particles to form clusters and
accumulate near walls due to turbophoresis [6]. For each of the two Stokes numbers considered, we
vary the average particle volume fraction to yield φ0 = 2.4×10−4, 7.2×10−4, and 1.2×10−3. With
the particle-fluid density ratio fixed at ρp/ρ f = 833 for all 6 cases, the mass loading M = ρp/ρ f φ0

is 0.2, 0.6, or 1.0. These parameters correspond to the semidilute regime, where the particle phase
is dilute, yet the two-way coupling between the particle and fluid phases is strong due to the large
mass loading. Thus, particle feedback on the fluid can be expected to lead to significant modulation
of the flow, especially for cases with M = 0.6 and 1.0.

Figure 1 shows a schematic of the domains used in this study. Channel flows laden with
St+ = 6 particles are simulated in a domain of size 4πh in the streamwise direction x, 2h in the

FIG. 1. Schematic of the computational domains used in simulations of channels laden with (a) St+ = 6
and (b) St+ = 30 particles.
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wall-normal direction y, and (4/3)πh in the spanwise direction z as shown in Fig. 1(a). This domain
size is comparable to those used in previous studies [29,30]. Channel flows laden with St+ = 30
particles are simulated in a domain 9 times larger with dimensions 12πh×2h×4πh as shown in
Fig. 1(b). While computations in such larger domain are significantly more expensive, we have
found it necessary to use this larger domain to capture the increased spanwise spacing of the particle
and flow structures with St+ = 30 particles. This aspect is discussed in Sec. IV C.

The equations of motion are solved using the flow solver NGA [45], with the Euler-Lagrange
strategy of Capecelatro and Desjardins [39]. The fluid mass and momentum equations (4) and (5)
are solved on a staggered grid of size 226×128×168 for the small channel and 678×128×504 for
the larger one. The grid is stretched in the wall-normal direction using a hyperbolic tangent function
such that the minimum mesh spacing in the wall-normal direction is �y+

min = 0.5. In the streamwise
and spanwise directions, the mesh spacing is constant at �x+ = 10 and �z+ = 5, respectively. In
both small and large domains, the values �x+, �y+

min, and �z+ are identical. The discretization
relies on second order finite-volume schemes that preserve mass, momentum and kinetic energy
[45–47]. The fluid equations are advanced in time with a fractional step approach and a Crank-
Nicolson scheme introduced by Pierce and Moin [48]. Equations (1) and (2), describing the position
and velocity of Lagrangian particle are advanced using a second-order Runge-Kutta scheme. Soft-
sphere particle-particle and particle-wall collisions are handled with the method in [39]. Depending
on the case, a total of N = 4.9×106 to 30.1×106 particles are tracked in the simulation domain.
Eulerian particle data such as the volume fraction field are computed from Lagrangian data using a
Gaussian kernel of width 7dp. The method is fully conservative, yields grid-independent solutions
in two-way-coupled problems, and has been extensively verified against experiments [49–52], and
theoretical calculations [1,2,35,36].

The Euler-Lagrange simulations are initialized from auxiliary simulation of unladen channel flow
at Reτ = 180. Once the single-phase flow reaches a stationary state, the Lagrangian particles are
inserted randomly into the channel with velocities matching the fluid velocity interpolated at their
locations. To reach a new stationary state, the two-phase flow simulations are carried out for 120
eddy turnover times (h/uτ ). After which, the simulations are run for additional 10 eddy turnover
times to collect statistics. In total, running these simulations required 2.58M CPU hours (cpu.h)
on Intel Xeon Gold 6252 nodes, with each St+ = 6 simulation requiring 345 600 cpu.h and each
St+ = 30 simulation requiring 518 400 cpu.h.

III. STRUCTURE OF A PARTICLE-FREE TURBULENT CHANNEL FLOW

The particle-free channel represents a baseline reference that we use to highlight flow modifica-
tions induced by inertial particles. To that end, we start by reviewing aspects of an unladen turbulent
channel flow at Reτ = 180 that are relevant to the discussion in Sec. IV.

Figure 2 shows profiles of mean streamwise velocity 〈u+
f 〉 and root-mean square (rms) velocity

fluctuations. Averaging is performed using 100 snapshots collected over a period of 10 of eddy
turnover time once the flow is stationary. Further, the streamwise and spanwise directions are
averaged such that the only variation is in the wall-normal direction. As expected at this Reynolds
number, the mean streamwise velocity shows three characteristic regions: viscous layer for y+ � 5,
a buffer layer for 5 � y+ � 30, and a logarithmic layer for y+ � 30. Velocity fluctuations in the
streamwise direction dominate over the two other components and peak at y+ ∼ 12 in the buffer
layer. These observations are consistent with those of Kim et al. [53] and general understanding of
turbulent channel flow at the Reynolds number considered.

The structure of the mean flow results from a balance between pressure gradient −〈∂ p/∂x〉,
viscous stress μd〈u f 〉/dy, and Reynolds shear stress −ρ f 〈u′

f v
′
f 〉. By Reynolds-averaging the fluid

momentum equations, one can show that the equation for the streamwise momentum reduces to

−
〈
∂ p

∂x

〉
= d

dy

(
μ

d

dy
〈u f 〉 − ρ f 〈u′

f v
′
f 〉

)
. (10)
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FIG. 2. Unladen flow velocity statistics at Reτ = 180: (a) Streamwise mean velocity (b) root-mean square
velocity fluctuations in the streamwise (uf ,rms

+, ), normal (v f ,rms
+, ) and spanwise (w f ,rms

+, )
directions. The symbols correspond to the data taken from Kim et al. [53].

Given that the pressure gradient in a fully developed channel is constant, the total shear stress (sum
of the viscous and Reynolds stresses) must vary linearly across the channel, i.e.,

μ
d

dy
〈u f 〉 − ρ f 〈u′

f v
′
f 〉 = τw

(
1 − y

h

)
. (11)

This behavior is illustrated in Fig. 3 showing the variation of the total shear stress and its viscous and
Reynolds contributions as a function of the wall normal distance. In accordance with Eq. (11), the
total shear stress varies linearly from the wall to the channel center where it vanishes. The viscous
shear stress dominates near the wall and vanishes away from it. Conversely, the contribution of the
Reynolds shear stress is small in the viscous sublayer, whereas it dominates in the logarithmic layer.

FIG. 3. Contribution of the Reynolds shear stress ( ) and viscous shear stress ( ) to the total shear
stress ( ) in the particle-free channel at Reτ = 180.
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FIG. 4. Isocontours showing the low speed streaks in the particle-free channel at y+ = 10.

The Reynolds shear stresses has a direct influence on skin-friction drag. The latter is character-
ized using the coefficient

Cf = τw

1
2ρ f U 2

b, f

, (12)

where Ub, f = ṁ f /ρ f is the bulk fluid velocity corresponding to the ratio of the cross-sectional
average fluid mass flow rate and the fluid density. While τw is fixed in a channel flow driven by
a constant pressure gradient, modulating the Reynolds shear stress is susceptible to change the
bulk velocity Ub, f , and, in turn, the skin-friction drag Cf . Double integrating Eq. (11) clarifies the
connection between Cf and Reynold shear stress. The resulting mass flow rate per unit spanwise
length is

ṁ f

Lz
= 2

3

τwh2

ν

[
1 + 3

(uτ h)2

∫ h

y=0

∫ y

y′=0
〈u′

f v
′
f 〉dy′dy

]
. (13)

In this form, it becomes clear that the Reynolds shear stress reduces the mass flow rate, given
〈u′

f v
′
f 〉 < 0, resulting in an increase of Cf compared to the laminar baseline. Therefore, it is not

surprising that a large number of prior studies on skin-friction-drag reduction in turbulent channel
flows focused on reducing the Reynolds shear stress [54–56].

From a mechanistic perspective, the Reynolds shear stress arises from coherent flow structures
that populate the near-wall region [57]. The so-called low-speed streaks, regions of slow moving
fluid elongated in the streamwise direction, are among the most significant coherent structures found
in a turbulent channel flow [58]. These streaks are shown in Fig. 4 visualized using isocontours
of streamwise velocity in a wall parallel plane at y+ = 10. There has been sustained effort to
understand the morphology and dynamics of low-speed streaks, as well as their connection to
other coherent structures, such as quasistreamiwse vortices and so-called large-scale motions and
very-large-scale motions (see Refs. [11–17,20,21,58–61]). The general consensus is that low-speed
streaks in the buffer layer are formed between a pair of quasistreamwise vortices with opposite
orientation. The bursting of low-speed streaks contributes a significant part of the Reynolds shear
stress and turbulent energy production [58,62]. This occurs when the quasistreamwise vortices
surrounding a low-speed streak become unstable [11], resulting in a lift up and eventual break
down of the streak. Prior to their collapse, low-speed streaks in the buffer region have a typical
length in the range 200–300 wall units [11,58], but may extend beyond 1000 wall units [19].
Remarkably, these structures have a spanwise spacing λ+

f that varies little with Reynolds number,
and is about λ+

f ∼ 100–110 [14,17–19]. We verify this by computing the two-point autocorrelation
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FIG. 5. Two-point autocorrelation of the streamwise velocity fluctuations in the spanwise direction for
particle-free channel at y+ = 10.

of the streamwise velocity as a function of the spanwise separation and wall distance,

R f
uu(�z; y0) = 〈u′

f (x, y0, z, t )u′
f (x, y0, z + �z, t )〉〈
u′2

f

〉 . (14)

Figure 5 shows the variation of R f
uu at y+ = 10. The streak spanwise spacing λ+

f corresponds to

twice the distance between the origin and �z+ where R f
uu reaches a first minimum which yields

λ+
f = 2×53 = 106 in the present simulations.

It is noteworthy that the physics of a turbulent channel flow, discussed here at Reτ = 180, remain
largely the same near the wall, even at much higher Reynolds numbers. Moser et al. [63] conduct
wall-bounded channel flow simulations at Reτ = 590, 395, and 180. They showed that despite
differences in the log region, the dynamics in the viscous and buffer layer regions are similar.
Given that inertial particles tend to accumulate in these two regions, we expect that the particle-fluid
interactions observed at Reτ = 180 will persist to much higher Reynolds numbers.

IV. EFFECT OF INERTIAL PARTICLES AT SEMIDILUTE CONDITIONS

Introducing inertial particles at semidilute concentration causes a departure from the known
characteristics of a particle-free channel flow. In the following, we analyze the flow modulation
resulting from the particle feedback force and propose a mechanism based on the interplay between
near-wall coherent structures and particle clusters.

A. Flow modulation and impact on skin-friction drag

Figure 6 shows isocontours of the streamwise velocity at an arbitrary time after the flow reached
a stationary state. From these instantaneous visualizations, it is immediately clear that semidilute
inertial particles cause strong modulation of the carrier flow, with the most apparent change being a
change in fluid bulk velocity. The latter is visibly increased by St+ = 30 particles at mass loading
M = 1 compared to the reference particle-free flow. In particular, the fluid streamwise velocity near
the centerline shows a noticeable increase. Further, the overall level of turbulence judged by the
naked eye is diminished compared to the unladen flow. In contrast, St+ = 6 particles at mass loading
M = 1 cause an apparent slow down of the carrier flow. The greatest drop of the fluid velocity is
around the centerline.
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FIG. 6. Isocontours of streamwise velocity in a wall-normal plane: (top) the reference unladen flow,
(middle) flow laden with St+ = 30 particles at M = 1.0, and (bottom) flow laden with St+ = 6 particles at
M = 1.0. Note: To facilitate visual comparison, the domain in the middle has been truncated to the same
dimensions as the smaller domain in the bottom case.

Figure 7 shows the mean streamwise velocity profile for the particle-laden cases with St+ = 6
and St+ = 30 at the mass loadings M = 0.2, 0.6, and 1.0. The velocity profile in the particle-free
channel flow is also shown for comparison. In the viscous sublayer, the profiles follow the same
linear scaling as the unladen channel. The largest impact of the inertial particles manifests in the
buffer and logarithmic layers. In channels laden with St+ = 30 particles, the fluid velocity profile
shifts upward in the logarithmic layer from the reference profile of the unladen channel. This
trend is further reinforced with increasing mass loading which leads to greater upward shift of
the velocity profile. These observations are in agreement with those of Zhou et al. [30] who found a

FIG. 7. Average streamwise velocity as a function of the wall normal distance for (a) St+ = 6 and
(b) St+ = 30 various mass loadings. The solid black line represents a particle-free channel. Symbols denote
Stokes number St+ = 6 (•) or 30 (�). Darker symbols correspond to larger mass loading which varies from
0.2 to 1.0.
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TABLE II. Variation of percent drag reduction and mass flow rate in the present simulations.

Stokes number (St+) Mass loading (M) DR(%) �ṁ f /ṁ f ,0(%)

6 0.2 −1.76 −0.78
0.6 −8.90 −3.93
1.0 −16.92 −6.10

30 0.2 4.21 2.22
0.6 12.27 7.37
1.0 19.54 11.07

similar upward shift of the streamwise velocity profile in their simulations at Reτ = 180, St+ = 30,
and M = 0.75. Conversely, the profile of the mean streamwise velocity shifts downward from the
reference unladen flow when St+ = 6 particles are suspended. Similar to the cases with higher
inertia particles, increasing the mass loading causes an amplification of the trend observed, i.e., a
downward shift of the profile here.

Figures 6 and 7 provide qualitative and quantitative evidence that St+ = 30 particles increase the
fluid mass flow rate, while St+ = 6 particles decrease it. As discussed in Sec. III, the implication of
this flow modulation in a channel driven by a constant pressure gradient is that St+ = 30 particles
decrease skin-friction drag, whereas St+ = 6 perform the opposite, i.e., increase skin-friction
drag.

Figures 8 shows the variation of the velocity fluctuations rms with Stokes number and mass
loading. For St+ = 6 particles, the profile of the streamwise fluctuations at M = 0.2 and M = 0.6
changes little from the profile of the unladen flow. Only when mass loading is increased to
M = 1.0 do we see a significant change of the streamwise fluctuations, primarily in the log
region. Conversely, St+ = 30 particles lead to a more pronounced modulation of the streamwise
velocity fluctuations at all three mass loadings considered. Generally, the streamwise fluctuations
decrease slightly in the viscous layer and increase significantly in the buffer and logarithmic layers.
Further, the location of the peak shifts from about y+ = 14 in the unladen case to y+ = 22 at
M = 1.0. While St+ = 30 and St+ = 6 particles exhibit different modulation characteristics for
the fluid streamwise velocity fluctuations, their impact on the wall normal and spanwise velocity
fluctuations displays fewer differences. Both particles cause significant dampening of the wall
normal and spanwise fluctuations in the viscous, buffer and logarithmic layers. Increasing mass
loading leads to larger reduction of these fluctuations. By modulating the fluid bulk velocity,
the dispersed inertial particles lead to a large change in skin-friction drag. Figure 9 shows times
histories of relative change in skin-friction coefficient for all cases in Table I. The reference value,
Cf ,0, corresponds to the skin-friction-drag coefficient from the statistically stationary particle-free
channel flow. Figure 9 illustrates how particle inertia plays a selective role by determining the
type of flow modulation obtained, be it drag-reducing or drag-increasing, while mass loading
acts as an amplifying factor. For all these cases, we compute the drag-reduction factor DR,
defined as

DR = Cf ,0 − Cf

Cf ,0
, (15)

which takes positive values in the case of drag reduction, and negative values in the case of drag
increase. Further, we compute the change in mass flow rate (ṁ f − ṁ f ,0)/ṁ f ,0, where ṁ f ,0 is the
mass flow rate in the reference particle-free channel. We report these values in Table II. The greatest
drag reduction is obtained with St+ = 30 particles at the mass loading M = 1.0, which yields drag-
reduction factor DR = 19.54% and corresponding mass flow rate increase of 11.07%. The latter
value is substantially higher than what has been reported in the literature, in particular, by Li et al.
[28] who found an increase in mass flow rate by about ∼5% using particles with Stokes number of
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FIG. 8. Variation of the fluid root-mean-square velocity fluctuations with the wall normal distance for
St+ = 6 (a), (c), (e) and St+ = 30 (b), (d), (f) at M = 0.2–1.0. The solid black line represents a particle-free
channel. Symbols as in Fig. 7.

O(100). This level of drag reduction shows that inertial particles can induce drag reduction at a level
comparable with the one obtained using polymer additives [64,65], such as in the polymeric channel
flow simulations of Housiadas and Beris [64] at Reτ = 180 where drag reduction DR 	 25% is
reported. Note the drag-reduction effect of St+ = 30 particles decreases significantly at lower mass
loadings. At M = 0.2, these particles reduce drag by only 4.21%, and yield a modest mass flow rate
increase of 2.22%. This weaker drag reduction is to be expected because the particle feedback force
scales with mass loading, thus, particle-induced flow modulation vanishes as M decreases. This
also holds for the drag increasing particles with St+ = 6 whose effect increases with mass loading
resulting in drag increase by 16.92% and mass flow rate decrease by 6.10% at M = 1.0.
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FIG. 9. Relative change of skin-friction drag in particle-laden turbulent channel flows. Positive values
indicate drag reduction, whereas negative values indicate drag increase. Symbols as in Fig. 7.

While we have used St+ as a primary indicator for drag increase or reduction, Tanaka and Eaton
[32] proposed another nondimensional number, called particle momentum number Pa, to distinguish
between different modulation regimes. Adapting the approach of Tanaka and Eaton [32] to the case
of a turbulent channel flow gives Pa = St+/Reτ . This number may prove useful if additional Reτ

are considered. However, in the present study, there is no additional benefit in considering Pa over
St+.

B. Shear stress balance in the presence of inertial particles

As with the unladen flow, the structure of the flow in a particle-laden channel results from a
balance of stresses applied on the fluid. However, the presence of particles introduces additional
stresses that alter the balance in Eq. (10). To derive a new balance that takes into account particle
stresses, we apply Reynolds-averaging to the momentum equation (5). Assuming that particle
clustering does not break the dilute limit locally (1 − φ 	 1), the resulting balance is

d

dy

(
μ

d

dy
〈u f 〉 − ρ f 〈u′

f v
′
f 〉

)
+ 〈Fp,x〉 = −

〈
∂ p

∂x

〉
, (16)

where 〈Fp,x〉 represents the mean streamwise particle stresses. The latter can be related to the
particle-phase Reynolds shear stress. To do so, we consider the particle conservation equations in
the Eulerian frame. Using the two-fluid model discussed in Ref. [34] under the assumption of
monokinetic particle velocity distribution, the particle mass and momentum conservation equations
read

∂

∂t
(ρpφ) + ∇ · (ρpφup) = 0, (17)

∂

∂t
(ρpφup) + ∇ · (ρpφupup) = −F p + C, (18)

where up is the C represents the collision stresses. Neglecting the latter and averaging the streamwise
particle momentum balance yields

d

dy
(ρp〈φu′′

pv
′′
p〉) = −〈Fp,x〉. (19)
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FIG. 10. Shear stress contributions as a function of the wall normal distance for the particle-laden turbulent
channel flows at (a) St = 30, M = 1.0 and (b) St = 6, M = 1.0. The viscous shear stress is denoted by (◦),
fluid-phase shear stress by (�), particle-phase shear stress by (♦), and the total shear stress by (�). Lines
without symbols correspond to the reference single-phase channel as denoted in Fig. 3.

Here, u′′
p and v′′

p refer to the streamwise and wall-normal particle-phase velocity fluctuations with
respect to the Favre-averaged particle velocities ũp = 〈φup〉/〈φ〉 and ṽp = 〈φvp〉/〈φ〉. Combining
Eqs. (16) and (19) yields

d

dy

(
μ

d

dy
〈u f 〉 − ρ f 〈u′

f v
′
f 〉 − ρp〈φu′′

pv
′′
p〉

)
= −

〈
∂ p

∂x

〉
, (20)

which integrates to

μ
d〈u f 〉

dy
− ρ f 〈u′

f v
′
f 〉 − ρp〈φu′′

pv
′′
p〉 = τw

(
1 − y

h

)
. (21)

Similar to the particle-free channel, Eq. (21) shows the total stress varies linearly across the
channel provided that the particle-phase Reynolds shear stress ρp〈φu′′

pv
′′
p〉 is also taken into account.

Integrating Eq. (21) twice, leads to an updated expression for the fluid mass flow rate by unit
spanwise length which takes into account the effect of the dispersed particles,

ṁ f

Lz
= 2

3

τwh2

ν

[
1 + 3

(uτ h)2

∫ h

0

(∫ y

0
〈u′

f v
′
f 〉 + M

φ0
〈φu′′

pv
′′
p〉dy′

)
dy

]
. (22)

The relationship (22) shows that the particles alter the fluid mass flow rate through two competing
effects: (i) a direct effect through the particle-phase Reynolds shear stress ρp〈φu′′

pv
′′
p〉 which, like

the fluid-phase Reynolds shear stress, tends to reduce the mass flow rate, and (ii) an indirect effect
through the modulation of the fluid-phase shear stress ρ f 〈u′

f v
′
f 〉. It is only when the fluid-phase

shear stress is reduced more than can be balanced by the particle-phase Reynolds shear stress that
the fluid mass flow rate is increased.

Figure 10 shows the total shear stress profile and the variations in the fluid and particle stress
components for cases St+ = 6 and St+ = 30 at M = 1.0. In both cases, the total shear stress
varies linearly across the channel as predicted by Eq. (21). This first observation validates the
two hypotheses underpinning the relationship (21): (i) 1 − φ 	 1 meaning that the particle phase
remains dilute even though significant clustering occurs near the walls as we show in Sec. IV C, and
(ii) collisional stresses are negligible compared to hydrodynamic stresses exerted on particles, even
within particle clusters. Considering St+ = 30 particles, Fig. 10(a) shows partial relaminarization
of the near-wall region. Compared to the reference particle-free flow, the viscous drag increases in
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FIG. 11. Fluid-phase and particle-phase Reynolds shear stress for (a), (c) St+ = 6 and (b), (d) St+ = 30,
respectively. Symbols as described in the caption of Fig. 7. The solid black line denotes the single-phase
Reynolds shear stress.

the viscous and buffer layers. This modulation is directly linked to the increase in fluid mass flow
rate observed in Fig. 6. Further, the fluid-phase Reynolds shear stresses drops significantly with a
peak down to about 39% of the unladen case, and is shifted further towards the centerline. This
drop is partially balanced by the rise of particle-phase Reynolds shear stress. The latter dominates
in the region 0.1 � y/h � 0.45 (18 � y+ � 81) and is a comparable to the fluid-phase Reynolds
shear stress towards the centerline. Conversely, Fig. 10(b) shows that St+ = 6 particles cause a drop
of the viscous stress. This is expected since the fluid mass flow rate reduces with these particles.
St+ = 6 particles also cause significantly lower fluid-phase Reynolds shear stress, although slightly
less than St+ = 30 particles since the peak ρ f 〈u′

f v
′
f 〉 drops to only 46% of the unladen case. Further,

St+ = 6 particles cause slightly larger particle-phase shear stress.
Figure 11 shows the effect of varying mass loading on the fluid and particle shear stresses. For

both St+ = 30 and St+ = 6 particles, the particle shear stress rises with increasing mass loading
while the fluid Reynolds shear stress drops. As shown by the relationships (21) and (22), the
competition between increasing particle shear stress and reducing fluid Reynolds shear stress is
what ultimately determines whether the particles increase or decrease the mass flow rate, and a
fortiori, drag reduction or drag increase, respectively. Figure 12 shows how increasing mass loading
causes a progressive deviation of the total Reynolds shear stress ρ f 〈u′

f v
′
f 〉 + ρp〈φu′′

pv
′′
p〉 from the

single-phase Reynolds shear stress. It is clear that St+ = 30 particles reduce the total Reynolds shear
stress, although at a rate that varies little from M = 0.6 to M = 1.0 suggesting a possible saturation.
With St+ = 6 particles, there is an increase of total Reynolds shear stress which accentuates with
increasing mass loading.
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FIG. 12. Total Reynolds shear stress for (a) St+ = 6 and (b) St+ = 30, respectively. Symbols as in Fig. 7.
The solid black line denotes the single-phase Reynolds shear stress.

C. Interplay between particle clusters and near-wall coherent structures

In this section, we show that modulating the skin-friction drag depends to a large extent on
how particle clusters interact with near-wall coherent structures. The distribution of St+ = 6 and
St+ = 30 particles within the channel is strongly inhomogeneous. Visualization of normalized
particle volume fraction in a wall-normal plane in Fig. 13 shows that the particles concentrate in
long filamentous clusters that may span the entire channel height. St+ = 30 particles form clusters
that are relatively denser and further elongated in the streamwise direction compared to clusters
formed by St+ = 6 particles. Figure 13 also shows that the normalized particle volume fraction
within the bulk of the channel is lower at mass loading M = 0.1, compared to the bulk normalized
volume fraction at M = 0.6 and 1.0. This points to a tendency of particles to accumulate near the
walls that is stronger at M = 0.1 than at M = 0.6 and M = 1. Note that the formation of such
clusters is expected owing to the fact that the particles considered in this study have significant
inertia. As previously discussed by several investigators, inertial particles in wall-bounded turbulent
flows tend to form clusters due to two effects, namely, turbophoresis, i.e., the migration of inertial
particles to lower turbulence regions near the walls [66–69], and preferential concentration, i.e., the
migration of inertial particles from vortical regions to straining regions of the flow [1,70–72]. It
follows that the particle feedback force is concentrated along these structures, and that the resulting
flow modulation depends largely on the cluster morphology and dynamics.

Although particle clusters can be observed throughout the channel, it is near the walls that the
majority of particles accumulate. Figure 14 shows the variation of the normalized plane-averaged
volume fraction 〈φ〉/φ0 with the wall normal distance. Within the region y+ < 10, the local particle
volume fraction is several times larger than the mean volume fraction φ0, which shows that the
majority of the particles accumulate near the walls. St+ = 30 particles lead to the largest wall
accumulation reaching 〈φ〉/φ0 	 4.98 at M = 1 compared to 〈φ〉/φ0 	 2.62 for St+ = 6 particles
at the same mass loading. Similar observations were made by Nilsen et al. [7] and Yuan et al.
[8] who, despite considering only one-way coupling, found that particles with St+ = 30 have the
greatest wall-accumulation among particles with St+ in the range 1–100. Interestingly, the particle
wall accumulation reduces when mass loading increases. At M = 0.1, the particle volume fraction
at the wall rises to 〈φ〉/φ0 	 14.96 and 6.7 for St+ = 30 and St+ = 6, respectively. This finding
is in agreement with the observation from Fig. 13 that the relative bulk particle volume fraction
is lowest at M = 0.1 as relatively more particles accumulate at the walls with decreasing M. This
effect likely results from two-way coupling, given that particle-particle collisions are weak in the
present semidilute regime.
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FIG. 13. Isocontours of normalized particle volume fraction in a wall-normal plane showing the presence
of clusters and the accumulation of particles near the walls. As in Fig. 6, the larger domain for St+ = 30
particles is truncated to the same size as the domain for St+ = 6 particles to facilitate visual comparison.

Here, we stress that capturing the particle ropes accurately and the subsequent flow modulation
requires much larger domains than those generally used in simulations of particle-laden turbulent
channel flows [9,29,73–75]. The present large domain used for simulations with St+ = 30 particles
is sufficiently wide to allow a natural development of flow and particle structures in the spanwise
direction. However, even with a streamwise length of 12πh ∼ 38h, the domain remains too short to
properly characterize the average streamwise length of the particle ropes. With most of the particles
concentrating near the walls, clusters found therein have the largest impact on the carrier flow. As
shown in Fig. 15, the topology of these structures varies significantly depending on whether the
particles are drag-reducing (St+ = 30) or drag-increasing (St+ = 6). For better comparison of the
scales, Fig. 15(b) shows a view of the particle volume fraction field for St+ = 30 particles cropped
to the same dimensions as the smaller domain used with St+ = 6 particles and shown in Fig. 15(c).
In contrast with St+ = 6 particles, the higher inertia particles at St+ = 30 form distinctively long
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FIG. 14. Particle number density normalized by the average particle number density as a function of the
wall normal distance for (a) St+ = 6 and (b) St+ = 30 at various mass loadings. Symbols as in Fig. 7.

and stable clusters. These structures, which we call ropes, span the entire length of the domain in the
streamwise direction, i.e., over 6000 wall units. The ropes travel downstream but remain stable and
coherent for dynamically significant times. Further, the ropes repeat periodically in the spanwise
direction in a fashion reminiscent of low-speed streaks discussed in Sec. III. This suggests that
formation of these ropes results from the interaction of particle clusters with coherent flow structures
in the buffer layer. The fact that no such ropes are observed with St+ = 6 particles suggests that
intermittent flow structures in the buffer layer are capable of breaking down clusters formed by
low inertia particles, whereas clusters formed by particles with large inertia retain their spatial
and temporal coherence. The stable particle ropes may in turn alter the near-wall coherent flow
structures. To shed light on how particle ropes interact with near-wall coherent flow structures,
we report in Fig. 16 isocontours of streamwise velocity at y+ = 10 with the isolevel φ = 3×φ0

overlayed on top. The latter shows the regions where the particles cluster. For the flow laden with
St+ = 30 particles at M = 1, we observe that the long ropes align well with the low-speed streaks,
showing that the dynamics of these two coherent structures are interlinked. Compared to the unladen
flow (see Fig. 4), the low-speed streaks are visibly further elongated in a way similar to how the
particle ropes extend in the streamwise direction. The spanwise spacing of the low-speed streaks
also increases and appears comparable to the spanwise spacing of the ropes. In the case of the flow
laden with St+ = 6 particles at M = 1, the clusters are also primarily found in the low-speed streaks.
However, the streamwise length of these clusters is much shorter in comparison with the low-speed
streaks and with the ropes formed by St+ = 30 particles. In addition, the streamwise length and
spanwise spacing of low-speed streaks increase compared to the particle-free flow, although not to
the same extent as with St+ = 30 particles.

To characterize quantitatively the spanwise spacing of particle clusters and their impact on the
spanwise spacing of low-speed streaks, we compute the two-point autocorrelation of the particle
volume fraction fluctuations,

Rp
φφ (�z; y0) = 〈φ′(x, y0, z, t )φ′(x, y0, z + �z, t )〉

〈φ′2〉 , (23)

and the the two-point autocorrelation of the streamwise velocity fluctuations R f
uu. Figure 17 shows

the variation Rp
φφ and R f

φφ with spanwise spacing at y+ = 10. Similar to how the low-speed streak
spacing λ+

f is defined, we define λ+
p , the spanwise spacing of particle clusters, as twice the distance

between the origin and �z+ where Rp
φφ reaches a first minimum.

Table III shows the values of λ+
f and λ+

p for all cases simulated. For the drag-reducing cases
at St+ = 30, it is clear that as the mass loading is increased from 0.2 to 1.0 the low-speed streak
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FIG. 15. Isocontours of normalized particle volume fraction at y+ = 10 for (a), (b) St+ = 30, M = 1.0 and
(c) St+ = 6, M = 1.0. The view in panel (b) corresponds to the area marked by the red rectangle in panel (a).

TABLE III. Spanwise spacing of the low-speed streaks and particle ropes.

Stokes number (St+) Mass loading (M) λ+
f λ+

p

(Particle-free) 0 106 −
6 0.2 125 99

0.6 134 108
1.0 116 90

30 0.2 126 108
0.6 161 130
1.0 170 135
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FIG. 16. Overlay of the isocontours of fluid streamwise velocity, and the contour of the relative particle
volume fraction φ/φ0 = 3 at y+ = 10 for (a), (b) St = 30, M = 1.0 and (c) St+ = 6, M = 1.0. The view in
panel (b) corresponds to the area marked by the red rectangle in panel (a).

spanwise spacing increases from λ+
f = 126 to 170. These are significant increases compared to the

low-speed streak spacing of λ+
f = 106 in the particle-free channel. The rope spacing λ+

p increases
from λ+

p = 108 to 135 as mass loading is increased. The disparity between λ+
p and λ+

f is likely due
to small particle clusters that detach from the main ropes due to the spanwise meandering of ropes
and low-speed streaks. In comparison, St+ = 6 particles lead to substantially lower modulation
of the low-speed streaks. As shown in Table III, the spanwise spacing of the low-speed streaks
varies between λ+

f = 116 and 134 when St+ = 6 particles are dispersed. The corresponding spacing
of particle clusters varies in the range of λ+

p = 90–108, with less disparity between λ+
p and λ+

f

compared to the flow laden with St+ = 30 particles. This suggests that St+ = 6 clusters are more
closely aligned with the high-strain low-vorticity regions found within the low-speed streaks, likely
due to their lower inertia.
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FIG. 17. Variation with spanwise spacing of the two-point autocorrelation of the streamwise fluid fluc-
tuations and particle volume fraction fluctuations in the spanwise direction for the (a), (b) drag-reducing case
St+ = 30 (�) and (c), (d) drag-increasing case St+ = 6 (•). Darker symbols correspond to larger mass loading
which varies from 0.2 to 1.0. The solid black line represents the particle-free channel flow.

Note that the two-way coupling plays a critical role in the arrangement of low-speed streaks
and particle clusters. In a prior study by Jie et al. [9], where the authors considered one-way-
coupled Euler-Lagrange simulations of particle-laden channel flows at Reτ between 600 and 2000,
the absence of feedback force from the particles leads to low-speed streaks that have identical
characteristics to those of a particle-free turbulent channel flow. The data presented by the authors
further suggests that the particle cluster spanwise spacing varies little with Reynolds number and is
about λ+

p ∼ 114 for St+ = 30 particles. However, as we have shown in this study, λ+
p and λ+

f reach
considerably higher values when two-way coupling is significant since the dynamics of clusters and
near-wall coherent structures become more inter-dependent.

Figure 18 shows an example of how St+ = 30 particles are distributed in the vicinity of a
pair of quasistreamwise vortices. The particles form ropes by concentrating in the straining region
between the pair of vortices, consistently with the preferential concentration mechanism. Pockets of
particles can be seen ejected upward towards the centerline, which results in a downward feedback
force on the fluid. This process is self-sustaining because the ejected particles eventually return to
the near-wall region due to turbophoresis, where they accumulate again along particle ropes. The
feedback force from these clusters contributes to the the suppression of bursting and stabilization
of quasistreamise vortices. Consequently, low-speed streaks nested in-between quasistreamwise
vortices extend further than possible in particle-free flows. Because bursting events contribute
largely to the Reynolds shear stress production [21], the stabilizing role of St+ = 30 particles is
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FIG. 18. Instantaneous velocity vectors overlayed by contour of particle volume fraction φ/φ0 = 3, for
the case St+ = 30, M = 1.0, show particle ropes forming in the high strain region between quasistreamwise
vortices.

likely the main reason these particles reduce the fluid-phase Reynolds shear stress to the extent
shown in Sec. IV B, and in fine, skin-friction-drag reduction.

V. DISCUSSION AND CONCLUSION

We have shown that it is possible to induce significant drag reduction using monodispersed
spherical particles, provided that their inertia and concentration are tuned appropriately. Using
four-way-coupled Euler-Lagrange simulations of semidilute particle-laden turbulent channel flows
at Reτ = 180 with mass loading varying between M = 0.2 and 1.0, we have shown that the particle
Stokes number is a determining factor in the type of modulation observed. Among the two types
of particles we have considered having friction Stokes number St+ = 6 or 30, drag increase is
observed with the former, and drag reduction is observed with the latter. Mass loading plays an
amplifying role in such a way that at M = 0.2 the drag increase or decrease observed is negligible,
whereas these effects become significant at M = 1.0, resulting in drag-reduction factors of up to
DR = 19.74% and DR = −16.92% for St+ = 30 and St+ = 6, respectively. A key observation is
that particle clusters and coherent structures found in the near-wall region have tightly coupled
evolutions. Modifications to the latter by the particle clusters explain in part the observed changes
to skin-friction drag.

For the drag-reducing cases considered, the largest drag reduction is achieved for the case
St+ = 30, M = 1.0 in which skin friction drag drops by DR = 19.54% and mass flow rate increase
by �ṁ f /ṁ f ,0 = 11.07% compared to the reference particle-free flow. A distinct feature visually
observed for particles at St+ = 30 is the existence of concentrated clusters along the channel walls
with local particle volume fraction several times larger than the mean. These clusters, that we call
ropes, are very long structures that span the entire domain in the streamwise direction, about 38 h.
Further, the ropes appear to preferably align with the low-speed streaks of the flow, and to cause their
structure to differ considerably from those found in particle-free flows. The observed modulation
which includes a stabilization of the low-speed streaks, reduction in bursting, elongation in the
streamwise direction, and increase in spanwise separation result from the collective feedback force
from particles located within these concentrated ropes. Using two-point autocorrelations, we found
that the low-speed streaks spanwise spacing λ+

f increases from the little varying value λ+
f = 106
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in particle-free flows to λ+
f = 170 when the flow is laden with St+ = 30 particles at M = 1.0. In

comparison, the ropes spacing in this case is λ+
p = 135. The disparity between λ+

f and λ+
p is likely

due to small clusters that detach from the main ropes due to the spanwise meandering of ropes and
low-speed streaks. While dispersed particles cause additional stresses on the fluid, the modulation
of near-wall coherent structures by St+ = 30 particles leads to greater reduction in Reynolds shear
stress, which ultimately causes a partial relaminarization of the near-wall flow and skin-friction-drag
reduction.

In contrast to the larger inertia particles, dispersing St+ = 6 particles in the flow causes drag
increase. The largest effect is observed at M = 1.0 which yields a drag increase of 16.92% and mass
flow rate decrease of 6.10%. These lower inertia particles do not show the same type of clustering
seen with St+ = 30 particles. Particle cluster sizes are smaller and no rope-like clusters spanning
the entire length in the streamwise direction are observed. Furthermore, the low-speed streaks also
do not seem to widen or elongate at the rate that was observed for the St+ = 30 case. While the
low-speed streak spacing increases compared to the particle-free case, from λ+

f = 106 to 116 at
the highest drag increasing case at St+ = 6 and M = 1.0, the change is significantly lower when
compared to the St+ = 30 case. The spanwise spacing of the particle clusters is also significantly
lower with λ+

p = 90–108. For these St+ = 6 particles, the low-speed streaks and particle clusters
are more closely aligned. This is because lower inertial particles are less likely to escape the low-
speed regions where they are mostly located. While they do exert a feedback force that reduces
near-wall coherent structures, the resulting drop in Reynolds shear stress is not sufficient to balance
the additional stresses exerted by the particles, hence leading to drag increase.

We shall note that the mechanisms discussed in this study hold some similarities with those
found in polymeric flows. Here, friction Stokes number, ratio of the particle response time and
friction timescale, is analogous to the Weissenberg number, ratio of the polymer elasticity timescale
and the friction timescale. Like the Weissenberg number in polymeric flows, the Stokes number
determines whether drag reduction or drag increase is achieved. Stresses induced by inertial particles
are analogous to stresses resulting from polymers. In both cases, drag reduction is determined by
the extent to which the fluid Reynolds shear stress is suppressed in comparison to the additional
particle or polymer stresses. However, polymers modulate flow structures through contraction
and elongation, whereas inertial particles act on the flow through their drag force. Further, the
mechanisms related to particle clustering, rope formation, and interplay with near-wall coherent
structures are unique to particle-laden flows.

Finally, the fact that St+ = 6 and St+ = 30 particles lead to opposite drag modulation suggests
that there is a critical Stokes number above which drag reduction is obtained. This threshold may
depend on mass loading and density ratio. Moreover, while we have shown close to 20% drag
reduction using St+ = 30 particles at mass loading M = 1, varying Stokes number may lead to
higher drag reduction. Additional simulations are required to find the threshold Stokes number for
drag reduction and establish a regime map of drag modulation.
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