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Sharp depletion of radial distribution function of particles due to collision
and coagulation inside turbulent flow: A systematic study

Xiaohui Meng and Ewe-Wei Saw *

School of Atmospheric Sciences and Guangdong Province Key Laboratory for Climate Change
and Natural Disaster Studies, Sun Yat-Sen University, Zhuhai 519000, China

(Received 4 January 2023; accepted 28 June 2023; published 18 August 2023)

The clustering (preferential concentration) and collision of particles in turbulent flows is
a significant process in nature, such as in the precipitation process of atmospheric clouds.
We perform direct numerical simulation (DNS) to study the clustering of small, heavy,
monodisperse particles subject to collision-coagulation in turbulent flow [i.e., colliding
particles always coagulate (coalesce) into larger ones]. The simulations do not include
gravitational effects and hydrodynamic interactions among particles. We find that collision-
coagulation causes the radial distribution function (RDF) of the particles to decrease
strongly at particle separation distances r close to the particle diameter d . However,
we observe that the RDF does not decrease indefinitely but approaches a finite value in the
limit of r → d . We study how the properties of this “depletion zone” relates to the particle
Stokes number (St), particle diameter, and the Reynolds number of the turbulent flow. A
collision-induced modulation factor γc is defined to represent the degree of RDF depletion
due to collision-coagulation. In the region where γc(r) is a quasi-power-law, we find that
the effective power-law exponent c̃1 depends only weakly on St in the regime of St � 1,
but increases significantly for larger St and peaks at around St ≈ 0.7. The same qualitative
trend is also observed for the limiting values of γc at r → d . We find that the overall trend
of c̃1 with respect to St is qualitatively similar to that of the classical power-law exponent
c1 appearing in the RDF of noncolliding particles, except that c̃1 is barely changed at
small St and the magnitude of the trend is much weaker. A complementary investigation
on the Stokes number trend of the full RDF in the depletion zone is performed. The slope
of the RDF appears to be constant for St � 1 but changes as St becomes large. The
location of the RDF’s peak is found to be St-dependent. We found that the depletion
zone is insensitive to the flow Reynolds number and that γc of different Reλ overlap.
As the particle diameter d changes, the reduction of the RDF occurs on scales that shift
accordingly, and always starting at around 2.4d–3d . We also find that the shape of γc(r) is
independent of changes in d .

DOI: 10.1103/PhysRevFluids.8.084304

I. INTRODUCTION

The fluctuation of particle concentration has a profound effect on interparticle collisions. This
effect has a pivotal role in both natural sciences and industrial engineering. For example, the
collision-coagulation process for small droplets (particles) determines their spatial and temporal
size distribution. These microscale properties have significant influences on the formation of
precipitation [1]. Small-scale turbulence in clouds makes an important contribution to the collision
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and coagulation of droplets [1,2]. Another example is the formation of planetesimals. The collision
of dust in protoplanetary disks sets the stage for planet formation. Research shows that the turbulent
motion concentrates dust in the dissipation scale, increasing the collision rate of dust particles [3–5].
In industry, the clustering and collision of particles will impact on the effect of combustion of
pulverized fuel flames [6].

The preferential concentration of inertial particle has become a prevalent research topic since
the end of the 20th Century. Squires and Eaton [7] found that the inertial particles preferentially
concentrate in regions of low vorticity and high strain rate. The degree of particle clustering can
be characterized by the radial distribution function (RDF), which is defined as the ratio of the
probability of finding a particle pair at a distance r normalized by the probability of the same
event for random particle distribution. Reade and Collins [8] found that the clustering of small
particles occurs on a scale that is much smaller than the Kolmogorov length scale, and that the
RDF of particles follows a negative power law with the interparticle separation distance r. Chun
et al. [9] developed a drift-diffusion theory to predict the RDF in turbulent flows for particles in the
limit of small particle Stokes number. Their results show that the RDF of particle is proportional
to c0(r/η)−c1 , where η is the Kolmogorov length scale. They also find that the exponent c1 is
proportional to St2. The Stokes number (St) is an important measure of particle inertia, and is defined
as the ratio of the particle relaxation time τp and the Kolmogorov timescale τη. The dissipation-scale
clustering of particles becomes stronger as the Stokes number increase and the RDF reaches a peak
near the Stokes number of order unit [10]. This relationship between the RDF and the Stokes number
is corroborated by both numerical and experimental studies [11,12].

The calculation of collision kernel is still an open question. Saffman and Turner [13] estimate
collision rates of small water droplest (e.g., inertialess particles) in turbulent rain clouds. Gustavsson
et al. [14] give and extension of the Saffman-Turner formula and derive exact expressions for the
steady-state collision rate for inertialess particles suspended in rapidly fluctuating random flows.
The preferential concentration of particles is expected to enhance particle collision. In the work of
Sundaram and Collins [15], the RDF was first introduced into the formula of collision kernel using
the spherical formulation [16]: K = 2πd2〈wr〉g(d ), where d is the particle diameter, g(d ) is the
particle RDF at contact, wr is the radial component of the two-particle relative velocity. The works
on the RDF of particles mentioned thus far had used the ghost particle assumption and ignored the
effect of collision and coagulation among particles. Saw and Meng [17] found that the RDF drops
sharply at r close to d in the presence of collision-coagulation and provided a theoretical account of
this finding and the nontrivial relationship among RDF, collision rate and relative particle motions.
These findings are interesting because they highlight the importance of accounting for actual particle
collisions, and also question the formula of collision kernel mentioned above.

In this paper, we use direct numerical simulation (DNS) to study the monodispersed RDF of
the inertial, colliding, particles. DNS, which solves the Navier-Stokes equation fully in the spatial
and temporal scales without using any turbulence modeling, is an efficient numerical tool to study
the particle-laden turbulent flow. The RDF of particles considering the effect of the collision-
coagulation is investigated. The influence of the particle and turbulent parameters on the decrease
of RDF is also studied in this paper. The paper is organized as follows: Sec. II provides a summary
of the simulation methods and the relevant turbulent and particle parameters. The statistical results
and discussion are presented in Secs. III and IV, respectively. Finally, the results of the influence of
the turbulent and particle parameters on the RDF are summarized in Sec. V.

II. SIMULATION METHOD

We performed the direct numerical simulation (DNS) of the particle-laden turbulent flow. The
incompressible Navier-Stokes equations are shown below.

∂ �u
∂t

+ �u · ∇�u = − 1

ρ
∇p + ν∇2�u + �f (�x, t ), (1)

∇ · �u = 0. (2)
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TABLE I. The DNS parameters and time-averaged statistics. N is the simulation grid size, ν is the
kinematic viscosity of turbulence, ε is the dissipation rate of turbulent flow, u′ is the root-mean-square velocity
of turbulent flow, λ is the Taylor length scale, η and τη are the Kolmogorov length and timescale, L and TL are
the integral length and timescale, Reλ is the Taylor scaled Reynolds number.

N ν ε u′ λ η τη L TL Reλ

Flow 1 256 0.001 0.0326 0.3519 0.2386 0.0132 0.1750 0.5073 1.4416 84
Flow 2 256 0.001 0.1013 0.5684 0.2187 0.0100 0.0993 0.6151 1.0822 124
Flow 3 512 0.001 0.9472 1.226 0.1544 0.0057 0.0325 0.7398 0.6034 189

The N-S equations are solved numerically on N3 grids cube using a pseudospectral method on the
periodic domain, the length of which is 2π . The turbulent velocity �u is transformed from physical
space to wave-number space. The aliasing error arising from the convection part of the N-S equation,
is removed by the 2/3-method [18]. �f (�x, t ) in the N-S equation is an external forcing conducted
at low wave number to maintain statistically stationary [19]. To study the influence of the (Taylor
scaled) Reynolds number on the RDF, simulations with different Reλ are conducted: Reλ = 84, 124,
and 189, the detailed turbulent parameters are given in Table I. For different Reynolds numbers, the
grid size is N = 256 (for Reλ = 84 and 124) and 512 (for Reλ = 189). The small-scale resolution
can be characterized by kmaxη = 1.59, 1.21, and 1.38, respectively, where kmax = N

√
2/3 is the

maximum resolved wave-number magnitude. The 2-order Runge-Kutta method is used to perform
time advance in the N-S equation. The Courant number C = 0.0248, 0.0401, and 0.0865. The energy
spectra for different flow are shown in the Appendix A. A higher resolution simulation is conducted
to study the possible effects of the sub-Kolmogorov intermittency on our results, using N = 1024
at Reλ = 124. This is detailed in Appendix B.

The particles we consider are small (the diameter of the particle d is smaller than the Kolmogorov
length scale η) and heavy (the density of the particle is greater than that of the flow). Since only basic
questions are of interest in this paper, the gravitational effect and the interparticle hydrodynamic
interactions are not included in the DNS. The limit of small (pointlike) particles is assumed, the
spherical size of the particle is only considered in the collision processes. And only one-way
coupling to the turbulent flow is considered. Under these circumstances, the particles are only
subjected to viscous Stokes drag force, and the following motion equation of the particles [20]:

d�v
dt

= �u(�x, t ) − �v
τp

, (3)

where �v is the particle velocity, and �u(�x, t ) is the fluid velocity at the particle position. τp is the
particle inertial response time, defined τp = 1

18
ρp

ρ
d2

ν
, where ρp and ρ are the particle and fluid

densities, respectively, d is the particle diameter, and ν is the kinematic viscosity of the turbulent
flow. The linear interpolation method is used to interpolate the velocity of the flow in the particle
position, and the 2-order Runge-Kutta method with “exponential integrators” is used for the time
advance [21].

Spherical and monodisperse particles are randomly introduced into the simulation. Particles col-
lide when their volumes overlap and a new particle is formed, conserving volume and momentum.
New particles are injected at random locations in the system at fixed time intervals so that the particle
system reaches a steady state after a transient period and the average number of particles in steady
state is in a range of 5.4–9.8 × 106 for different St cases.

We want to compare the difference between the RDF in the case of collision-coagulation and the
case using noncolliding ghost particles. Hence, we calculate the RDF of monodisperse particles:

g(r) = ψ (r)/N

(N − 1)δVr/V
, (4)
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TABLE II. Characteristics of the runs discussed here.
Reλ is the Taylor microscale Reynolds number of the fluid.
d is the particle diameter, d∗ = 9.49 × 10−4. St is the parti-
cle Stokes number. When St is varied, to keep the particle
diameter constant, the particle mass density is changed.

Run Reλ d St

1 124 d∗ 0.01
2 124 d∗ 0.05
3 124 d∗ 0.1
4 124 d∗ 0.2
5 124 d∗ 0.5
6 124 d∗ 0.7
7 124 d∗ 1.0
8 124 d∗ 2.0
9 124 1

3 d∗ 0.1
10 124 3d∗ 0.1
11 84 d∗ 0.1
12 189 d∗ 0.1

where ψ (r) is the sum over the number of particles found at distance r from each primary particle,
δVr/V is the ratio of an infinitesimal volume at distance r to the total sample volume. To study the
influence of particle parameters on the RDF, particles with different Stokes numbers from 0.01 to
2.0 are introduced in each simulation. Particle size is another important parameter related to particle
collision. Three different sizes of particles are introduced in each simulation: d = 1

3 d∗, d = d∗, and
d = 3d∗, where d∗ = 9.49 × 10−4. The details of the simulations are listed in Table II. The statistics
are calculated for monodispersed particles.

III. RESULTS

A. Stokes number dependence

The statistics from Run 1 to Run 8 in Table II are used to study the influence of the Stokes
number on RDF. The RDFs for particles with different Stokes numbers are shown in Fig. 1. What
is striking in this figure is the strong decrease of the RDF when the particle separation distance r is
close to the particle diameter d . Figure 1 also shows that there is an increase in the slope and the
magnitude of the RDF at the scales r/η ∼ 1 − 10 when St is increased from 0.01 to 0.7. Note that
the slope of the RDF is smaller for St = 1.0 than that for St = 0.7, although its values are larger
everywhere. Beyond St = 1.0, both the slope and the magnitude decrease from St = 1.0 to St = 2.0.
At larger scales (r/η ∼ 10), the RDF curves flatten and converge to 1. To elucidate the trend of the
RDF when the separation distance r is close to the particle diameter d , the RDFs are plotted as a
function of r − d in Fig. 2. The most interesting aspect of this graph is that the relationship between
RDF and r − d shows a quasi-power-law trend in the range of 4 × 10−5 � r − d � 3 × 10−4. As r
continues to decrease toward the particle diameter, the slope of the RDF gradually becomes smaller
and tentatively approaches zero, i.e., the RDF tentatively approaches a plateau.

The same reduction in RDFs near particle contact (r = d) has already been observed by Saw
and Meng [17], including some evidence that suggests a plateau regime in the limit of r → d .
However, the resolution (in r) in that study was too limited for a strong conclusion in this respect,
and a tentative plateau was only successfully shown for one Stokes number value. One goal of the
present study is to remedy this limitation, and this is partially addressed by Fig. 2, while results with
significantly higher resolution shall be presented in the sequel.
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FIG. 1. The RDFs versus r/η for particles with different Stokes number. The diameter of particle is
d = 9.49 × 10−4 and the Taylor scaled Reynolds number is Reλ = 124. The dashed lines are RDFs for
noncolliding monodispersed particles, St = 0.1 and St = 0.5, respectively. In comparison, the RDFs of the
cases with coalescing particles drops significantly when r is close to d .

At this point, it is appropriate to provide some explanation and interpretation of the observations
thus far. Saw and Meng [17] have presented a detailed theoretical treatment of the problem and
shown that the form of RDF observed here could be theoretically predicted starting from a few
physically motivated (and intuitive) assumptions on the relative motions of the particles. Here, we
attempt to provide an intuitive account of the basic ideas behind the theory (more rigorous details
can be found in Ref. [17]) that could explain the reduction of RDF seen here. As illustrated in
Fig. 3, P and S represent two particles of identical diameter. Using particle P as a reference particle,
�r denotes the position of particle S relative to P. When r approaches the particle diameter d , which
is smaller than the Kolmogorov length scale, it can be assumed that the trajectory of the particle at
this scale is almost rectilinear, since the radius of curvature of all particle trajectories should be no
smaller than η (η being the smallest scales of turbulent undulations). Let �v be the relative velocity
of S in the frame of P. The two particles will collide and coagulate when r is less than or equal to the
sum of their radii (i.e., the diameter d of the particle). Consequently, the angle between �v and �r of
any realizable trajectory cannot be less than θm, where sin(θm) = d/r (see Fig. 3), since otherwise
a coalescence event would have occurred and the pair would have vanished from the scope of the
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FIG. 2. The RDFs versus r − d for particles with different Stokes number, d = 9.49 × 10−4 is the particle’s
diameter. The Taylor-scaled Reynolds number is Reλ = 124 in this case. Error bars represent one standard
error. The RDF follows a quasi-power-law with r − d in the range 0.04d � r − d � 0.3d and the slope of
RDF decreases to zero gradually as r continues to decrease.

monodisperse analysis (e.g., the computation of the RDF of single sized particles). This results in a
deficit of particle pairs at these distances relative to the ghost particle case.

However, at significantly larger scales in r, the assumption of nearly rectilinear trajectories breaks
down, thus particles could have arbitrary velocity directions without implying a collisional history
with neighbors (this was implied but not explicitly stated in Ref. [17]). RDFs recover their ghost
particle form at these scales.

Figure 4 shows the trend of RDF as r decrease toward d with significantly higher resolution,
using the cases of St = 0.1, St = 0.2, and St = 0.5 as examples. It provides stronger evidence for
the conjecture that when r is close to d (e.g., for r − d is less than 4 × 10−6), the RDF no longer
decreases but approach a fixed value. The limiting value of the RDF at particle contact (r = d) is
proportional to the particle collision rate [15], thus a finite collision rate in our simulations should
imply that the value of RDF should be equal to a, fixed, noninfinitesimal value. The results shown
above are consistent with this analysis.
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FIG. 3. Schematic illustrating the ideas behind the theory in Ref. [17] that explain the reduction of RDF in
the regime of r ≈ d . P and S are two particles with the same diameter and St. The relative position of the S
particle to the P particle is represented by �r, while �v represents the relative velocity of S to P. More details in
the main text.

We shall call the region where the RDF decreases, as seen in Fig. 4, the “depletion zone.”
Subsequent discussions will mainly focus on this region.

It is important to note that we have investigated the possible influence of unresolved sub-
Kolmogorov intermittency on the accuracy of our RDFs results and the outcomes is described in
Appendix B section. Our findings suggest that sub-Kolmogorov scale intermittency may slightly
modify the clustering exponent of the RDF, resulting in an upward shift of all small-scale features
of the RDF by the same order of magnitude (see the Discussion and Appendix B for details). As a
consequence, the value of the RDF may be underestimated by a few percent. However, the effect on
the shape of the RDF curve is minimal and does not significantly impact our main conclusions to be
presented in sequel.

FIG. 4. High resolution plots of RDFs versus r − d for cases of St = 0.1, 0.2, and 0.5, where the regime
of smaller r − d values is resolved more clearly. In order to compare them clearly, the RDF for St = 0.5 is
translated down vertically to half of its original height Error bars represent statistical error of one standard
deviation. Within the range of uncertainty, the RDF no longer decreases after r − d < 0.04d and levels off to
a fixed value.
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FIG. 5. The RDF for noncolliding particles (gn) for different Stokes numbers. The particle diameter is
d = 9.49 × 10−4 and Reλ = 124. In log-log axes, gn level off to plateau as the gap-distance r − d approaches
zero.

We end this section with a brief discussion of the significance of the above findings. As pointed
out in Ref. [17], the fact that particle collision has effects on RDF suggests a significant implication
that many results of earlier studies that assumed ghost particles should have limited relevance
for prediction of actual particle collision rate. The previous statement is also true for particle
systems that has any other collisional outcomes, e.g., hard sphere elastic collisions, but the specific
modification the the RDF would be different. Any theoretical treatment of the collision rate should
take into account the strong coupling among RDF, relative particle velocities and collision rate, such
as in the theory presented in Ref. [17].

B. Collisional modulation factor

To further characterize the depletion zone of the RDF due to particle collisions, following the
work of Saw and Meng [17], we assume that the RDF can be factorized such that g(r) = γc(r)gn(r),
where gn(r) is the RDF for noncolliding (ghost) particles under the same physical environment.
It is well known that, for monodisperse particles, gn(r) is a power-law of r/η [9,22]. However, as
shown in Fig. 5, when plotted against r − d , gn levels off to a plateau as r decreases toward d as a
result of finiteness of gn(d ). The collision-induced modulation factor, denoted as γc, is defined as
the ratio of g(r) to gn(r). The extent to which γc deviates from 1 reflects the degree of impact that
collision-coagulation has on RDF. As depicted in Fig. 3, as the separation distance r increases, θm

decreases, thereby reducing the influence of collision and coagulation on RDF [17]. Furthermore,
for large r, as explained above, the rectilinear trajectories assumption breaks down and particles
may have arbitrary velocity directions [17]. Thus, at a scale where r is significantly larger than the
particle diameter d , collision has little effect on RDF and the value of γc equals to 1.

γc is calculated in each case and shown in Fig. 6. Because the trend of γc in the small-scale r ∼ d
is more important, we plot them versus r − d . As expected, at large r, γc universally converges to
unity, signifying that collisional effect is only noticeable at r ∼ d . In the r ∼ d regime, however,
we see that as St increases from a minute value (i.e., 0.01), γc gradually decreases, with smaller r
being more affected. The rate of this decrease (with respect to St) is initially very weak, consistent
with the hypothesis in Ref. [17] that γc is independent of St in the limit of small St. The observed
rate of decrease becomes pronounced as St increases from 0.1 to 0.5. Beyond St = 0.5, γc seems
to stagnant again until it reverses the trend and starts to increase significantly when St is greater
than 1.0.
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FIG. 6. The collisional modulation factor γc versus the gap-distance r − d for particles with different
Stokes numbers. The particle diameter is d = 9.49 × 10−4 and Reλ = 124. Within the range of uncertainty,
which is calculated as the standard error, γc is weakly dependent on St for St � 1.0 and it decreases as St
increases from around 0.1 to 0.5.

This implies that when the Stokes number of the particles is much smaller than 1.0, the influence
of the collision on the RDF is insensitive to the Stokes number. As the Stokes number increases,
the influence of the collision increases and peaks at St = 1.0, which is similar to the trend of the
power (c1) of inertial clustering [22]. To see the trend of γc at small r more clearly, using the cases
of St = 0.1, 0.2, and 0.5 as examples, we plot in the inset of Fig. 6(a), γc versus the gap distance
r − d . Again, we see that γc follows a semi-power-law for r − d in the range of 1 − 6 × 10−4. For
smaller r − d , the curves flatten and level off to a finite value.

For the sake of comparison, let us recall from earlier works [8,9,22] that gn is a negative power
law of r in the regime of r/η � 20, i.e., gn(r) = c0(r/η)−c1 , where c1 scales as St2 for St � 1. We
now attempt to derive an analogous relationship between γc and the Stokes number. From Fig. 6, γc

seems to follow a quasi-power-law for gap distances (r − d ) in the range 10−4 � r − d � 7 × 10−4.
We assume that in this range γc = c̃0(r − d )c̃1 . The relationship between c̃1 and St is shown in
Fig. 7. For St � 1, considering the level of statistical uncertainty, there is a weak tentative trend of
increasing c̃1 with Stokes number.
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FIG. 7. Top: the value of γc at r → d (r − d ∼ 0.02d) is shown as yellow ◦ and its error bars represent one
standard error. Bottom: the value of exponent of the power-law c̃1 in γc = c̃0(r − d )c̃1 in the range 1 × 10−4 �
r − d � 7 × 10−4, which is shown as blue � and based on the left vertical axis. The horizontal and vertical
axes are logarithmic. Error bars represent one standard error. The value of the exponent of the power-law c1,
as defined in gn = c0(r/η)−c1 , obtained from DNS results in the range 0.1 � r/η � 1, is shown as red � and
based on the right vertical axis. The statistical uncertainty of c1 is smaller than the size of markers, therefore it
is not shown in this figure. The vertical and horizontal axes in both top and bottom graph are logarithmic.

For comparison, we also show c1(St) and γc(r → d ) in Fig. 7, where γc(r → d ) is the limiting
value of γc at particle contact (r = d). The latter is of interest because it is closely related to the
collision rate (in practice, we use the value of γc at r − d ∼ 2 × 10−6 as this limit). It is important
to note that the degree of variation of c̃1 and γc(r → d ) with St is much smaller than the degree of
c1, especially for St � 1.0, the relationship with St is weak. Thus, for a first order theory, c̃1 may
be taken as a constant with respect to St given that the variation is as most 20%.

The above results indicate that for St � 1.0, the decrease in RDF caused by particle collision-
coagulation is roughly independent of the Stokes number. While for large St (>0.2), significant St-
dependence is observed. Furthermore, the relationship between the decrease in RDF and St shows an
observable, albeit weak, resemblance to that between the preferential concentration of particles and
St. This implies that the Stokes number dependence of the RDF could not be completely decoupled
from γc and that this issue merits further investigation.

In view of the significant Stokes number dependence of γc, we also conducted a complementary
investigation on the Stokes number trend of the full RDFs [i.e., g(r)] as a comparative study. The
RDFs for different Stokes numbers are vertically translated to overlap with the g(r) for St = 0.05
at r − d ∼ 2 × 10−4 to compare their shape. To show the influence on St more clearly, the RDFs
for St = 0.05 and 0.7 are shown in Fig. 8 and the RDFs for St � 1 are shown in the inset. It can
be seen that the slope of the RDF is almost constant for St � 1, but changes when considering
larger St.

To summarize, for St � 1, the RDFs in the depletion zone exhibit near-universality, and the
value of γc at r → d and its slope exhibit weak dependence on St. While for larger St, significant
changes in both RDF and γc are observed. Previous research [10] has demonstrated that when
St � 1, preferential sampling is the primary effect on particles and this sampling effect is dependent
on Stokes number. As St increases, the path-history effect becomes increasingly important. This
results in particles approaching each other at high relative velocities, a phenomenon known as
“caustics” [23]. Thus it is expected that the Stokes number dependence become stronger in this
regime. The findings of this study are generally consistent with this analysis.
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FIG. 8. The RDF for St = 0.7 is translated vertically down to 6.5% of its original height to compare the
slope with St = 0.05. The translated RDFs for St = 0.01, 0.05, and 0.1 are in the inset. The slope is the same
for St � 1 but it is different for St = 0.7 and 0.05. The position where the peak of RDF is related to St.

C. Reynolds number dependence

Statistics of Run 3, Run 11, and Run 12, listed in Table II, are used to investigate the influence
of the Taylor-scaled Reynolds number Reλ on the RDF. The RDFs for different Reλ but the same St
are shown in Fig. 9. The Stokes number is 0.1 and the parameters for three simulations are given in
Table I. We see that in the range of small r, the RDFs of all cases overlap but for larger r, the RDFs
are separated. However, when r is normalized by the Kolmogorov length scale η, as shown in the in-
set of Fig. 9, the RDFs now overlap at large r but are separated in r ∼ d . It indicates that the position
where the RDF decreases corresponding to r is related to particle diameter rather than to η. These
results suggest that in the range of Reλ = 84–189, the statistics in the depletion zone, which are
related to particle collision, are not affected by Reλ, while the power regime related to the classical
inertial clustering depends on Reλ, but only through the change in Kolmogorov length-scale η.

FIG. 9. The RDFs for particles in three cases with different Reλ. The particle Stokes number is 0.1 and the
diameter of particle is d = 9.49 × 10−4. (Inset) The RDFs as the function of r normalized by the Kolmogorov
length η. The observed overlaps implies that Reynolds number effect is very weak.
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FIG. 10. The modulation factor γc versus r − d for particles in three cases with different Reλ. The Stokes
number is 0.1 and the particle diameter d = 9.49 × 10−4. γc for three cases are overlapped within a range of
uncertainty. Error bars represents standard deviation.

The modulation factor γc for these cases are shown in Fig. 10. We find that they overlap within
the statistical uncertainty. This again suggests that the main characteristics of the depletion zone are
insensitive to the flow Reynolds number from Reλ = 84 to 189.

According to the Kolmogorov 1941 hypothesis [24], if the Reynolds number is large enough,
then the statistics of the small scale of turbulent flow will not be influenced by of the large scale.
Collisions occur on a scale of particle diameter, which here is much smaller than the Kolmogorov
length scale, therefore, the decrease of RDF is insensitive to Reλ. This view is consistent with
the above results. However, in view of possible influence of sub-Kolmogorov scale intermittency
[25,26], we acknowledge the fact that the range of Reynolds numbers investigated here is rather
limited and future works involving higher Reλ and spatial resolution may be necessary to address
this question conclusively.

FIG. 11. The RDFs for particles with different diameters, d = 1
3 d∗, d = d∗, and d = 3d∗, respectively,

in which d∗ = 9.49 × 10−4. The Stokes number of particles is 0.1 and the Reynolds number of the flow is
Reλ = 124. The position where the RDF decreases closely follows to the particle diameter.
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FIG. 12. The collisional modulation factor γc for particles with different diameters, d = 1
3 d∗, d = d∗, and

d = 3d∗, in which d∗ = 9.49 × 10−4. The Stokes number of particles is 0.1 and the Reynolds number of
turbulent flow is Reλ = 124. γc for all three cases coincide substantially.

D. Particle diameter dependence

The RDFs for particles of different diameters are shown in Fig. 11, the statistics used are from
Run 3, Run 9, and Run 10. What is striking in Fig. 11 is that the position where the RDF starts to
decrease is consistent with the particle diameter.

Since the particle diameters are different in the three cases, γc as a function of the rescaled gap
distance (r − d )/d is plotted in Fig. 12 to determine the relationship between the depletion zone of
γc with the particle diameter. In this case, the modulation factors γc are coincidental, highlighting
the central role of d .

The collision process of particles is strongly related to the particle size. Since we only consider
the RDFs of monodisperse particles, we expected that the position where depletion zone begins is
close to the particle diameter. The results shown here are in consistent with our expectations.

IV. DISCUSSION

The degree to which γc deviates from 1 represents the extent of the effect of collision on RDF.
As illustrated in Fig. 6, the value of r corresponding to the point at which γc begins to decrease is
almost the same for St � 1 but differs for larger values of St. As explained earlier (Fig. 3), when
the particle separation distance r approaches the particle diameter d , the relative trajectory of the
particle can be considered almost rectilinear. The larger the particle inertia (i.e., St), the longer it
takes for the particle to change its original velocity and the greater the distance it travels during
this time, implying the rectilinear assumption holds up to larger length scale. This increases the
range over which collision and coagulation affect RDF. If we take rpc as the separation distance r
corresponding to the point at which γc begins to deviate from 1, then the value of rpc should be
related to the particle Stokes number, diameter, and potentially turbulent parameters; this will be a
subject for future studies.

In Appendix B, we conclude that unresolved sub-Kolmogorov intermittency may slightly modify
the inertial clustering exponent by a few percent. This shifts all small-scale features of the RDF
upward by the same order of magnitude. As a result, the value of the RDF in this paper may be
underestimated by a few percent. However, this effect on the trend of the RDF curve is minimal and
does not impact significantly on the main results in this paper.

Previous research [26] indicates that the small-scale intermittency increases with Reynolds
number. The range of Reynolds numbers investigated here is rather limited and may have a statistical
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error of a few percent at most. Hence, future works with higher Reynolds numbers and spatial
resolution may be necessary to conclusively address this question.

V. CONCLUSION

This paper studies the change in the radial distribution function (RDF) of particles subjected to
the collision and coagulation (coalescence) interaction. We investigate the relationship between the
RDF and the particle Stokes number, particle diameter, and Reynolds number. We find that the RDF
decreases significantly at small particle separation distances r. When viewed as a function of r − d ,
we found evidence that the RDF does not decrease indefinitely, but levels off to a fixed value in the
limit of r → d . To study the relationship between the degree of reduction of the RDF and the particle
and turbulent parameters, we separate the RDF into two multiplicative parts i.e., g = γc gn, where gn

is the RDF for noncolliding particles under equivalent environment and γc is a collisional modula-
tion factor that reflects the effect of particle collision on particle preferential concentration. We see
that gn(r − d ) levels off to a plateau as the argument r − d approaches zero. However, the collisional
factor γc universally converges to unity at large r and levels off to a fixed value at r ≈ d . We find
that γc depends on the Stokes number. Specifically, assuming a power-law model for γc in the range
0.1d � r − d � 0.7d [i.e., γc = c̃0(r − d )c̃1 ], we find that in the small Stokes number limit, the
value of c̃1 is only very weakly dependent on St, while the overall Stokes number trend of c̃1 is
qualitatively similar to the power law exponent c1 in the RDF of noncolliding (ghost) particles [i.e.,
gn(r)]. It should be noted, however, that the increase in c̃1 is much weaker than that of c1. The magni-
tude of γc at the limit r → d varies with the Stokes number following a trend similar to that of c̃1(St).

The preceding findings motivate a comparative investigation into the St trend of the full RDF,
which has the result that the slope of the RDF g(r) in the depletion zone is the same for St � 1 but it
is different for large Stokes number (i.e., St � 0.05). Besides this, the location of the peak of RDF is
found to be significantly St-dependent. These findings imply that the Stokes number dependence of
the RDF could not be completely decoupled from γc [nor from g(r)] except in the regime of St � 1
where St dependence is weak.

We find that the shape of the RDF in the depletion zone (r ∼ d) does not change with the variation
of the flow Reynolds number within the range studied, i.e., Reλ = 84–189 and the collisional
modulation factor γc from different Reλ overlap. However, further investigations involving larger
Reλ and higher spatial resolution may be needed to form stronger conclusion in this respect.

On the effect of particle diameter d , we find that larger d leads to the falling edge in γc occurring
at larger values of r − d (and r) such that the results coincide when γc is plotted against (r − d )/d .

All in all, for particles with St � 1, their RDFs in the depletion zone are almost universal for
different St. And the collision scale, where the RDF and γc start to decrease, is only related to the
particle diameter and is almost independent with St and Reλ.
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APPENDIX A: THE ENERGY SPECTRUM

The energy spectrum for three different turbulent flow in this paper are shown in Fig. 13. The
detailed DNS parameters are give in Table I. It can be seen that the dissipation scale is well resolved.
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FIG. 13. The energy spectrum for different turbulent flow. Reλ = 84, 124, and 189.

APPENDIX B: THE INFLUENCE OF THE SMALL-SCALE INTERMITTENCY ON THE RDF

In order to identify the effects of any sub-Kolmogorov scale flow features that may be present but
under-resolved by the simulations at N = 256, an additional simulation at higher resolution (four
times higher, i.e., at N = 1024) is conducted. The result and the corresponding comparisons are
shown below.

For a discussion on sub-Kolmogorov intermittency, it is helpful to refer to the recent work
of Buaria et al. [26]. They used DNS to investigate the sub-Kolmogorov-scale intermittency
in turbulent flows at different Reλ and found that the smallest scale at which sub-Kolmogorov
intermittent features is observable scales inversely with the Reynolds number. One of the flows they
studied which is most relevant to us is the one at Reλ = 140, which they simulated using resolution
of N = 1024. Their results and findings strongly suggest that such a flow should be well resolved at
N = 1024. Thus, we follow this practice for our enhanced-resolution simulation mentioned above.
However, a closer inspection reveals that our resolution is slightly below theirs in terms of kmaxη

(due to the different de-aliasing scheme employed). As a result, we contend that while our N = 1024
simulation may not capture, fully, the effects of sub-Kolmogorov intermittency, but should have at
least captured most of the effects.

Table III presents the specific DNS parameters for both the original and additional simulations,
while Figs. 14 and 15 compare the energy spectrum and the particles RDF, respectively. These
spectra results indicate that the sub-Kolmogorov scale is better resolved at N = 1024. However, we
must point out that the two flows are not exactly the same and fluctuate differently in time.

TABLE III. The DNS parameters and time-averaged statistics. N is the simulation grid size, ν is the
kinematic viscosity of turbulence, ε is the dissipation rate of turbulent flow, u′ is the root-mean-square velocity
of turbulent flow, λ is the Taylor length scale, η and τη are the Kolmogorov length and timescale, L and TL are
the integral length and timescale, Reλ is the Taylor scaled Reynolds number, and Ts is the length of time over
which particle statistics are accumulated.

ν ε u′ λ η τη L TL Reλ St Ts

N = 1024 0.001 0.1011 0.5668 0.2183 0.0100 0.0994 0.6468 1.1411 123.7 0.1006 7.5 (75.4τη)
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FIG. 14. The comparison of the energy spectrum under different simulations. The DNS parameters are
listed in Table I flow 1 and Table III, respectively.

From the RDF comparison, we see that the two curves (both for St = 0.1) are very similar, but the
RDF obtained at N = 1024 is slightly above the one at 256. Specifically, in the super-Kolmogorov
inertial clustering regime, the power-law exponent c1 is slightly altered such that the discrepancy in
the magnitude of the two RDFs is at maximum about 2.5% (the 1024 case being higher), while at
the collisional scale (the smallest scales), the difference is subject to statistical noise but on average
is about 2.6% (the 1024 case being higher). From these, we conclude that the effect of unresolved
sub-Kolmogorov intermittency may modify slightly (at most a few percents) the inertial clustering
exponent. This in turn, would shift all small-scale features of the RDF upwards, by the same order
of magnitude, but would not cause any significant changes to the qualitative trends observed in this
paper.

FIG. 15. The RDFs versus r − d under different simulations. The DNS parameters are listed in Table I flow
1 and Table III, respectively.

084304-16



SHARP DEPLETION OF RADIAL DISTRIBUTION …

[1] R. A. Shaw, Particle-turbulence interactions in atmospheric clouds, Annu. Rev. Fluid Mech. 35, 183
(2003).

[2] W. W. Grabowski and L.-P. Wang, Growth of cloud droplets in a turbulent environment, Annu. Rev. Fluid
Mech. 45, 293 (2013).

[3] J. N. Cuzzi, R. C. Hogan, J. M. Paque, and A. R. Dobrovolskis, Size-selective concentration of chondrules
and other small particles in protoplanetary nebula turbulence, Astrophys. J. 546, 496 (2001).

[4] A. Johansen, J. S. Oishi, M.-M. M. Low, H. Klahr, T. Henning, and A. Youdin, Rapid planetesimal
formation in turbulent circumstellar disks, Nature (London) 448, 1022 (2007).

[5] L. Pan, P. Padoan, J. Scalo, A. G. Kritsuk, and M. L. Norman, Turbulent clustering of protoplanetary dust
and planetesimal formation, Astrophys. J. 740, 6 (2011).

[6] N. Smith, G. Nathan, D. Zhang, and D. Nobes, The significance of particle clustering in pulverized coal
flames, Proc. Combust. Inst. 29, 797 (2002).

[7] K. D. Squires and J. K. Eaton, Preferential concentration of particles by turbulence, Phys. Fluids 3, 1169
(1991).

[8] W. C. Reade and L. R. Collins, Effect of preferential concentration on turbulent collision rates,
Phys. Fluids 12, 2530 (2000).

[9] J. Chun, D. L. Koch, S. L. Rani, A. Ahluwalia, and L. R. Collins, Clustering of aerosol particles in
isotropic turbulence, J. Fluid Mech. 536, 219 (2005).

[10] P. J. Ireland, A. D. Bragg, and L. R. Collins, The effect of Reynolds number on inertial particle dynamics
in isotropic turbulence. Part 1. Simulations without gravitational effects, J. Fluid Mech. 796, 617 (2016).

[11] E. W. Saw, R. A. Shaw, S. Ayyalasomayajula, P. Y. Chuang, and A. Gylfason, Inertial Clustering of
Particles in High-Reynolds-Number Turbulence, Phys. Rev. Lett. 100, 214501 (2008).

[12] J. P. Salazar, J. De Jong, L. Cao, S. H. Woodward, H. Meng, and L. R. Collins, Experimental and numerical
investigation of inertial particle clustering in isotropic turbulence, J. Fluid Mech. 600, 245 (2008).

[13] P. Saffman and J. Turner, On the collision of drops in turbulent clouds, J. Fluid Mech. 1, 16 (1956).
[14] K. Gustavsson, B. Mehlig, and M. Wilkinson, Collisions of particles advected in random flows, New J.

Phys. 10, 075014 (2008).
[15] S. Sundaram and L. R. Collins, Collision statistics in an isotropic particle-laden turbulent suspension.

Part 1. Direct numerical simulations, J. Fluid Mech. 335, 75 (1997).
[16] L.-P. Wang, A. S. Wexler, and Y. Zhou, Statistical mechanical description and modelling of turbulent

collision of inertial particles, J. Fluid Mech. 415, 117 (2000).
[17] E.-W. Saw and X. Meng, Intricate relations among particle collision, relative motion, and clustering in

turbulent clouds: Computational observation and theory, Atmos. Chem. Phys. 22, 3779 (2022).
[18] R. S. Rogallo, Numerical Experiments in Homogeneous Turbulence (National Aeronautics and Space

Administration, Washington, D.C., 1981), Vol. 81315.
[19] V. Eswaran and S. B. Pope, An examination of forcing in direct numerical simulations of turbulence,

Comput. Fluids 16, 257 (1988).
[20] M. R. Maxey and J. J. Riley, Equation of motion for a small rigid sphere in a nonuniform flow,

Phys. Fluids 26, 883 (1983).
[21] P. J. Ireland, T. Vaithianathan, P. S. Sukheswalla, B. Ray, and L. R. Collins, Highly parallel particle-laden

flow solver for turbulence research, Comput. Fluids 76, 170 (2013).
[22] E.-W. Saw, J. P. Salazar, L. R. Collins, and R. A. Shaw, Spatial clustering of polydisperse inertial particles

in turbulence: I. Comparing simulation with theory, New J. Phys. 14, 105030 (2012).
[23] M. Wilkinson and B. Mehlig, Caustics in turbulent aerosols, Europhys. Lett. 71, 186 (2005).
[24] A. N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large

Reynolds numbers, Proc. Math. Phys. Eng. 434, 9 (1991).
[25] J. Schumacher, Sub-kolmogorov-scale fluctuations in fluid turbulence, Europhys. Lett. 80, 54001 (2007).
[26] D. Buaria, A. Pumir, E. Bodenschatz, and P.-K. Yeung, Extreme velocity gradients in turbulent flows,

New J. Phys. 21, 043004 (2019).

084304-17

https://doi.org/10.1146/annurev.fluid.35.101101.161125
https://doi.org/10.1146/annurev-fluid-011212-140750
https://doi.org/10.1086/318233
https://doi.org/10.1038/nature06086
https://doi.org/10.1088/0004-637X/740/1/6
https://doi.org/10.1016/S1540-7489(02)80102-X
https://doi.org/10.1063/1.858045
https://doi.org/10.1063/1.1288515
https://doi.org/10.1017/S0022112005004568
https://doi.org/10.1017/jfm.2016.238
https://doi.org/10.1103/PhysRevLett.100.214501
https://doi.org/10.1017/S0022112008000372
https://doi.org/10.1017/S0022112056000020
https://doi.org/10.1088/1367-2630/10/7/075014
https://doi.org/10.1017/S0022112096004454
https://doi.org/10.1017/S0022112000008661
https://doi.org/10.5194/acp-22-3779-2022
https://doi.org/10.1016/0045-7930(88)90013-8
https://doi.org/10.1063/1.864230
https://doi.org/10.1016/j.compfluid.2013.01.020
https://doi.org/10.1088/1367-2630/14/10/105030
https://doi.org/10.1209/epl/i2004-10532-7
https://doi.org/10.1098/rspa.1991.0075
https://doi.org/10.1209/0295-5075/80/54001
https://doi.org/10.1088/1367-2630/ab0756

