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Curvature scaling of the transient convective boundary layer flow along
a vertical cylinder: An improved explicit form
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In this paper, we use the scaling method to investigate the transient convective boundary
layer evolving on the external surface of an isothermally heated vertical cylinder. Our
numerical calculations show that a boundary layer flow develops in the vicinity of the
heated surface due to the buoyancy effect. We also demonstrate that the thickness and
velocity of the boundary layer flow are significantly affected by the curvature effect. Our
analysis successfully determines a set of fully explicit scaling laws for the initial and steady
flow states over a large parameter range, with Rayleigh numbers (Ra) of 107 to 109, Prandtl
numbers (Pr) of 10 to 100, and aspect ratios (A) of 1 to 100. These scaling laws are explicit
and easier to use than the previous implicit scaling laws [Phys. Rev. Fluids 7, 054101
(2022)]. The present scaling laws consist of the flat plate scaling, which accounts for the
Ra and Pr number dependencies, and a dimensionless explicit curvature coefficient � ′(A).
When the boundary layer is much thinner than the cylinder radius, the proposed scaling
laws reduce to the well-known flat boundary layer ones, and the curvature coefficient
� ′(A) approaches the unity. When the boundary layer thickness is close to or larger than
the cylinder radius, the curvature effect becomes significant, and the curvature coefficient
� ′(A) accurately quantifies the curvature effect. Comparison between the scaling laws and
numerical calculations shows that most fitting constants R2 are approximately 0.999, which
convincingly validates the proposed scaling laws.
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I. INTRODUCTION

Convective boundary layer flow induced by heating vertical surfaces plays a crucial role in a wide
range of domestic and industrial applications, including solar houses, solar chimneys, electronic
cooling devices, and radiators. Understanding various aspects of this flow problem is important
in fundamental fluid mechanics, encompassing flow behaviors, instability characteristics, and heat
transfer properties. Consequently, substantial research efforts have been dedicated to investigating
different aspects of convective boundary layer flow over the past few decades [1–9]. Researchers
have employed various techniques to study this flow, such as analytical methods [10,11], similarity
theory [12–14], linear stability analysis [15–17], direct stability analysis [18–20], direct numerical
simulations [21,22], and a range of experimental approaches [23–25]. Among these techniques,
the scaling methodology stands out as an exceptionally powerful and promising tool. Pioneered
by Patterson and Imberger [26], this approach enables direct estimations, in the form of scaling
laws, for key flow variables. Subsequently, the convection and boundary layer research communities
recognized the importance of scaling law studies, leading to its gradual adoption across a broader
range of flow parameters and its application to various other flow problems.

*yang.liu1@qq.com

2469-990X/2023/8(8)/084101(22) 084101-1 ©2023 American Physical Society

https://orcid.org/0000-0002-5966-9927
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.8.084101&domain=pdf&date_stamp=2023-08-17
https://doi.org/10.1103/PhysRevFluids.7.054101
https://doi.org/10.1103/PhysRevFluids.8.084101


YANG LIU, YIFENG ZHU, AND CHANGHUI LIU

In their landmark work, Patterson and Imberger [26] investigated the characteristics of boundary
layer flow for fluids with Prandtl numbers >1. They successfully derived scales for thickness and
velocity that are representative of the boundary layer. However, they did not consider the influence of
the Prandtl number in their analysis. Subsequently, Lin et al. [27] addressed this issue by analyzing
near-wall flow profiles and integrating over three sublayers. They accounted for the effect of the
Prandtl number, and this work became a standard approach for subsequent studies involving Pr > 1
fluids. Lin et al. [28] extended the scaling method to fluids with Prandtl numbers <1. They argued
that both the unsteady and viscous terms are equally important during the initial growth state, and
their combined effect should balance the driving buoyancy term, thereby enabling scaling for Pr < 1
fluids. The phenomenon of multiscaling behavior in Pr < 1 fluids was also reported, which remains
an unresolved topic. In the context of vertically rising buoyant boundary layers encountering
horizontal adiabatic surfaces, the formation and propagation of horizontal intrusion flow have been
extensively studied, particularly within the cavity research community. Xu et al. [29] examined the
transient characteristics of intrusion flow, revealing that it consists of either two or four distinct
flow regimes, depending on the governing flow parameters. The authors derived corresponding
scaling laws for characteristic flow variables and successfully validated them, achieving good
agreement with their findings. However, it is important to note that these studies primarily focused
on homogeneous conditions without thermal gradients. More recently, researchers such as Liu et al.
[30–32] and Lin et al. [33,34] investigated convective boundary layer flows with thermal gradients.
Liu et al. [35] argued that, during the initial startup state, the characteristic velocity of the thermal
boundary layer is influenced by both the streamwise position and the evolution time, indicating
a two-dimensional growth rather than the well-established one-dimensional growth observed in
homogeneous problems.

In practical applications, the vertical boundary layer flows can be broadly categorized into two
typical scenarios: flow over flat plates and flow over curved surfaces. While a considerable body of
literature on flat plate boundary layer flows exists, the availability of scaling laws describing curved
boundary layer flows is relatively limited, despite extensive investigations on various aspects of
curved boundary layer flows [36–41]. However, in recent years, there has been a growing interest in
this area. For instance, Liu et al. [42] examined the convective boundary layer flow developing
on a horizontal cylinder and derived important scaling laws. They focused on the dependency
of various flow variables on the central angle, although the curvature of the horizontal cylinder
was assumed to be fixed, and the boundary layer was considered much thinner than the cylinder
radius. In a subsequent work, Liu et al. [43] further investigated the boundary layer flow over
a vertical cylinder and established a set of unified scaling laws that incorporated the effects of
curvature, Rayleigh number, and Prandtl number. It was demonstrated that, when the boundary layer
is significantly thinner than the cylinder radius, the proposed scaling laws reduce to the well-known
flat boundary layer laws proposed by Patterson and Imberger [26] and Lin et al. [27]. However,
as the cylinder radius or the governing Rayleigh number decreases, the curvature effect becomes
increasingly prominent. The proposed scaling laws can accurately describe the transition from flat
boundary layers to highly curved ones. It should be noted that some of the proposed scaling laws
are expressed implicitly, requiring a careful and challenging implementation process. The scarcity
of readily applicable scaling laws motivates this paper.

Our main objective is to improve the previously proposed implicit scaling laws [43] and ulti-
mately obtain a set of unified and explicit scaling laws for curved boundary layer flows. These
scaling laws will incorporate the effects of curvature, Rayleigh number, and Prandtl number, allow-
ing for a comprehensive description of the flow behavior. Specifically, we aim to develop scaling
laws that exhibit the following characteristics: When the cylinder radius is significantly larger than
the boundary layer thickness, the scaling laws should converge to the classical flat-plate scaling
laws. However, as the cylinder radius approaches or becomes smaller than the boundary layer
thickness, the curvature dependency in the scaling laws should accurately adjust the characteristic
flow variables of the boundary layer. It is important to note that the explicit form of these scaling
laws will provide a more accessible and practical framework for their implementation. To achieve
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FIG. 1. Schematic of the flow domain.

this goal, this paper is organized as follows. Section II presents a detailed description of the physical
problem and the governing mathematical equations. In Sec. III, we conduct scaling analysis.
Section IV focuses on examining and highlighting the impact of curvature on the flow vari-
ables. Finally, Sec. V provides a summary and conclusions based on the findings of this
paper.

II. THE FLOW AND MATHEMATICAL DESCRIPTIONS

In this paper, we focus on the investigation and analysis of the convective boundary layer flow
along the outer surface of a heated vertical cylinder, with specific emphasis on the curvature effect
of the cylinder. The schematic representation of the model is illustrated in Fig. 1. Initially, the
fluid within the computational domain is at rest and has a uniform temperature of T0. At t = 0,
the temperature of the surface of the cylinder is suddenly increased to (T0 + �T ), initiating the
convective boundary layer flow. In Fig. 1, the vertical axis represents the axis of the cylinder. The
computational domain extends to a total height of 1.4H, with 0.2H extensions both upstream and
downstream of the region of interest. This configuration is implemented to minimize potential
boundary effects, and it is consistent with similar studies conducted in this field [20,44]. The
cylinder has a fixed radius of R, and the width of the computational domain, denoted by L, is
sufficiently large to ensure that the right boundary does not influence the flow. Throughout this
paper, the height of the cylinder (H) is set to a constant value of 1 m, and the width of the
computational domain (L) is fixed at 0.24 m. It is worth mentioning that further increasing the
value of L does not affect the results of interest in this paper. It is important to note that, by altering
the cylinder radius (R), the curvature of the surface of the cylinder is modified. Thus, in this paper,
the domain height (H) remains fixed, and the curvature effect is realized by varying the cylinder
radius (R).

The current flow problem is governed by the incompressible continuity equation, Navier-Stokes
equations, and the energy conservation equation, with the Boussinesq approximation to account
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for the buoyancy term. These equations are formulated in the cylindrical coordinates and can be
expressed as follows:
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where r, z, ur , uz, T, ρ, ν, κ , g, and β are the radial and vertical coordinates, the two corresponding
velocity components, temperature, density, kinematic viscosity, thermal diffusivity, gravitational
acceleration, and the thermal expansion coefficient. Here, �T is the temperature difference char-
acterizing the convection flow, which is calculated by �T = Tw − T0. The initial and boundary
conditions of the problem are given as follows:

∂uz

∂z = ∂ur
∂z = ∂T

∂z = 0 at z = 1.2H

uz = ur = ∂T
∂z = 0 at z = −0.2H

∂uz

∂r = ∂ur
∂r = ∂T

∂r = 0 at r = HA−1 + L

uz = ur = 0 at r = HA−1 and − 0.2H � z � 1.2H

T = Tw at r = HA−1 and 0 � z � 1.2H
∂T
∂r = 0 at r = HA−1 and − 0.2H � z < 0

uz = ur = 0, T = T0 at all r and z, at t < 0,

(5)

In this paper, the flow is characterized by three dimensionless parameters: the curvature of the
cylinder (A), the Rayleigh number (Ra), and the Prandtl number (Pr), as defined in Eq. (6). It is
important to emphasize that the value of H remains constant throughout this paper, while R is varied
to achieve different surface curvatures. Specifically, a smaller value of R corresponds to a larger
value of A and a slender cylinder, whereas a larger value of R corresponds to a smaller value of A
and a thicker cylinder:

A = H

R
, Ra = gβ�T H3

νκ
, Pr = ν

κ
. (6)

Previous investigators have demonstrated the significant impact of surface curvature on various
aspects of the convective boundary layer flow [43,45,46]. Figure 2 provides a schematic represen-
tation of the steady-state boundary layer flow at three distinct surface curvatures: A = 1, 10, and
100. It is evident that the boundary layer thickness becomes increasingly pronounced relative to
the cylinder radius when R is small or A is large. This observation implies that the curvature effect
plays a more prominent role in the boundary layer flow of slender columns. In such cases, the flow
exhibits a more pronounced curvature toward the surface than the flow developing along a heated
flat plate.

In a previous study [43], implicit scaling laws for the convective boundary layer flow were
proposed. However, the implementation procedure for certain physical variables was found to be
less straightforward. Therefore, the objective of this paper is to address this issue by providing a set
of explicit scaling laws for the flow. To achieve this, it is necessary to first resolve the flow. In this
paper, the finite volume method is employed to solve the governing equations. The discretization
of the first and second derivative terms in the governing Eqs. (1)–(4) is accomplished using the
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FIG. 2. Schematic of steady-state convective boundary layer at different surface curvatures with the case
Ra = 1 × 108 and Pr = 40: (a) A = 1, (b) A = 10, and (c) A = 100.

second-order central difference scheme. For the unsteady terms, the second-order implicit method
is applied. The pressure-velocity coupling method adopts the SIMPLE algorithm. Subsequently, the
resulting algebraic equations are solved iteratively using the third-order Runge-Kutta scheme until
convergence is attained. In this paper, the scaled residual is utilized as the convergence criterion,
with a value of 10−3 chosen for both the continuity and Navier-Stokes equations and 10−6 for the
energy conservation equation. This numerical approach has been widely employed over the past
few decades and has proven to be effective and robust for a variety of free convection flow problems
[5,6,31].

To ensure that the calculation results are independent of the chosen grid and timestep, grid- and
timestep-dependency tests are conducted for the case with Ra = 1 × 109, Pr = 40, and A = 10.
Three computational grids are selected for the grid-dependency test, with varying sizes of the mesh
immediately adjacent to the heated surface: 0.3, 0.2, and 0.1 mm, respectively, for the three grids.
The inflation factor remains constant at 1.05 in the radial direction. In the streamwise direction, or
in the z direction, the grid adopts an equidistributional mode, and the grid sizes are 0.002, 0.0017,
and 0.00083 m for the three meshes. Therefore, the three grids consist of 500 × 160, 600 × 200,
and 1200 × 320 cells (in H × L), respectively. Additionally, three timesteps are utilized for the
timestep-dependency test. In our previous studies, we demonstrated that extremely high computing
cost would be incurred if low-Ra cases use the same timestep as high-Ra cases. To mitigate this
issue, the duration of the early state development is utilized as a reference value for determination
of the timestep for each specific flow condition. For the case with Ra = 1 × 109, Pr = 40, and
A = 10, 1

20 th, 1
40 th, and 1

80 th of the early state duration are employed for the timestep-dependency
test, which are 60.03, 30.015, and 15.0075 s, respectively. During the numerical calculations, the
velocity component in the streamwise direction (uz ) is monitored and recorded at a specific location
(r = 0.11 m, z = 1 m), which is situated 0.01 m away from the heated surface. The time series of uz

are plotted in Fig. 3, demonstrating three distinct states of flow development: an initial growth, an
oscillatory leading-edge effect (LEE) transition, and a steady state. Figure 3 also demonstrates that
the impact of grid resolution and timestep is nearly negligible during the initial and steady states. A
detailed analysis of the calculation results reveals that the maximum relative error of the monitored
steady-state uz is ∼0.28%, indicating that any of the grids and timesteps could be employed for this
paper. Therefore, the mesh with 600 × 200 cells and the timestep of 1

40 th of the early state duration
are adopted for the subsequent calculations. In addition, it is worth mentioning that authors of many
previous similar works have suggested that the present mesh could provide satisfactory resolution
for the flow parameter ranges, see, e.g., Refs. [26,42].

A comprehensive set of 30 cases is numerically calculated to establish the scaling laws that
characterize the curved boundary layer flow. The specific parameters for each calculated case are
presented in Table I. It is important to note that the Rayleigh number under investigation is no
higher than 109, and this will lead to the laminar flow regime with no fluctuations in flow parameters.
Previous numerical studies demonstrated that, for Pr > 1 flat-plate boundary layer flows, the critical
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FIG. 3. Grid and time step dependency tests with the case Ra = 1 × 109, Pr = 40, and A = 10, monitored
at (r = 0.11 m, z = 1 m).

Rayleigh number for turbulent transition is generally >1010 (between 1010 and 1011), which is at
least one order of magnitude higher than the largest Ra adopted in this paper. Additionally, numerous
previous similar studies confirmed that no bifurcations are numerically observed for 106 � Ra �
109 [26,42]. This ensures all the flow conditions examined in this paper are laminar.

III. SCALING ANALYSIS

In a previous study [43], implicit scaling laws were proposed to describe the curved boundary
layer studied in this paper. The derivation of these scaling laws suggests that they can be expressed
in a general form, as shown in Eq. (7). In this equation, ω represents a flow variable, such as the
characteristic velocity or thickness. The function h(r, z, t ) corresponds to the scaling law associated
with a flat-plate flow for the variable ω. Additionally, �(ω,R) is a dimensionless coefficient that
accounts for the curvature effect. The determination of the function �(ω,R) was achieved through
a standard data fitting procedure, involving numerical regression to obtain the unknown curvature
coefficients. Equation (7) describes how ω is affected by other flow variables, and the scaling law
is in the implicit form if the curvature dependency � includes the effect of ω. Conversely, the
scaling law is in the explicit form if ω is not included in the function �. In this paper, the curvature
dependency in implicit and explicit scaling laws is respectively denoted by � and � ′. Authors of
the previous study discovered that the scaling laws for the boundary layer thickness are implicit,

TABLE I. Flow parameters of the calculated case run.

Case No. Ra Pr A

1–7 1 × 107 40 1, 2, 5, 10, 20, 50, 100
8–14 1 × 108 10 1, 2, 5, 10, 20, 50, 100
15–21 1 × 108 40 1, 2, 5, 10, 20, 50, 100
22–28 1 × 108 70 1, 2, 5, 10, 20, 50, 100
29 1 × 108 100 10
30 1 × 109 40 10
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while the scales for the characteristic velocity are explicit [43]:

ω ∼ h(r, z, t )�(ω, R). (7)

In this paper, our objective is to propose a comprehensive set of fully explicit scaling laws by
replacing the function �(ω,R) with � ′(R). To accomplish this, numerical regression is conducted
using the cases listed in Table I to accurately determine the dependency on R. It is worth noting
that this scaling methodology is widely employed in the convection and boundary layer research
communities and has been extensively utilized over the past several decades [47–49]. In this paper,
both the initial growth and steady states are analyzed, and a range of scaling laws that quantify these
two states are determined.

At t = 0, the temperature of the cylinder surface experiences a sudden increase by �T , which
serves as the triggering mechanism for the current boundary layer flow. Patterson and Imberger
[26] proposed that this physical process can be described by a balance between the unsteady term
and the radial conduction term in the temperature conservation equation, i.e., Eq. (4), which can be
expressed as follows:

∂T

∂t
∼ κ

1

r

∂

∂r

(
r
∂T

∂r

)
. (8)

In the previous study [43], the following implicit scaling law for the boundary layer thickness
during the initial growth state was obtained:

�t ∼ κ1/2t1/2

(
R + 0.3�t

R + 0.5�t

)1/2

. (9)

It is widely recognized that κ1/2t1/2 represents the scaling for the boundary layer thickness
on a flat plate during the initial growth state. The term �(�t , R) = [(R + 0.3�t )/(R + 0.5�t )]

1/2

accounts for the curvature effect. One needs to determine the root of Eq. (9) to obtain the early state
boundary layer thickness, making it challenging to use this implicit form. Therefore, it is crucial
to eliminate �t from the right-hand side of Eq. (9) to derive an alternative explicit scaling law.
Considering previous findings, we propose the following form for � ′(R):

� ′(R) =
∏n

i=1 R j(i)
m∏n

i=1 R j(i)
n

, (10)

in which Rm and Rn are separately defined in Eqs. (11) and (12), and m and n are coefficients to be
determined:

Rm = R + mH = R(1 + mA), (11)

Rn = R + nH = R(1 + nA). (12)

In physics, it is evident that, when the radius of the cylinder is significantly large, the curved
boundary layer flow closely resembles the flat-plate problem. Conversely, when the radius is much
smaller than the boundary layer thickness, the curvature effect becomes dominant. This means that,
in Eqs. (11) and (12), as A approaches zero (i.e., R → �), the present curved boundary layer
flow reduces to the classical flat-plate problem, where Rm/Rn = 1 and � ′(R) = 1. In this special
scenario, the thermal boundary layer thickness becomes �t ∼ κ1/2t1/2, which agrees with many
previous flat-plate works [26,50,51]. Similarly, authors of the previous study [43] demonstrated the
effectiveness of the regression technique when A is very large. Therefore, this regression approach
is inherited in this paper. It is important to clarify that � ′(R) in Eq. (10) will be expressed as � ′(A)
for the rest of this paper, as the cylinder radius R can be eliminated, as shown in Eqs. (11) and (12).
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FIG. 4. Numerically obtained ts vs its scaling law κ−1Ra−1/2(1 + Pr−1/2)H 2 (0.0206A + 1)/(0.0125A + 1).

Authors of previous scaling studies for natural convection boundary layer flows have suggested
that the boundary layer thickness in the initial development state could be calculated by

�t ∼ �ts

t1/2
s

t1/2. (13)

The present �t can also be described with the equation mentioned above. It is evident in Eq. (13)
that �t is determined by both �ts and ts. Based on our previous discussion, both �ts and ts can be
rewritten in the form of Eq. (7), where each of them involves two unknown coefficients, represented
by m and n. Considering these factors, the estimation for the present �t is hereby given by the
following equation:

�t ∼ κ1/2t1/2 (1 + ntsA)1/2

(1 + mtsA)1/2

(1 + mdtsA)

(1 + ndtsA)
, (14)

where mts and nts are the coefficients for ts, and mdts and ndts are the coefficients for
steady-state thermal boundary layer thickness, respectively. It is important to note that ts
refers to the duration of the initial growth of thermal boundary layer thickness. The term
(1 + ntsA)1/2(1 + mdtsA)/(1 + mtsA)1/2(1 + ndtsA) corresponds to �

′
1(A), which represents the co-

efficient reflecting the curvature effect on the early state boundary layer thickness. It is worth noting
that, because the scaling relation of �t is calculated by Eq. (13), the curvature dependency becomes
a bit complicated in comparison with the steady-state law.

The cutoff time for the initial growth state includes both a flat-plate term ts and a curvature
coefficient �2(�ts, A) [43], as described in Eq. (15). It is worth noting that this equation is also im-
plicit since the steady-state boundary layer thickness, i.e., �ts, is directly related to ts. In this paper,
we propose an alternative estimation of the curvature effect using �

′
2(A) = (1 + mtsA)/(1 + ntsA).

Consequently, we can come to Eq. (16) as follows:

ts ∼ H2(1 + Pr−1/2)

κRa1/2
�2(�ts, A), (15)

ts ∼ H2(1 + Pr−1/2)

κRa1/2

(1 + mtsA)

(1 + ntsA)
. (16)
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FIG. 5. Temperature profiles in the vicinity of the heated surface in the steady state (measured at z = 1):
(a) raw data and (b) normalized profiles.

To determine the coefficients mts and nts, a series of numerical cases are calculated, and the
corresponding results are numerically regressed and compared with the proposed Eq. (16). In this
regard, a wide range of flow parameters are considered and utilized for the simulations, including
Pr = 10, 40, 70, and 100; Ra = 107, 108, and 109; and A = 1, 2, 5, 10, 20, 50, and 100. During the
calculations, the time instance at which the thermal boundary layer thickness first reaches its steady-
state value is taken as ts, and all data are monitored at z = 1. The results of the numerical regression
process are presented in Fig. 4. This figure indicates that the combination of mts = 0.0206 and
nts = 0.0125 adequately characterizes the flow, with a fitting constant R2 of 0.998. Consequently,
Eq. (16) can be expressed in the following explicit form:

ts ∼ H2(1 + Pr−1/2)

κRa1/2

(1 + 0.0206A)

(1 + 0.0125A)
. (17)

The above scaling law could also be recast by Eq. (18), considering that the slope has been
accurately determined in Fig. 4:

ts = 1.01128
H2(1 + Pr−1/2)

κRa1/2

(1 + 0.0206A)

(1 + 0.0125A)
. (18)
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FIG. 6. Numerically obtained steady-state boundary layer thickness �ts compared against its scaling law
[(0.01118A + 1)/(0.01217A + 1)](1 + Pr−1/2)

1/2
H/Ra1/4.

According to Eq. (13), we need to obtain the scaling law of �ts before �t could
be eventually described. Similar to the above discussions, �ts was estimated by an im-
plicit scaling �ts ∼ HRa−1/4(Pr−1/2 + 1)

1/2
�3(�ts, A) in Ref. [43] and an explicit form �ts ∼

HRa−1/4(Pr−1/2 + 1)
1/2

�
′
3(A) is assumed in this paper. The function �

′
3(A) is in the form of

(1 + mdtsA)/(1 + ndtsA), where the coefficients mdts and ndts are also to be determined from
numerical regression. Figure 5(a) depicts the raw data of temperature profiles adjacent to the
heated surface under various flow conditions at z = 1. It is seen that the steady-state boundary
layer thickness does depend on the various flow parameters. Figure 5(b) demonstrates that all the
curves collapse together when the horizontal coordinate is normalized by the �ts scaling with
mdts = 0.01118 and ndts = 0.01217. This suggests that Eq. (19) reasonably quantifies �ts. It is
worth noting that, similar to the procedure for determining mts and nts, the same set of cases is used
to determine mdts and ndts:

�ts ∼ HRa−1/4(Pr−1/2 + 1)
1/2

(
0.01118A + 1

0.01217A + 1

)
. (19)

To further validate the proposed scaling law in Eq. (19), a direct comparison is made between
the numerically obtained �ts and the proposed scaling law in Fig. 6. The figure shows that a
straight line approximately passes through all the data points with a fitting constant R2 = 0.999.
This further confirms the accuracy of the scaling law proposed in Eq. (19). It is important to
note that the edge of the thermal boundary layer is identified at the position where the local
temperature drops to (Tw−95% �T ). Interestingly, Fig. 6 reveals three distinct clusters of data
points, and they in fact correspond to the three different Rayleigh numbers considered. However,
within each Rayleigh number, the data points do not significantly scatter. This indicates that �ts

is more sensitive to the Rayleigh number than the curvature effect (A) and Prandtl number (Pr).
The present data also demonstrate that the curvature dependency in Eq. (19) is 0.999 at A = 1 and
0.955 at A = 100. This suggests the steady-state boundary layer thickness does not profoundly
change with A, and this is consistent with our simulations. The fitting constant R2 = 0.999 in
Fig. 6 suggests that the present curvature dependency in Eq. (19) could well capture the curvature
effect.
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FIG. 7. Temperature profiles in the vicinity of the heated surface in the initial growth state (measured at
z = 1 and recorded at t = 0.1ts, 0.2ts, 0.4ts, 0.6ts, and 1.0ts): (a) raw data and (b) normalized profiles.

By incorporating the slope determined in Fig. 6, Eq. (19) could be rearranged into the following
exact form:

�ts = 2.87934HRa−1/4(Pr−1/2 + 1)
1/2

(
0.01118A + 1

0.01217A + 1

)
. (20)

Therefore, by substituting Eqs. (17) and (19) into Eq. (13), we can derive the scaling law for the
early state boundary layer thickness as follows:

�t ∼ κ1/2t1/2 (1 + 0.0125A)1/2

(1 + 0.0206A)1/2

(1 + 0.01118A)

(1 + 0.01217A)
. (21)

Temperature profiles adjacent to the heated cylindrical surface are plotted in Fig. 7(a) for
the early state at various flow parameters, using the radial coordinate (r-R). The curves exhibit
some scattering, indicating that the boundary layer thickness is influenced by the corresponding
parameters. However, it can be observed in Fig. 7(b) that all the profiles approximately converge
onto the same curve when the radial coordinate (r-R) is normalized by Eq. (21). This indicates that
Eq. (21) accurately captures the boundary layer thickness for the initial growth state.
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FIG. 8. Numerically obtained early state boundary layer thickness �t compared with its scaling law.

The numerically determined early state boundary layer thicknesses at different Ra, Pr, and A
values are summarized and plotted against the scaling law of �t at five time instants in Fig. 8. All
data points align closely along a straight line, with a fitting constant R2 of 0.997, thereby confirming
the validity of the proposed scaling law given in Eq. (21). It is important to note that, unlike the
results for steady-state thickness shown in Fig. 6, the data points in Fig. 8 scatter. This suggests that
the early state �t is also sensitive to Pr and A.

Figure 9(a) depicts the temporal growth of the boundary layer thickness at various flow condi-
tions. It is important to note that the steady-state boundary layer thickness falls at approximately
three distinct values, corresponding to the three Rayleigh numbers considered in this paper. This
observation is consistent with our previous analyses, as seen in Fig. 6 and Eq. (19). In Fig. 9(b), the
ordinate is normalized by the scaling of �ts, while the abscissa is made dimensionless by (t/ts)1/2.
This figure indicates that, by employing such normalization, all the data points almost collapse onto
the same curve, except for the flow behaviors affected by the LEE. Furthermore, it demonstrates that
the boundary layer thickness grows linearly with ∼ t1/2 during the initial growth state, which agrees
with the scaling law given by Eq. (21). Additionally, it is evident that the normalized steady-state
boundary layer thickness approaches a consistent value, further validating the appropriateness of
Eq. (19).

By incorporating the slope determined in Fig. 9(b), Eq. (21) can be recast as follows:

�t = 2.7534κ1/2t1/2 (1 + 0.0125A)1/2

(1 + 0.0206A)1/2

(1 + 0.01118A)

(1 + 0.01217A)
. (22)

Lin et al. [52] suggested that, in certain convective flows, the cutoff time for the early state
growth of the thermal boundary layer may differ from that of the viscous layer. Consistent with
their findings, we have also found that significant deviations in the Ra dependency arise when
using Eq. (17), which represents the cutoff time for the thermal boundary layer, to describe the
development of the viscous layer in this paper. To tackle this problem, Lin et al. [52] proposed
a method that involves separately regressing and determining the two cutoff times. We chose to
follow this approach in this paper. Similar to the method used to determine �t , i.e., Eq. (13), the
characteristic velocity of the boundary layer umz can be correlated with its steady-state value umzs,
using the following scaling relation, where tsv represents the cutoff time for the initial growth of the
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FIG. 9. Temporal growth of boundary layer thickness: (a) raw data and (b) normalized results.

viscous layer:

umz ∼ umzs

tsv
t . (23)

Equation (23) indicates that, to determine umz, we need to obtain the scaling laws for tsv and umzs

first. We assume that tsv follows the following form, where �
′
4(A) represents the curvature effect,

and an exponent α is assumed for the Rayleigh number dependency:

tsv ∼ H2(1 + Pr−1/2)

κRaα
�

′
4(A) ∼ H2(1 + Pr−1/2)

κRaα

(1 + mtsvA)

(1 + ntsvA)
. (24)

Numerical calculations are carried out to determine the coefficients mtsv , ntsv , and α, covering
a wide range of flow parameters, i.e., at Pr = 10, 40, 70, and 100; Ra = 107, 108, and 109; and
A = 1, 2, 5, 10, 20, 50, and 100. The value of tsv is obtained when the instantaneous velocity uz

first reaches its steady-state value, with the monitoring location set at z = 1. Based on the results
shown in Fig. 10, it is found that the combination of mtsv = 0.0206, ntsv = 0.0125, and α = 0.659
can accurately describe the temporal development of the viscous layer, with a fitting constant R2 of
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FIG. 10. Numerically obtained tsv compared against the scaling law κ−1Ra−0.659(1 +
Pr−1/2)H 2(0.0206A + 1)/(0.0125A + 1).

0.996. Therefore, we can come to the scaling law for tsv as follows:

tsv ∼ H2(1 + Pr−1/2)

κRa0.659

(1 + 0.0206A)

(1 + 0.0125A)
. (25)

Based on the results presented in Fig. 10, it is known that the numerically determined tsv values
are approximately 32.12163 times larger than the scaling values. Considering this, we can rearrange
Eq. (25) in the following exact form:

tsv = 32.12163
H2(1 + Pr−1/2)

κRa0.659

(1 + 0.0206A)

(1 + 0.0125A)
. (26)

Authors of previous studies have suggested that the characteristic velocity of flat-plate prob-
lems is described by κRa1/2H−1(1 + Pr−1/2)

−1
[27]. In this paper, the curvature effect on umzs

is accounted for by �
′
5(A), which is also in the form of (1 + muzsA)/(1 + nuzsA). Our numerical

regression suggests that, when muzs = 0.0249 and nuzs = 0.0338, the calculated results could be
best matched. This process is shown in Fig. 11, where all data converge onto the same straight
line, and the regression constant R2 equals 0.999. Hence, it leads to the scaling relation in Eq. (27).
Note that the maximum velocity component in the z direction, i.e., the maximum uz, is taken as the
numerically determined characteristic velocity:

umzs ∼ κRa1/2H−1(1 + Pr−1/2)
−1

(
0.0249A + 1

0.0338A + 1

)
. (27)

To determine the scaling of �vis for the present curved boundary layer, we assume that �vis

follows the scaling law �vis ∼ (1 + Pr−1/2)
−1/2

HRa−1/4�
′
6(A), where �

′
6(A) takes the form of

(1 + mdvsA)/(1 + ndvsA). The coefficients mdvs and ndvs can be obtained through a numerical fitting
process using the prescribed cases mentioned earlier. It is noted that the velocity component uz

maximizes at r = R + �vis in the r direction.
Figure 12 shows that the numerical results agree well with the scaling law when the values of

mdvs and ndvs are 0.02479 and 0.03737, respectively. This leads to the following scaling law for
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FIG. 11. Numerically obtained steady-state characteristic velocity umzs compared against its scaling law
[(0.0249A + 1)/(0.0338A + 1)]κRa1/2/[H (1 + Pr−1/2)].

�vis:

�vis ∼ HRa−1/4(1 + Pr−1/2)
−1/2

(
0.02479A + 1

0.03737A + 1

)
. (28)

This scaling relation can be rearranged by incorporating the determined slope from Fig. 12 as
follows:

�vis = 1.99085HRa−1/4(1 + Pr−1/2)
−1/2

(
0.02479A + 1

0.03737A + 1

)
. (29)

FIG. 12. Numerically obtained steady-state inner viscous layer thickness �vis against its scaling law
[(0.02479A + 1)/(0.03737A + 1)](1 + Pr−1/2)

−1/2
HRa−1/4.
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FIG. 13. Velocity profiles adjacent to the heated surface in the steady state: (a) raw data and (b) normalized
profile.

Figure 13(a) depicts velocity profiles adjacent to the heated surface at different flow conditions,
revealing an initial increase (within the inner viscous layer) followed by a decrease (from �vis to
the outer edge of the viscous layer). The profiles demonstrate that the local velocity does depend on
the various flow parameters. Figure 13(b), on the other hand, normalizes the abscissa using Eq. (28)
and the ordinate using Eq. (27). Notably, the profiles within the inner viscous layer converge, thus
validating the scaling laws described by Eqs. (27) and (28). It is important to note that, compared
with the steady-state thermal boundary layer thickness, the steady-state characteristic velocity and
inner viscous layer thickness are more influenced by the values of A and Pr. This behavior can
be explained by the curvature coefficient term, specifically the term (1 + mA)/(1 + nA). When the
values of m and n are close to each other, the effect of A is insignificant. However, if there is a large
difference between m and n for the considered flow parameters, the effect of A becomes significant.

The scaling law of umz could now be determined by the following:

umz ∼ κ2tRa1.159H−3(1 + Pr−1/2)
−2 (1 + 0.0249A)

(1 + 0.0338A)

(1 + 0.0125A)

(1 + 0.0206A)
. (30)
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FIG. 14. Temporal growth of umz: (a) raw data and (b) normalized results.

In this scaling law, the term (1 + 0.0249A)(1 + 0.0125A)/(1 + 0.0338A)(1 + 0.0206A) repre-
sents the curvature effect on umz, denoted as �

′
7(A). Numerical calculations are conducted from

t = 0 to 6tsv , with the characteristic velocity umz recorded at intervals of 0.1tsv . The resulting
velocity time series at different flow conditions are plotted in Fig. 14(a). It is found that the velocity
profiles exhibit similarities to the temperature profiles but with a linear correlation between the
initial growth of velocity and time. Figure 14(b) normalizes the abscissa using the scaling law of tsv
and the ordinate using Eq. (27). The plot indicates that the profiles approximately sit on the same
curve, validating the proposed Eqs. (26) and (27).

To validate the scaling relation given in Eq. (30), the numerically determined umz is directly
compared with its scaling law at three time instances during the initial growth state, as shown in
Fig. 15. The plot demonstrates that Eq. (30) accurately captures the dependencies on Rayleigh
number, Prandtl number, curvature, and time. However, it should be noted that there is a slight
deviation between the present scaling law and the numerical simulations in some cases of very large
umz. Nevertheless, with a fitting constant R2 = 0.985, it can be concluded that Eq. (30) provides a
robust description for the flow of the curved boundary layer.
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FIG. 15. Numerically obtained early state characteristic velocity umz compared against its scaling law
tκ2Ra1.159(0.049A + 1)(0.0125A + 1)/[H3(1 + Pr−1/2)

2
(0.0338A + 1)(0.0206A + 1)].

IV. EFFECT OF CURVATURE

The analysis presented above provides important scaling laws that quantify the convective bound-
ary layer flow in an explicit form. These scaling relations can describe a wide range of boundary
layer geometries, ranging from flat boundary layers (A = 0) to highly curved ones (A = 100). The
determined scales are summarized in Table II. In comparison with the previous implicit form,
these explicit scaling laws offer a much simpler and more straightforward approach for practical
applications and calculations. It is crucial to note that the determined scaling laws and � ′(A) are
universal, and they are not affected by the choices of dimensional flow parameters.

The effect of curvature on various characterizing variables of the boundary layer flow can be
easily demonstrated by plotting the corresponding coefficient � ′(A) of the explicit scaling laws.
Figure 16 depicts the values of �

′
1(A) to �

′
7(A) obtained in the previous section. It is important

to note that � ′(A) = 1 represents the flat-plate flow, where the curvature effect is not present.
When � ′(A) > 1, it indicates that the corresponding variable is larger than the value for a flat plate.
Conversely, if � ′(A) < 1, it implies that the curved flow parameters are smaller than those of a flat
plate. Figure 16 reveals that, due to the presence of curvature, both the characteristic velocity and
the boundary layer thickness are reduced compared with the flat-plate problem, with a maximum
relative difference of ∼ −40%. Furthermore, the cutoff time for the initial growth of the boundary
layer increases by up to ∼ 40%. This demonstrates that the curvature effect has a profound influence
on the convective boundary layer flow. Authors of previous studies on boundary layer flows have

TABLE II. Explicit scaling laws describing the present curved boundary layer flows.

Initial growth state Steady state

�t ∼ κ1/2t1/2 (1+0.0125A)1/2

(1+0.0206A)1/2
(1+0.01118A)
(1+0.01217A) �ts ∼ HRa−1/4(1 + Pr−1/2)

1/2
( 0.01118A+1

0.01217A+1 )

umz ∼ κ2tRa1.159H−3(1 + Pr−1/2)
−2 (1+0.0249A)

(1+0.0338A)
(1+0.0125A)
(1+0.0206A) umzs ∼ κRa1/2H−1(1 + Pr−1/2)

−1
( 0.0249A+1

0.0338A+1 )

N/A �vis ∼ HRa−1/4(1 + Pr−1/2)
−1/2

( 0.02479A+1
0.03737A+1 )

ts ∼ H2 (1+Pr−1/2 )
κRa1/2

(1+0.0206A)
(1+0.0125A)

tsv ∼ H2 (1+Pr−1/2 )
κRa0.659

(1+0.0206A)
(1+0.0125A)
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FIG. 16. Effect of curvature on various characterizing parameters of the boundary layer flow.

also shown that the presence of curvature leads to a decrease in the equivalent Rayleigh number of
the flow, resulting in a weaker convective boundary layer flow.

V. CONCLUDING REMARKS

In this paper, we focus on investigating the buoyant boundary layer that develops on the external
surface of an isothermally heated vertical cylinder. Numerical calculations reveal that the transient
convective flow undergoes three main states: an initial growth, an oscillatory LEE state, and a steady
state. These states are similar to those observed in the extensively studied flat plate problems.

In addition to considering the dependencies on the Rayleigh and Prandtl numbers, the influence
of the curvature of the heated cylinder, denoted as the parameter A, is examined and analyze in par-
ticular in this paper. The effect of curvature is accurately described by introducing a dimensionless
curvature coefficient � ′(A). Through numerical regression, important flow variables of the curved
boundary layer, such as the thickness and characteristic velocity of the initial and steady states,
as well as the durations of the initial growth state, are successfully quantified using the proposed
scaling laws. The fitting constants for most of these scaling laws exhibit high values of R2, ∼0.999,
indicating a strong correlation between the determined scaling relations and the numerical results.

Compared with previous similar studies, the present scaling laws are expressed in an explicit
form that provides clearer physical interpretations. These explicit forms make the scaling laws
much easier to utilize in practical applications and facilitate a better understanding of the underlying
physical phenomena governing the curved boundary layer flow.
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