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In this paper, we propose a modeling framework for large eddy simulations of particle-
laden turbulent flows that captures the interaction between the particle and fluid phase on
both the resolved and subgrid scales. Unlike the vast majority of existing subgrid-scale
models, the proposed framework not only accounts for the influence of the subgrid-scale
velocity on the particle acceleration but also considers the effect of the particles on
the turbulent fluid flow. This includes the turbulence modulation of the subgrid scales by
the particles, which is taken into account by the modeled subgrid-scale stress tensor and the
effect of the unresolved particle motion on the resolved flow scales. Our modeling frame-
work combines a recently proposed model for enriching the resolved fluid velocity with
a subgrid-scale component, with the solution of a transport equation for the subgrid-scale
kinetic energy. We observe very good agreement of the particle pair separation and particle
clustering compared to the corresponding direct numerical simulation. Furthermore, we
show that the change of subgrid-scale kinetic energy induced by the particles can be
captured by the proposed modeling framework.

DOI: 10.1103/PhysRevFluids.8.084301

I. INTRODUCTION

To capture particle-turbulence interactions within the whole turbulence spectrum down to the
Kolmogorov length and timescale, a direct numerical simulation (DNS) has to be performed.
For academic cases, DNSs of particle-laden turbulent flow is commonly used to gain insights
into the underlying physical phenomena. As the flow configurations become more relevant for
practical applications, however, resolving such a wide range of flow length and timescales becomes
prohibitively expensive. An established surrogate in single phase flows is large eddy simulation
(LES), which resolves only the large flow scales and models the mainly dissipative effect of the
small scales. Even though many challenges still remain, LES is commonly applied to different single
phase flow applications. Severe problems can arise, however, if particle-laden flows are considered,
especially if the particles significantly affect the flow (two-way coupling).

The majority of the literature on particle-laden flows focuses on the one-way coupling, where
the modification of the particle statistics by the flow is considered but not the effect of the particles
on the flow. The effect of neglecting the subgrid-scale velocity contributions on the transport of the
particles has been investigated and quantified in a variety of studies [1–4]. It has been observed that
even though the kinetic energy of the subgrid-scale velocity is small, the consequence of neglecting
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the subgrid-scale fluid velocity on the motion of the particles can strongly affect the preferential
concentration and other statistics of the particles.

There are several classes of models that attempt to produce realistic particle statistics in the scope
of LES. Lagrangian models typically rely on the solution of a stochastic differential equation for
every individual particle (see, e.g., Fede et al. [5], Bini and Jones [6], Berrouk et al. [7], Shotorban
and Mashayek [8], Pozorski and Apte [9], and Knorps and Pozorski [10]). These models are
typically simple to implement, computationally efficient, and can also be applied in complex
domains. However, they usually contain empirical parameters and their Lagrangian nature prevents
them from predicting accurate particle pair statistics. Other models rely on successive deconvolution
of the LES velocity and use the resulting fluid velocity field to transport the particles [11,12]. Park
et al. [13] extended the deconvolution of the filtered velocity by dynamically adjusting an elliptic
differential filter such that the model is either kinetic energy or dissipation consistent with the
subgrid-scale model. The main drawback of approximate deconvolution methods is that they do
not introduce velocities with higher wave numbers than the LES, but only modify the LES velocity.
That is why these models are not able to reproduce the particle statistics of a DNS to the full extent.

The most promising predictions of particle statistics using a LES framework are obtained with
models that reconstruct the subgrid-scale velocity. Bassenne et al. [14] proposed such a model
that alternatingly applies the dynamic approximate deconvolution of Park et al. and a spectral
extrapolation based on the work of Domaradzki and Loh [15]. The proposed model improves the
prediction of particle clustering for a wide range of Stokes numbers. However, the model requires
a projection operation that has to be carried out with a resolution comparable to the DNS to obtain
a divergence-free subgrid-scale velocity, which introduces prohibitively high computational costs.
The kinematic simulation is a much cheaper approach and relies on the reconstruction of the
subgrid-scale velocity using a truncated Fourier series [16–18]. The Fourier coefficients required
for the kinematic simulation are chosen such that the resulting velocity field is divergence-free
and matches a given kinetic energy spectrum. Even though kinematic simulations yield improved
predictions of particle clustering for Stokes numbers St > 1.5, it only applies to spatially homo-
geneous problems. Considering the available models, there still does not exist a model that yields
satisfying improvements in predicting particle clustering and the Lagrangian particle statistics, while
maintaining important features for practical applicability, such as a reasonable computational cost
and the absence of empirical model parameters of critical influence.

Extensive research has been carried out to better understand the modulation of turbulence by
particles. Studies of forced and decaying homogeneous isotropic turbulence (HIT) have shown that
the presence of particles can modify the total dissipation in two ways [19–23]: (i) The particles can
remove or add kinetic energy to the turbulent flow. The sign of the particle kinetic energy transfer
and the scales at which the kinetic energy transfer occurs have been shown to depend on at least three
parameters: the Stokes number, the particle number density, and the mass fraction [21]. (ii) The fluid
dissipation is influenced by the presence of particles [19]. Similarly, depending on the characteristic
turbulence and particle parameters and on the considered length scales, the fluid dissipation can
either be enhanced or diminished.

A LES only resolves part of the kinetic energy spectrum and can thus only account directly for a
modified total dissipation at the resolved scales. While the particle dissipation at the subgrid scale is
fully disregarded in a classical LES, the subgrid-scale fluid dissipation is assumed to be equal to the
fluid dissipation of a single phase flow. Classical LES uses one of the many subgrid-scale models
designed for single phase flows (see, e.g., Sagaut [24]) and a fluid-particle coupling force obtained
without information of the subgrid-scale fluid velocity at the particle positions. The application of
several single-phase subgrid-scale models to particle-laden flows has been investigated by Boivin
et al. [25], displaying very different results between the models. Boivin et al. also argued that at
high particle mass fractions, the modeling error in predicting the fluid dissipation becomes less
important, since the particle dissipation is then dominant. In fact, we show in the present paper
that the neglected portion of the particle dissipation and fluid dissipation partially compensate each
other. Rohilla et al. [26] showed that the Smagorinsky or dynamic Smagorinsky model applied to
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particle-laden flows is unable to predict the critical particle volume loading at which the turbulence
in a channel flow collapses (i.e., the flow becomes laminar). They state that one of the main reasons
for this issue is the error made in modeling subgrid-scale dissipation.

Due to the complexity of two-way coupled turbulent particle-laden flows, models that account
for all the coupling effects between the particles and all fluid length and timescales are very rare.
An attempt has been made by Yuu et al. [27], who derived an algebraic model for the subgrid-scale
kinetic energy that serves as input for a turbulent viscosity. In the studies of Pannala and Menon [28]
and Sankaran and Menon [29], a source term accounting for the presence of particles is added to
an evolution equation for the subgrid-scale kinetic energy equation, in a manner somewhat similar
to the method presented in this paper. However, their particle source term is not closed because it
contains the subgrid-scale velocity, which requires additional modeling.

In this paper, we present a framework that accounts for particle turbulence interactions that are
typically neglected in a LES. The framework contains two coupled models: (i) a subgrid-scale model
based on the localized dynamic kinetic energy model (LDKM) of Menon and coworkers [30,31],
with an additional source term accounting for the influence of the particles on the subgrid-scale
kinetic energy, and (ii) a model for the subgrid velocity that is used to close the particle equations of
motion and the particle source terms in the momentum and subgrid-scale kinetic energy equa-
tions [32]. In Sec. II, the general numerical framework for treating the particle-laden flows in this
paper is introduced, including the transport equation for the subgrid-scale kinetic energy upon which
the subgrid-scale model is built. Section III gives an overview of the closures that are required in a
particle-laden LES and provides a derivation of the proposed modeling framework. Subsequently,
simulation setups for one-way and two-way coupled HIT are introduced in Sec. IV, and results of
the comparison between DNS, LES, and modeled LES are presented in Sec. V. Finally, Sec. VI
concludes the present paper.

II. GENERAL NUMERICAL FRAMEWORK

In this paper, we consider an incompressible fluid with density ρf and kinematic viscosity νf in
the absence of a gravitational field. The fluid is laden with particles of index p having a density ρp

and volume Vp. By volume filtering the Navier-Stokes equations (NSEs), the effect of the particles
on the fluid can be modeled without needing to solve for the detail of the flow around each individual
particle. The following equations are commonly used to approximate the volume-filtered velocity u
and pressure p for small particle volume fractions (see, e.g., Maxey [33]):

∇ · u = 0, (1)

∂u
∂t

+ ∇ · (u ⊗ u) = − 1

ρf
∇p + ∇ · σ − 1

ρf

∑
p

g(|x − xp|)F p, (2)

where σ = νf (∇u + (∇u)T) is the Newtonian viscous stress tensor and F p is the sum of the fluid-
particle interface forces of the particle with index p that can originate from drag, lift, added mass,
or other effects. Gravity is neglected in the present paper. The kernel g of the volume filtering
operation (see, e.g., Anderson and Jackson [34]) corresponds to filter size δ. Note that the filtering
is only applied over volumes that are occupied by the fluid. Strictly speaking, the solution of Eqs. (1)
and (2) is the approximation of volume-filtered quantities, which is not equivalent to the actual fluid
velocity and pressure. In a simulation, the smallest resolvable flow structures are related to the
smallest affordable cell size of the numerical grid. Similar to the LES approach, the volume-filtered
approach solves for the large scales that can be resolved by the grid and models the effect of the
small scales. It should be noted that in this paper, the influence of particle volume fraction αp is
not considered in the governing equations of the DNS and LES, even though it can be significant in
dense particle regimes (i.e., αp > 0.01). The proposed modeling is also only valid for dilute regimes.
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Particles are considered as Lagrangian rigid point-particles. The particle position xp is governed
by the equation

dxp

dt
= vp, (3)

and the particle velocity by Newton’s second law:

dvp

dt
= 1

ρpVp
F p. (4)

There are a variety of mechanisms that lead to different forces acting on the particle, and additional
source terms can arise in Eq. (4) if, e.g., gravity is considered, which is neglected in this paper.
A summary of the possible force contributions and the regimes whereby their consideration is
important has been provided by Kuerten [35].

We only consider cases in which the particles are significantly smaller than the Kolmogorov
length scale (i.e., the smallest turbulent structures). The turbulence of the scales down to the
Kolmogorov length scale are resolved with the DNS. Note that the DNS is based on the assumption
of point particles. In cases, where not even the smallest flow structures can be resolved by the
numerical grid, a LES can be performed. The governing equations for the LES are obtained by
filtering Eqs. (1) and (2) once more with a filter G of width �, with � � δ:

∇ · ũ = 0, (5)

∂ũ
∂t

+ ∇ · (ũ ⊗ u) = − 1

ρf
∇ p̃ + ∇ · σ̃ − 1

ρf

∑
p

g(|x − xp|)F p
�

. (6)

Note that the filter G is applied to already continuous quantities (due to the previous filtering with g)
and .̃ represents the filtering operator. No further assumptions are introduced with the second filter
level.

Due to the fact that the particles are much smaller than the Kolmogorov length scale (and
therefore of the grid spacing), the numerical discretization of the source terms is realized with the
particle-source-in-cell (PSIC) method of Crowe et al. [36],∑

p

g(|x − xp|)F p ≈ 1

Vcell(x)

∑
p∈�cell (x)

F p (7)

and ∑
p

g(|x − xp|)F p
� ≈ 1

Ṽcell(x)

∑
p∈�̃cell (x)

F p, (8)

where �cell and �̃cell indicate computational cells of the DNS and the LES, respectively, and Vcell <

Ṽcell their volumes.
For the modeling of the flow scales that are filtered out by kernel G, a transport equation for the

subgrid-scale kinetic energy Ksgs = 1/2(ũ · u − ũ · ũ) is derived. This is done in two steps. First,
Eq. (2) is dotted with the velocity u and subsequently filtered with G, which yields

1

2

∂u · u�
∂t

+ 1

2
∇ · (u ⊗ u · u
�

)

= − 1

ρf
∇ · (pu�) + ∇(σ · u�) − ˜∇u : σ − 1

ρfṼcell

∑
p∈�̃cell

F p(u(xp)) · u(xp). (9)

The last term on the right-hand side is realized by multiplying the fluid-particle interface forces F p

with the fluid velocity at the particle position and taking the sum over all particles within a LES
grid cell. In the following, we will emphasize that the forces F p require the unfiltered fluid velocity
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at the particle position by explicitly writing its dependency on u(xp). The reader may be reminded,
however, that the forces may also depend on additional parameters.

The sum over all particles within a LES grid cell replaces the filtering operation F p · u
�

. In
fact, this resembles the approach of Schumann [37], who defines a set of LES equations based
on averaging over the volume of the computational cell, which is arguably closer to the numerical
realization of a LES than a spatially continuous filtering operation. Second, Eq. (6) is dotted with
the filtered velocity ũ, which leads to

1

2

∂ũ · ũ
∂t

+ 1

2
∇ · (ũ ⊗ u · ũ)

= − 1

ρf
∇ · ( p̃ũ) + ∇ · (̃σ · ũ) − ∇ũ : σ̃ − 1

ρfṼcell
ũ ·

∑
p∈�̃cell

F p(u(xp)). (10)

The numerical realization of the last term on the right-hand side includes a sum of the forces F p

within a LES grid cell and subsequent multiplication with the LES velocity of the present grid cell.
Subtracting Eq. (10) from Eq, (9) yields an equation for Ksgs:

∂Ksgs

∂t
+ 1

2

∂

∂x j
(ũiu jui − uiu j

�ũi )

= − 1

ρf

∂

∂xi
( p̃ui − p̃ũi ) + νf

∂2Ksgs

∂x j∂x j
− νf

⎛⎜⎝ ∂ui

∂x j

∂ui

∂x j

�
− ∂ ũi

∂x j

∂ ũi

∂x j

⎞⎟⎠
− 1

ρfṼcell

⎛⎝ ∑
p∈�̃cell

Fi,p(u(xp))ui(xp) − ũi

∑
p∈�̃cell

Fi,p(u(xp))

⎞⎠. (11)

The last term on the right-hand side is the source term due to the subgrid-scale kinetic energy transfer
by the particles. This equation is the foundation for the modeling of the turbulence modulation by
particles of scales that are filtered out by G.

III. MODELING IN THE LES FRAMEWORK

The second filtering operation with G leads to equations governing the fluid behavior that
cannot be solved explicitly without knowing the fluid velocity u. We model these equations in the
framework of a LES. In addition to the modeling of the subgrid-scale stress tensor, a particle-laden
flow requires further closures, which are first explained and then modeled.

A. Required closures

The fluid equations with the assumption of a dilute particle-laden flow with sufficiently small
particles and subsequent filtering with the kernel G can be written in the typical form of a LES [38]
as

∂ ũi

∂xi
= 0, (12)

∂ ũi

∂t
+ ũ j

∂ ũi

∂x j
= − 1

ρf

∂ p̃

∂xi
+ νf

∂2ũi

∂x j∂x j
− ∂τi j

∂x j
− 1

ρfṼcell

∑
p∈�̃cell

FD,i,p(u(xp)), (13)

where we assumed that only the drag force FD acts on the particles. The subgrid-scale stress tensor
τi j is defined as

τi j = ũiu j − ũiũ j . (14)
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With the particle force reducing to the drag force, the particle velocity vp is governed by

dvp

dt
= 1

ρpVp
FD,p(u(xp)). (15)

To solve for the filtered fluid velocity ũ and the particle velocity vp, two further modeling steps
are required: (i) The subgrid-scale stress tensor τi j has to be closed to model the effect of the
unresolved subgrid scales on the resolved (filtered) quantities. It should be noted that the presence
of the particles modifies the subgrid-scale velocity. As a consequence, models for the subgrid-scale
stress tensor that are based on assumptions of the single-phase flow subgrid-scale velocity are,
strictly speaking, not valid. (ii) To compute the drag force acting on the particle and vice versa,
the force that is coupled back to the fluid with opposite sign, the unfiltered fluid velocity at the
particle position is required, which is an unknown quantity in a LES. It is well understood that
the particles behave differently when the drag force is obtained from the filtered fluid velocity at the
particle position FD,p(ũ(xp)) [2,3]. In the present paper, a modeling framework for both closures is
provided.

B. Modeling the subgrid-scale stress tensor

The subgrid-scale stress tensor accounts for the effect of the subgrid-scale velocities on the
velocity that is resolved in a LES. In a LES, this subgrid-scale stress tensor is modeled. Typically,
the focus lies exclusively on modeling the energetic effects of the subgrid scales on the resolved
scales, even though the mechanisms of turbulent energy transfer (vorticity stretching and strain
self-amplification) possess characteristic directional dependencies [39]. In single phase turbulent
flows, the construction of the subgrid-scale model can be based on the assumption that the energy
transferred towards smaller scales is either dissipated by the viscosity or scattered back towards
larger scales. In a particle-laden turbulent flow, however, additional energy sources and sinks occur
due to the interactions with the particles that classical subgrid-scale models (designed for single
phase flows) do not account for.

To take the interactions of the fluid with the particles into account, we modify the LDKM of
Menon and coworkers [30,31]. The modeling of the subgrid-scale stress tensor is based on an eddy
viscosity νk,

τi j = −2νk S̃i j + 2
3 Ksgsδi j, (16)

where S̃i j is the filtered strain-rate tensor and δi j is the Kronecker tensor. The eddy viscosity is
computed from the subgrid-scale kinetic energy,

νk = Ck

√
Ksgs�, (17)

where Ck is a constant. The evolution of the subgrid-scale kinetic energy Ksgs is governed by the
transport Eq. (11). However, several terms of the transport equation for Ksgs require the unfiltered
fluid velocity. Lilly [40] introduced a model for the transport Eq. (11) (without particle source term),
such that it can be solved by knowing filtered quantities only, which is the basis of the LDKM,

∂Ksgs

∂t
+ ũi

∂Ksgs

∂xi
= −τi j

∂ ũi

∂x j
− Cε

K3/2
sgs

�
+ ∂

∂xi

(
νk

∂Ksgs

∂xi

)
+ ΦP, (18)

where Cε is a constant. The particle source term ΦP is not part of the original LDKM but introduced
in the present model based on the derivations in Sec II:

ΦP = − 1

ρfṼcell

⎛⎝ ∑
p∈�̃cell

FD,i,p(u(xp))ui(xp) − ũi

∑
p∈�̃cell

FD,i,p(u(xp))

⎞⎠. (19)

The particle source term represents the kinetic energy added to or removed from the subgrid-scale
velocity by the particles. Although the source term is written as a function of the drag force, the
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derivation in Sec. II shows that the source term can be computed from all the fluid-particle interface
forces used in the fluid momentum equation, such as lift force or added mass force.

Note that Pannala and Menon [28] and Sankaran and Menon [29] already applied the concept
of a particle source term in the transport equation of the subgrid-scale kinetic energy, but with a
different realization and without providing a rigorous derivation. To distinguish the present model
including the particle source term Eq. (19) from the original LDKM, we refer to it as modified
LDKM (mLDKM). The constants Cε and Ck are computed dynamically based on the assumption of
scale similarity. The Leonard stress tensor is defined as

Li j = ̂̃uiũ j − ˆ̃ui ˆ̃u j, (20)

where .̂ indicates a filtering operation with the filter width �̂ = 2�. Assuming that the Leonard
stress tensor is analogously computed to the subgrid-scale stress tensor,

Li j = −2Ck�̂K1/2
test

ˆ̃Si j + 1
3δi jLkk, (21)

the constant Ck can be dynamically computed from

Ck = 1

2

Li jσi j

σlmσlm
, (22)

with

σi j = −�̂K1/2
test

ˆ̃Si j (23)

and

Ktest = 1
2 (̂̃uiũi − ˆ̃ui ˆ̃ui ) = 1

2 Lii. (24)

Note that δi j S̃i j = 0 for incompressible flows.
Assuming the scale similarity to also be valid for the dissipation gives

Cε

K3/2
test

�̂
= (νf + νk )

(
̂∂ ũi

∂x j

∂ ũi

∂x j
− ∂ ˆ̃ui

∂x j

∂ ˆ̃ui

∂x j

)
. (25)

With this, the dynamic value of Cε can be obtained from

Cε = �̂(νf + νk )

K3/2
test

(
̂∂ ũi

∂x j

∂ ũi

∂x j
− ∂ ˆ̃ui

∂x j

∂ ˆ̃ui

∂x j

)
. (26)

The original LDKM for single phase flows (without the particle source term) has some advanta-
geous properties. The dynamical constant Ck can become negative and, thus, theoretically enables
emulating the backward energy cascade. However, similar to Kim et al. [41], the eddy viscosity
is numerically limited to νk > −νf to ensure a stable numerical solution of the flow equations. In
contrast to the dynamic model of Germano et al. [42], no averaging along statistically homogeneous
directions is required with the LDKM, which requires the existence of statistically homogeneous di-
rections. With the dynamic computation of the constants, the model does not contain any adjustable
constants.

Besides the theoretical advantages of the LDKM in a single phase flow, the main advantage is
that it provides a framework for incorporating the particle source term in a deterministic way. If the
particles remove kinetic energy from the subgrid scales, Ksgs decreases and the fluid dissipation (i.e.,
the eddy viscosity) is reduced. However, the model is not capable of considering at which scales
the enhancement or attenuation of turbulence takes place. In reality, the spectral distribution of the
subgrid-scale kinetic energy can play an important role.

The particle source term ΦP is not closed in the scope of LES because the unfiltered velocity at
the particle position is required, whereas only the filtered velocity is available. Thus, the mLDKM
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including the particle source term is only applicable if a suitable model for the subgrid-scale velocity
at the particle position is provided.

C. Approximate reconstruction of the subgrid-scale velocity

The computation of the drag force acting on the particle requires knowledge of the fluid velocity
at the particle positions, which is used in the equations of motion of the particles and as the feedback
force on the fluid. In addition to the LES velocity, the subgrid-scale velocity has to be provided. We
approximate the subgrid-scale velocity as a truncated Fourier-series expansion,

u′ =
Nm−1∑
m=0

(Am(t ) cos(km · x) + Bm(t ) sin(km · x)), (27)

where Am(t ) and Bm(t ) are time-dependent coefficients, Nm the number of modes, and km the wave
vectors. With similar coefficients for the entire domain, the subgrid-scale velocity is statistically
homogeneous. To overcome the limitation of global statistical homogeneity, statistically homoge-
neous subdomains �domain ∈ � are defined that own a distinct set of coefficients Am(t ) and Bm(t ),
respectively. Quantities that are known in the LES may be averaged over the subdomain,

〈φ〉domain = 1

Vdomain

∫
�domain

φdV, (28)

where Vdomain indicates the volume of a subdomain. We exploit the findings of Laval et al. [43]
that suggest that the effects of the nonlinear term in the governing equations for the subgrid-scale
velocity on the kinetic energy spectrum and intermittency may be replaced by an additional viscosity
that can be obtained from renormalization groups [44],

ν ′
t (k) =

(
ν2

f + Cν

∫ ∞

k
q−2E (q)dq

)1/2

− νf , (29)

with the fluid kinetic energy spectrum E and an analytical constant Cν = 2/5. An equation to obtain
a preliminary set of coefficients A∗

m,i and B∗
m,i can be derived [32]:

A∗
m,i − An

m,i

�t
+ 〈ũn

j〉domain

(
km, jB

n
m,i + ∂An

m,i

∂x j

)
+ An

m, j

〈
∂ ũn

i

∂x j

〉
domain

= (νf + ν ′
t )

(
−|km|2An

m,i + ∂2An
m,i

∂x j∂x j
+ 2km, j

∂Bn
m,i

∂x j

)
+ fm,i, (30)

B∗
m,i − Bn

m,i

�t
+ 〈ũn

j〉domain

(
∂Bn

m,i

∂x j
− km, jA

n
m,i

)
+ Bn

m, j

〈
∂ ũn

i

∂x j

〉
domain

= (νf + ν ′
t )

(
−|km|2Bn

m,i + ∂2Bn
m,i

∂x j∂x j
− 2km, j

∂An
m,i

∂x j

)
+ gm,i. (31)

Note that no summation over the index m is carried out. The index n indicates the time level
and fm,i and gm,i are forcing terms to maintain a desired kinetic energy of the subgrid scales.
The coefficients are made divergence-free by applying a subsequent projection operation to the
preliminary coefficients

An+1
m (t ) = A∗

m(t ) − km
km · A∗

m(t )

|km|2 , (32)

Bn+1
m (t ) = B∗

m(t ) − km
km · B∗

m(t )

|km|2 . (33)
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FIG. 1. Visualization of the modeled interactions in a classical LES (top) compared to the modeled
interactions in the modeled LES (bottom).

Since with discretized spatial derivatives the solution for the coefficients essentially consists of
explicit algebraic operations, the numerical solution is rather inexpensive. Numerical experiments
show that the solution for the coefficients Am,i and Bm,i requires a computing time of the same order
as the LES [32].

The fact that every subdomain possesses a distinct set of coefficients requires the interpolation of
the coefficients between the subdomains. In Hausmann et al. [32], an interpolation of the coefficients
is presented that leads to a divergence-free subgrid-scale velocity field between subdomains. Homo-
geneous Dirichlet boundary conditions for the subgrid-scale velocity, as they occur in wall-bounded
flows, may be realized by using the divergence free interpolation between the subdomains and the
fluid velocity at the wall.

D. Coupling between the fluid phase and the particle phase

In a particle-laden LES, at least three effects are not or insufficiently considered: (i) The particles
are accelerated by a drag force which requires the fluid velocity at the particle position. Using the
filtered fluid velocity instead leads to different clustering and Lagrangian statistics of the particles
[2,3]. (ii) The effect of the particles on the scales that are resolved in a LES is incomplete, since
the feedback force is only computed from the filtered velocity instead of the unfiltered velocity.
(iii) The effect of the particles on the subgrid scales is not considered in a classical LES. The
modified subgrid-scale velocity changes the subgrid-scale stress tensor compared to a single phase
flow (i.e., the dissipation by the subgrid-scale fluid velocity).

In Fig. 1, the procedure of a classical LES is compared to our proposed modeling framework
that combines the mLDKM and the model for the subgrid-scale velocity. We refer to the latter
as modeled LES. In the classical LES, the filtered fluid velocity ũ is obtained by solving the
filtered NSE with a subgrid-scale stress tensor that is predicted by one of the subgrid-scale models
commonly used for single phase flows. Note that subgrid-scale models for single phase flows do not
incorporate information of the fluid-particle coupling force. The coupling force is computed from
the filtered velocity at the particle position and is used to obtain the particle acceleration and the
source terms in the fluid momentum equation.

The modeled LES exhibits a stronger coupling between the fluid phase and the particle phase.
Using the filtered fluid velocity and the coupling force as input, the mLDKM returns a prediction
of the subgrid-scale stress tensor, which is used for solving the filtered NSE and the subgrid-scale
kinetic energy, which serves as the target kinetic energy for the generated subgrid-scale velocity.
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With the modeled subgrid-scale velocity, the coupling force is computed considering all turbulent
length and timescales down to the Kolmogorov scales. This enables a more realistic prediction
of the particle velocity, the momentum source term in the filtered NSE, and the kinetic energy
source term in the mLDKM. As a consequence, the subgrid-scale stress tensor and the modeled
subgrid-scale velocity contain information about the turbulence modification by the particles at the
unresolved scales. In theory, the modeled LES covers all occurring interactions between the fluid
and the particles.

In Sec. V A, we also study one-way coupling simulations with the modeled LES, in which case
all arrows of Fig. 1 that point from the coupling force to anything else than the particle velocity
vanish. The mLDKM then reduces to the original LDKM or can be replaced by any subgrid-scale
model that is developed for single phase flows. The subgrid-scale kinetic energy that is required as
input for the modeling of the subgrid-scale velocity can be alternatively estimated with the model
of Yoshizawa [45] or the dynamic model of Moin et al. [46].

IV. SIMULATIONS

Our proposed modeling is verified and validated by means of DNS and LES of particle-laden
turbulent flows. For all the simulation cases, HIT is considered. First, the model for the subgrid-scale
velocity at the particle position is assessed by comparing the particle statistics in the modeled LES
with the particle statistics in a DNS of the same one-way coupled case of statistically stationary
turbulence. In a second case, the feedback force of the particles on the fluid is investigated. This
requires the full modeling framework as described in Sec. III D, which is evaluated by comparing
the modeled LES and DNS of two-way coupled particle laden decaying turbulence. The subsequent
sections provide details of the realizations and configurations of the simulations.

A. Solving the governing equations

The NSE are solved with a finite volume approach that is second order in space and time [47].
The continuity equation and the momentum equations are coupled using momentum weighted
interpolation [48]. Therefore, two distinct velocity fields exist numerically, a cell-centered velocity
accurately satisfying the momentum balance and a face centered velocity conserving mass.

Statistically steady turbulence is maintained by supplying the flow with energy through source
terms in the momentum equations [49]. An important property of the forcing is that the artificial
source terms can be introduced in a limited range of wave numbers, k ∈ [kstart, kend]. For particle-
laden flows, this is essential to avoid directly impacting the particle behavior by the forcing.

The particle equations of motion Eqs. (3) and (4) are solved with the Verlet scheme [50]. The
drag force acting on the Lagrangian particle p is computed from

FD,p = CD
ρf

8
πd2

p|urel|urel, (34)

with the drag coefficient from the Schiller-Naumann correlation [51]

CD = 24

Rep

(
1 + 0.15Re0.687

p

)
, (35)

and the particle Reynolds number Rep = |urel|dp/νf . The relative velocity urel is defined as
the difference between the fluid velocity at the particle position and the particle velocity urel

= u(xp) − v.
To obtain the fluid velocity at the particle position, an interpolation from the Cartesian grid is

required. An essential property of the interpolation scheme is that the interpolated velocity needs to
be divergence-free. In the present paper, a second-order divergence-free interpolation from the face-
centered velocity (that fulfills the continuity equation with high accuracy) to the particle position is
applied [52].
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TABLE I. Single phase flow parameters of the
HIT simulation configuration.

Parameters Values

Reλ 75
Rel 205
η/L 0.0017
τη/Tref 0.0075
λ/L 0.029
l11/L 0.079
kstartL/2π 3
kendL/2π 6

In the case of the two-way coupling simulations, the PSIC method of Crowe et al. [36] is utilized.

B. Simulation setups

1. Single phase flow setups

The studies in this paper consist of two different flow types: (i) one-way coupling simulations
of forced HIT and (ii) two-way coupling simulations of decaying HIT. The computational domain
of both simulation types is a cube with periodic boundary conditions in all directions and an edge
length of L. Time quantities are given with respect to a reference time Tref = L/

√
2/3〈K〉, where

〈K〉 is the average kinetic energy of the fluid.
The setup of the single-phase flow simulations is summarized in Table I. The given values

correspond to the statistically steady state of the flow (before the decay) without the particles.
The two-way coupled simulations also undergo a two-way coupled forcing period to obtain a
statistically steady state before the forcing is turned off. The symbols in the table correspond to
the Taylor-Reynolds number Reλ, the turbulent Reynolds number based on the integral length scale
Rel , the Kolmogorov timescale τη, the Taylor microscale λ, and the longitudinal integral length
scale l11.

The DNS are carried out on a grid consisting of N3 = 2563 grid cells, which leads to a product
of the maximum resolvable wave number kmax and the Kolmogorov length scale of kmaxη = 1.37.
The LES are solved on a grid with N3 = 323 cells.

2. Particle setups of the one-way coupled case

In the one-way coupled case, particles of five different Stokes numbers, St = τp/τη, are intro-
duced in the previously defined flow setup. The Stokes numbers are based on the Kolmogorov
timescale of the statistically steady single phase flow. Since in the one-way coupling simulations
the flow does not experience any feedback by the particles, the previously defined parameters of the
flow do not change.

The particle relaxation time, τp = ρpd2
p/(18ρfνf ), the number of particles of the respective

simulation Np, and the particle diameter to mesh spacing ratio dp/�h are summarized in Table II. In

TABLE II. Particle configurations of the one-way coupling case.

Parameter St = 0.5 St = 1 St = 2 St = 4 St = 8

τp/Tref 0.0037 0.0075 0.015 0.03 0.06
Np 480115 480115 480115 480115 480115
dp/�h 0.2 0.2 0.2 0.2 0.2
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TABLE III. Particle configurations of the two-way coupling case.

Parameter St = 1 St = 2 St = 8

τp/Tref 0.0075 0.015 0.060
Np 91377408 45830011 12057066
dp/�h 0.1 0.1 0.1
φ 1.0 1.0 1.0

the one-way coupled simulation cases, the ratio of the particle diameter to the Kolmogorov length
scale is dp/η = 0.047 for all Stokes numbers.

The simulations run more than 150τη before the statistics are evaluated to obtain converged
statistics that are independent of the initial conditions.

3. Particle setups of the two-way coupled case

Two simulation configurations are performed, including two-way coupled particles of two dif-
ferent Stokes numbers. Both configurations are started with a period of forced turbulence until
the particle-laden turbulence reaches a statistically steady state (at least 150τη). The decay of the
turbulence and the tracking of the statistics starts after this forcing period. Note that the Kolmogorov
timescale and thus also the Stokes numbers are based on the statistically steady single phase
flow turbulence. In the one-way coupled simulation cases, the ratio of the particle diameter to the
Kolmogorov length scale is dp/η = 0.023, and the particle mass fraction is φ = 1.0, for all Stokes
numbers. The particle related parameters of the two two-way coupled simulations are summarized
in Table III.

4. Parameters of the modeling framework

Besides the DNS and the classical LES, we also conduct simulations using the proposed LES
modeling framework. For the mLDKM part of the modeling framework, there are no tunable model
parameters that have to be specified. The model for the subgrid-scale velocity however, requires
us to choose some parameters. It was shown by Hausmann et al. [32] that the statistics of the
subgrid-scale velocity are relatively insensitive to the values of these parameters.

The number of statistically homogeneous subdomains, Ndomain, depends on the characteristic
length scales at which the statistics of the subgrid-scale velocity vary. Based on experience, we
suggest choosing the size of a subdomain approximately four times the size of a LES grid cell per
direction. Note that in previous studies, the number of subdomains did not critically influence the
velocity statistics.

Another parameter is related to the interpolation between the subdomains to obtain a divergence-
free velocity field. The interpolation kernel is [32]

W (r) = 1 − 1

1 + e−αr
, (36)

where r is the distance to the respective subdomain boundary, and α a parameter that determines
the thickness of the region that is influenced by the interpolation. In general, the influence region
of the interpolation should be as small as possible to keep the region that is not affected by the
interpolation as large as possible. However, the influence region should not be so small that the
particles experience the subdomain boundary as discontinuity of the subgrid-scale velocity. We
empirically found that α = 40/�hdomain works well for the considered cases, where �hdomain is
the width of a subdomain. It is shown in Appendix A that the clustering of the particles is not
significantly influenced even if the parameter α is varied over a wide range.

The remaining parameter that has to be set is the number of modes Nm in the series expansion
Eq. (27). Similar to the number of subdomains, it has been shown previously that the influence of
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TABLE IV. Parameters of the model for the
subgrid-scale velocity.

Parameter Value

Ndomain 8
α 40/�hdomain

Nm 108

Nm on the velocity statistics is negligible as long as Nm = O(102). The particular choice for Nm in
the present paper is mainly based on load balancing considerations. Although we did not observe
the results to sensitively depend on the choice of the number of modes in our previous study [32],
we cannot exclude that as the range of modeled scales increases significantly, e.g., by a significantly
larger Reλ, the number of modes needs to increase accordingly. The values of the parameters in the
present paper are summarized in Table IV.

V. RESULTS AND DISCUSSIONS

A. One-way coupled configurations

In this section, the configurations described in Sec. IV B 2 are investigated. In the following, it is
referred to as enriched LES if the particles are propagated with a drag force based on the sum of the
LES velocity and the modeled subgrid-scale velocity at the particle positions.

The particle pair dispersion is evaluated in the enriched LES, the classical LES, and the DNS. The
particle pair dispersion is defined as the ensemble-averaged and time-dependent distance between
particle pairs, whereas a particle pair is considered as two particles with an initial separation of the
Kolmogorov length scale,

〈δ〉(t ) = 〈|xp0(t ) − xp1(t )|〉, (37)

where xp0(t ) and xp1(t ) are the positions of the particles belonging to a particle pair and 〈δ〉(t =
0) = η.

The particle pair dispersion in the DNS, the classical LES, and the enriched LES for the five
different Stokes numbers of the one-way coupling case is depicted in Fig. 2. It can be observed
that for all the considered Stokes numbers, the particle pairs stay together for a short time before
they disperse rapidly. Eventually, the average separation reaches a steady state, which corresponds
approximately to the half domain size, indicating that the maximum separation that is possible
in a fully periodic cubic domain is reached. For higher Stokes numbers, the particle pairs stay
close to each other for a shorter time, as particles with a large Stokes numbers are more likely to
have different velocities caused by their high inertia. The classical LES predicts the particle pairs
to disperse much slower than in the DNS due to the missing effect of the subgrid-scale velocity
sweeping the particles into regions of different large scale velocities. This effect is observed for all
investigated Stokes numbers, but is slightly more dominant for the larger Stokes numbers.

In the enriched LES, the predicted particle pair dispersion almost overlaps with those of the DNS.
An important reason why the enriched LES performs so well is that the subgrid-scale velocity at
the particle position is computed from a spatially continuous velocity field. As a consequence, two
particles that are very close also experience a similar subgrid-scale velocity. This is not the case
for Lagrangian models (see, e.g., Fede et al. [5], Bini and Jones [6], Pozorski and Apte [9]), which
typically solve an evolution equation for each particle individually. Lagrangian models typically
perform poorly in particle pair dispersion [53].
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FIG. 2. Particle pair dispersion of the one-way coupled simulations for different Stokes numbers in forced
HIT with the flow parameters given in Table I. The results are shown for the DNS, the classical LES, and the
enriched LES.

A property that is of high practical importance is the extent with which particles form clusters.
Particle clustering can be quantified by the radial distribution function, defined as

g(r) =
〈

Np,i(r)/�Vi(r)

Np/V

〉
, (38)

where Np,i(r) is the number of particles in a spherical shell with radius r centered at the location of
the original particle and Vi(r) is the volume of this spherical shell. The radial distribution function
is normalized by the total number of particles Np and the total volume of the domain V . Values of
g > 1 indicate particle clustering and g = 1 uniformly distributed particles.
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FIG. 3. Radial distribution function of the one-way coupled simulations for different Stokes numbers in
forced HIT with the flow parameters given in Table I. The results are shown for the DNS, the classical LES,
and the enriched LES. The results of the classical LES and the enriched LES are additionally shown with a
coarser resolution of N3 = 243 cells.

In Fig. 3, the radial distribution functions are shown. In addition to the LES simulations using
N3 = 323 cells, we also investigate particle clustering as a key statistic for assessing the influence of
turbulence on particles in an even coarser LES, using N3 = 243 cells. The setup for the enriched LES
is similar to that of the LES with N3 = 323 cells, with the exception of the number of subdomains.
According to the presented guidelines, N3 = 243 cells require Ndomain = 6 subdomains, with each
subdomain size corresponding to four times the size of a LES cell per direction. We have shown
that other parameters have little influence on the observed fluid statistics [32].
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The clustering reaches its maximum at St ≈ 1. For smaller and larger Stokes numbers, clustering
is reduced. The classical LES yields an underestimation of the clustering for St = 0.5 and St = 1
and to an overestimation of the clustering for the Stokes numbers St = 2, St = 4, and St = 8. This
phenomenon has also been observed in previous studies [2,14,17]. This means that the modeled
subgrid-scale velocity has to increase the clustering for the small St and increase the dispersion for
the larger St. Note that increasing the particle dispersion is much simpler to achieve than increasing
the particle clustering. In fact, the relations between strain and rotation of the velocity field are
crucial for the correct prediction of particle clustering [54,55].

The enriched LES using N3 = 323 cells shows that for Stokes numbers St = 2, St = 4, and
St = 8, particle clustering almost matches the clustering predicted by the DNS. When using a
coarser resolution, clustering slightly increases, and the radial distribution function obtained from
the enriched LES shows a small deviation from the DNS radial distribution function. For the Stokes
numbers St = 4 and St = 8, a similar increase in clustering is observed in classical LES using
N3 = 243 cells. Therefore, the more accurate prediction of clustering behavior observed in the
enriched LES is relatively independent of the LES resolution for these Stokes numbers.

For Stokes numbers St = 0.5 and St = 1, particle clustering is increased by the enriched LES
compared to classical LES. However, the agreement with the DNS is not as good as for higher
Stokes numbers, and the improvement in the radial distribution function for St = 1 is minor. With a
coarser grid of N3 = 243 cells, the radial distribution function of the enriched LES remains almost
unchanged, while the clustering intensity of the classical LES is further reduced due to the coarser
resolution.

Our previous study [32] has shown that the probability distribution function (PDF) of the second
invariant of the velocity gradient tensor is significantly improved with the enriched LES compared
to the classical LES, which explains the ability of the model to increase the clustering of particles
with small Stokes numbers.

The kinetic energy of the classical LES relative to the kinetic energy of the DNS is KLES/KDNS ≈
0.83. Together with the estimated subgrid-scale kinetic energy, this gives (KLES + Ksgs)/KDNS ≈
1.07. The fact that the total kinetic energy of the enriched LES overpredicts the kinetic energy of
the DNS is important for the interpretation of the following results.

Figure 4 shows the PDF of the cosine of the angles between the particle velocity and the fluid
velocity at the particle position, together with the mean values. The most likely event for all the
considered Stokes numbers is the case where the fluid velocity is aligned with the particle velocity.
However, for increasing Stokes numbers the probability of larger angles between the fluid velocity
and the particle velocity also increases. Except for St = 0.5, the classical LES always predicts too
strong an alignment of fluid and particle velocities. For higher Stokes numbers, in particular, the
particles are too heavy to follow the subgrid-scale velocity fluctuations, which typically change
with high frequency and small magnitude. In the classical LES, these fluctuations are missing. The
enriched LES provides the subgrid-scale fluctuations, which explains the improved PDF and means
of velocity alignment for larger Stokes numbers. However, for Stokes numbers St = 0.5, St = 1,
and St = 2, the enriched LES does not improve the results of the classical LES. It is worth noting,
however, that when considering all Stokes numbers, the prediction of the mean angle between the
fluid velocity and the particle velocity is better for the enriched LES, as the absolute deviations from
the mean angle of the DNS increase with the Stokes number. One possible reason for the deviation
for St = 0.5 and St = 1 is that it is caused by the too-high kinetic energy of the enriched LES. There-
fore, the particles with the small Stokes numbers cannot follow the velocity fluctuations as well as
in the case of the DNS and the classical LES. For higher Stokes numbers, the deviation between the
velocities is more significant and the higher subgrid-scale kinetic energy has a smaller influence.

From the results of the one-way coupled simulations, it can be concluded that the enrichment
with subgrid-scale velocity can significantly improve the particle statistics in HIT for Stokes
numbers St � 2. Particularly worth highlighting is that the clustering can be improved for both
qualitatively different cases of St � 1 and St > 1 with the modeled subgrid-scale velocity although
the improvements for the smaller Stokes numbers are less pronounced.
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FIG. 4. PDF of cosine of angle between the fluid velocity at the particle position and the particle velocity
of the one-way coupled simulations for different Stokes numbers in forced HIT with the flow parameters given
in Table I. The results are shown for the DNS, the classical LES, and the enriched LES. The vertical lines
indicate the respective mean value.

The computational cost of the proposed model is of high practical relevance, but it strongly
depends on the specific configuration being considered. Solving for the enriched LES velocity
approximately doubles the computational cost compared to the classical LES. However, there is
an additional computational cost if particles are transported, namely, the subgrid-scale velocity
interpolation to each particle position. For example, in the present one-way coupled simulations,
the enriched LES with 2.4 million particles is six to seven times more expensive than the classical
LES without enrichment. However, the total enriched framework is still orders of magnitude cheaper
than the DNS.
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FIG. 5. Particle positions of the two-way coupled simulations with St = 2 of HIT with the flow parameters
given in Table I. The results are evaluated at the last forced time step. The particle positions are projected from
a slice of thickness equal to the Kolmogorov length scale η. (a) shows the particles of the DNS, (b) the particles
of the classical LES, and (c) the particles of the modeled LES.

B. Two-way coupled configurations

In the present section, the modification of the turbulent flow by the particles is considered, which
enables the assessment of the full modeling framework including the modeling of the subgrid-scale
velocity combined with the mLDKM (previously introduced as modeled LES).

In Fig. 5, the projected particles in a slice of the thickness η are plotted for the case of St = 2
for the DNS, the classical LES, and the modeled LES. The positions are evaluated at the end of the
forcing period. The particles reached steady statistics at this point in time.

The shapes of the clusters that are formed by the DNS and the classical LES differ significantly.
The clusters of the classical LES are much coarser and more pronounced than the clusters of the
DNS. The additional subgrid-scale velocity of the modeled LES breaks up the large clusters of the
classical LES into clusters of smaller size, which are also less dense.

Figure 6 shows the kinetic energy spectra of the two-way coupled simulations for St = 1, St = 2,
and St = 8, respectively. Due to the interaction with the particles, the results obtained with the DNS
deviate significantly from the inertial range slope of single phase turbulence. In addition to the DNS,
the results of the classical LES and the modeled LES are depicted. The kinetic energy spectrum that
is resolved by the LES grid is shown separately from the kinetic energy spectrum of the modeled
subgrid-scale velocity.

The filter imposed by the spatially varying turbulent viscosity is unknown. To achieve realistic
particle transport, it is advantageous if the kinetic energy spectrum of the LES is similar to that
of the DNS. In other words, it is desirable that the turbulent viscosity imposes a filter that closely
resembles a spectrally sharp filter.

The classical LES overestimates the subgrid-scale fluid dissipation, resulting in a deviation from
the slope of the DNS spectrum. The modeled LES takes into account the reduced subgrid-scale fluid
dissipation caused by particle dissipation. As a result, the modeled LES leads to a spectrum that is
in better agreement with the DNS spectrum for all three Stokes numbers.

The kinetic energy spectrum of the modeled subgrid-scale velocity is in good agreement with
the DNS spectrum but its shape deviates in all three cases. The shape of the modeled subgrid-scale
kinetic energy spectrum is very similar for St = 1, St = 2, and St = 8 even though the shapes of the
two DNS spectra are very different. The model for the subgrid-scale velocity does not receive any
information on the presence of the particle, except for the kinetic energy. Therefore, the modeled
subgrid-scale kinetic energy spectrum is a shifted spectrum that matches very well with a single
phase flow spectrum [32].

A classical LES does not fully consider the interphase kinetic energy transfer, since the inter-
actions of the subgrid-scale velocity with the particles and the unresolved particle motion with the
resolved flow scales are neglected. For small-particle Reynolds numbers, the kinetic energy transfer
is proportional to the fluid velocity times the Stokes drag, u · (v − u)/τp, which is plotted in Fig. 7
for the present cases. Negative values indicate that kinetic energy is removed from the fluid and
positive values correspond to kinetic energy that is added to the fluid by the particles. Note that, as
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FIG. 6. Kinetic energy spectrum of the two-way coupled simulations with St = 1, St = 2, and St = 8 of
HIT with the flow parameters given in Table I. The results are evaluated at the last forced time step. Compared
are the DNS, the classical LES, and the modeled LES. The spectrum of the modeled LES is split into a part
that is resolved by the LES grid and a subgrid-scale contribution that is modeled.

shown by Xu and Subramaniam [56], the energy that is removed from the fluid does not necessarily
equal the kinetic energy that is added to the particles in a point-particle simulation.

The PDF in Fig. 7 shows a negative mean value for all Stokes numbers, indicating that, on
average, the particles remove energy from the fluid. The PDF becomes wider and possesses larger
absolute mean values as the Stokes number increases. The classical LES underpredicts the absolute
of the mean values of the DNS for all Stokes numbers. With the proposed modeled LES, the kinetic
energy that is removed by the particles is increased, which is qualitatively similar to the behavior of
the DNS relative to the classical LES. In the classical LES, the particle velocities tend to align more
with the local fluid velocity compared to the DNS because of the absence of small vortices that the
particles cannot follow. With the proposed modeling, small velocity structures are provided, which
increases the absolute energy transfer. However, for all Stokes numbers the width of the PDFs is
overpredicted by the modeled LES.

The second effect that is neglected in a classical LES is the reduced subgrid-scale kinetic energy
due to the turbulence modification by the particles. The subgrid-scale kinetic energies over time
are depicted in Fig. 8. The subgrid-scale kinetic energy of the DNS is computed by subtracting
the kinetic energy of the spectrally sharp filtered DNS from the kinetic energy of the DNS.
Since the actual filter of a LES imposed by the turbulent viscosity is unknown, the DNS is also
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FIG. 7. PDF of the kinetic energy transfer between fluid and particles of the two-way coupled simulations
with St = 1, St = 2, and St = 8 of HIT with the flow parameters given in Table I. The results are evaluated at
the last forced time step. The vertical lines indicate the respective mean values.

volume averaged for comparison. The kinetic energies of the LES are obtained from the transport
equation in the LDKM and mLKDM, respectively. It is observed that for all Stokes numbers, the
classical LES predicts a much higher subgrid-scale kinetic energy than the DNS. The subgrid-scale
kinetic energy of the modeled LES is significantly smaller because of the source term ΦP in the
transport equation for the subgrid-scale kinetic energy. A higher subgrid-scale kinetic energy yields
a higher eddy viscosity and thus more subgrid-scale dissipation. The classical LES overpredicts the
kinetic energy of the subgrid-scale velocity because the particle dissipation at high wave numbers
is not accounted for. The additional source term in the subgrid-scale kinetic energy equation of
the mLDKM considers the effect of the particles on the subgrid-scale quantities. The choice of
the explicit filter introduces uncertainties that complicate the quantitative comparison of the LES
predictions with the DNS. Nonetheless, the reduction of subgrid-scale kinetic energy is qualitatively
consistent with the results obtained from explicitly filtering the DNS.

It is observed that the effects that are neglected in a classical LES act in opposite directions for
the considered configurations. While the classical LES underpredicts the dissipation by the particles,
it over-predicts the dissipation of the subgrid-scale velocity. Thus, these two errors at least partially
compensate each other, which in total may lead to fair agreement with the total kinetic energy
of the DNS. However, the proposed modeled LES considers each effect (i.e., the increased particle
dissipation and the reduced fluid dissipation) separately and does not rely on compensation of errors.
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FIG. 8. Normalized subgrid-scale kinetic energy over time of the two-way coupled simulations with St =
1, St = 2, and St = 8 of decaying HIT with the flow parameters given in Table I. Compared are the results of
the DNS (with a spectrally sharp filter and volume averaged), the classical LES, and the modeled LES with
particle source term.

Figure 9 shows the normalized kinetic energy over time for the two-way coupled simulations with
St = 1, St = 2, and St = 8, respectively. Besides the spectrally sharp filtered and volume averaged
DNS (FDNS) and the classical LES, the results of the modeled LES are plotted. To investigate the
influence of the particle source term ΦP in the transport Eq. (18) of the subgrid-scale kinetic energy,
the modeled LES is shown with the source term (modeled LES-mLDKM) and without the source
term (modeled LES-LDKM). For St = 1 and St = 2, the LES, the modeled LES-mLDKM, and the
modeled LES-LDKM predict a slower decay of the fluid kinetic energy than the DNS. The deviation
of the three LES cases from the DNS is much smaller for St = 8. All Stokes numbers show only
relatively small deviations between the LES cases. For St = 1, the kinetic energy predicted by the
classical LES and the modeled LES-mLDKM are nearly identical. This is remarkable considering
that the particle dissipation and fluid dissipation are significantly different between the two methods.
The kinetic energy of the modeled LES-LDKM is always smaller than the kinetic energy of the
modeled LES-mLDKM.

It is known from the literature that for Stokes numbers that are not significantly smaller than one,
the total dissipation in a particle-laden flow is increased [19–21,23], which also applies to the Stokes
numbers investigated in the present paper. The total dissipation has contributions from the particles
and the fluid, as occurs in a single-phase flow. In a LES, the particle and the fluid dissipation have to
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FIG. 9. Normalized kinetic energy over time of the two-way coupled simulations with St = 1, St = 2, and
St = 8 of decaying HIT with the flow parameters given in Table I. Compared are the FDNS (with a spectrally
sharp filter and volume averaged), the classical LES (LES-LDKM), the modeled LES with particle source term
(modeled LES-mLDKM), and the modeled LES without particle source term (modeled LES-LDKM).

be modeled. As already pointed out, both contributions have opposite signs in the present cases. This
becomes evident by the fact that the modeled LES without the particle source term ΦP increases the
total dissipation. The difference to the classical LES in this case is that the two-way coupling force is
computed using the total fluid velocity consisting of the LES velocity and the modeled subgrid-scale
velocity, which leads to increased dissipation relative to the classical LES. The dissipation by the
particles yields a negative source term ΦP, which reduces the subgrid-scale kinetic energy. This is
why the total dissipation of the modeled LES-mLDKM is smaller than the total dissipation of the
modeled LES-LDKM.

Note that both effects, the increased dissipation due to the particles and the reduced fluid
dissipation, are at least qualitatively in agreement with the literature and desired. Since both effects
act in opposite directions, the classical LES is still in acceptable agreement with the DNS even
though it accounts for neither of the two effects.

We investigate the effect of LES resolution on two-way coupling statistics by conducting a
coarser LES with N3 = 243 cells of the two-way coupled simulation configuration with particles
with a Stokes number St = 2. Figure 10 displays the results, which exhibit similar overall trends to
those observed in the LES with N3 = 323 cells. Notably, the shape of the kinetic energy spectrum
of the modeled LES in Fig. 10(a) is closer to the DNS spectrum than the classical LES spectrum.
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FIG. 10. Kinetic energy spectrum (a), PDF of the kinetic energy transfer between fluid and particles (b),
subgrid-scale kinetic energy over time (c), and resolved kinetic energy over time (d) of decaying HIT with
particles of Stokes number St = 2 and the flow parameters given in Table I. Compared are the results of the
DNS (with a spectrally sharp filter and volume averaged), the classical LES and the modeled LES with particle
source term. The LES are performed on a grid of N3 = 243 cells.

However, the subgrid-scale kinetic energy spectrum from the modeled LES underpredicts the DNS
spectrum. In Fig. 10(b), it is noticeable that the classical LES predicts a PDF of the kinetic energy
transfer that is too narrow, and this discrepancy is even more pronounced than in the higher
resolution case. The modeled LES yields an improved shape of the PDF and the mean when
compared to the classical LES. The subgrid-scale kinetic energy of the modeled LES is smaller,
which leads to better agreement with the DNS results than the modeled LES with N3 = 243 cells.
The subgrid-scale kinetic energy is shown in Fig. 10(c). As expected, the predicted subgrid-scale
kinetic energies are higher than with the finer resolution. The modeled LES reduces the too high
subgrid-scale kinetic energy of the classical LES but predicts too small values during the beginning
of the decay. The trends of the resolved kinetic energy in Fig. 10(d) are similar to the higher
resolution. Both classical LES and modeled LES predict a too-slow decay of kinetic energy. The
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FIG. 11. Subgrid-scale kinetic energy over time (a) and resolved kinetic energy (b) of decaying HIT
without particles and the flow parameters given in Table I. Compared are the results of the DNS (with a
spectrally sharp filter and volume averaged) and the classical LES.

results of LES with N3 = 243 cells suggest that the conclusions drawn for the proposed modeling
framework qualitatively also apply to coarser LES.

To determine the source of the deviation of the resolved kinetic energy of the LES from the
FDNS, it is instructive to investigate decaying single phase flow turbulence of the DNS and the
classical LES with the LKDM. In Fig. 11, the subgrid-scale kinetic energy and the resolved kinetic
energy of the classical LES are compared with DNS values that are obtained by explicit filtering.
Owing to the uncertainties of the choice of the explicit filter, the spectrally sharp filtered and volume
averaged DNS are both plotted. The subgrid-scale kinetic energy predicted by the LES is larger
than the both estimations from the FDNS. The resolved kinetic energy of the LES shows the same
discrepancy from the FDNS as the LES of the two-way coupled simulation, namely, a too-slow
decay. If the subgrid-scale kinetic energy is too large and the decay of kinetic energy is too slow,
it may be inferred that the primary source of error causing the inaccuracies lies in the computation
of the viscosity constant Ck. On average, this constant seems to be too small, which results in the
deviations of the modeled LES from the filtered DNS. It can be concluded that the introduced
particle source term in the transport equation for the subgrid-scale kinetic energy plays a minor
role in these inaccuracies, since the reduction of the predicted subgrid-scale kinetic energy and the
increased particle dissipation are qualitatively captured by the model. The dynamical computation
of Ck leaves space for future improvements of the model.

VI. CONCLUSIONS

In the present paper, we propose a model for predicting the behavior of two-way coupled particle-
laden flow in the framework of LES. The model accounts for the interactions that are not captured
by a classical LES of a particle-laden flow, which are (i) the prediction of the particle motion due
to the missing subgrid-scale fluid velocity, (ii) the effect of the particles on the resolved flow scales,
and (iii) the effect of the particles on the subgrid scales.

The proposed modeling framework consists of two components, a modeled transport equation for
the subgrid-scale kinetic energy that includes a source term which accounts for the modification of
the subgrid-scale kinetic energy by the particles and a model for the subgrid-scale velocity, which
is used to close the particle equations of motion and the source-term in the transport equation for
the subgrid-scale kinetic energy. The two model components are further coupled by directly using
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the resulting subgrid-scale kinetic energy of the transport equation as input for the model for the
subgrid-scale velocity that thus also accounts for the turbulence modulation of the subgrid-scales
by the particles.

One-way coupled simulations are performed that are used to assess the isolated effect of missing
subgrid-scale velocity in the computation of the forces acting on the particles and its modeling
using the enriched LES. The proposed model accurately predicts particle pair-dispersion over a
wide range of Stokes numbers using the modeled subgrid-scale velocity. Additionally, for Stokes
numbers St � 2, the model accurately recovers the particle clustering observed in the correspond-
ing DNS simulations. For the challenging case of a small Stokes number (St = 0.5), the model
significantly improves particle clustering, while the improvement is less pronounced for St = 1.
The improvements achieved in the enriched LES come with computational costs that are reasonable
within the scope of a LES. Furthermore, two-way coupled simulations of decaying HIT are carried
out that require modeling of the turbulence modulation by the particles. The coupled framework
yields an increased particle dissipation compared to the classical LES by considering the modeled
subgrid-scale velocity in the feedback force. The subgrid-scale fluid dissipation is decreased relative
to the classical LES because the mLDKM predicts a subgrid-scale kinetic energy that considers the
turbulence modulation by the particles. Both effects are in agreement with the observed physics in a
DNS. As a consequence, we observe a kinetic energy spectrum with the proposed modeling that is
in good agreement with the spectrum observed in the DNS. We demonstrate that the predictions of
the model are only weakly affected by changes in resolution of the LES while keeping Reλ constant.
However, investigating the ability of the model to accurately predict particle-turbulence interactions
as the ratio between grid spacing and the Kolmogorov length scale, �/η, significantly increases, is
an area that requires further investigation in future studies.

Finally, it is important to mention that the proposed modeling strategy possesses the prereq-
uisites for simulating inhomogeneous and anisotropic flows since the subgrid-scale enrichment is
formulated on a grid of statistically homogeneous subdomains, which allows for spatially varying
statistics. Considering this, the present modeling framework has the potential to improve the
capabilities of LES of particle-laden turbulent flows for a wide range of applications.
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APPENDIX

Figure 12 shows the radial distribution function of the one-way coupled simulations for different
Stokes numbers and varying parameter α in the interpolation of the modeled subgrid-scale velocity
between the subdomains. The parameter α is reduced and increased by a factor of 2 relative to
the value α = 40 that is used in the present paper, respectively. It can be observed that even for
this relatively wide parameter range the radial distribution functions almost coincide. The particle
clustering is thus essentially independent of α for the considered range of values.
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FIG. 12. Radial distribution function of the one-way coupling simulations for different Stokes numbers
and different thickness constants α of the interpolation of the subgrid-scale velocity between the subdomains
in forced HIT with the flow parameters given in Table I.
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