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Late-time draining of a thin liquid film on the outer surface
of a circular cylinder
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A combination of analytical and numerical techniques is used to give a complete descrip-
tion of the late-time draining of a two-dimensional thin liquid film on the outer surface of
a stationary horizontal circular cylinder. In this limit three regions of qualitatively different
behavior emerge, namely a draining region on the upper part of the cylinder and a pendant-
drop region on the lower part of the cylinder joined by a narrow inner region. In the draining
region, capillarity is negligible and the film thins due to gravity. In the pendant-drop region
(which, to leading order, contains all of the liquid initially on the cylinder), there is a
quasistatic balance between gravity and capillarity. The matching between the draining and
pendant-drop regions occurs via the inner region in which the film has a capillary-ripple
structure consisting of an infinite sequence of alternating dimples and ridges. Gravity is
negligible in the dimples, which are all thinner than the film in the draining region. On the
other hand, gravity and capillarity are comparable in the ridges, which are all thicker than
the film in the draining region. The dimples and the ridges are all asymmetric: specifically,
the leading-order thickness of the dimples grows quadratically in the downstream direction
but linearly in the upstream direction, whereas the leading-order film thickness in the
ridges goes to zero linearly in the downstream direction but quadratically in the upstream
direction. The dimples and ridges become apparent in turn as the draining proceeds, and
only the first few dimples and ridges are likely to be discernible for large but finite times.
However, there is likely to be a considerable period of time during which the present
asymptotic solution provides a good description of the flow.

DOI: 10.1103/PhysRevFluids.8.084001

I. INTRODUCTION

Liquid films coating the outer surface of a curved substrate occur in numerous industrial and
biological settings and contexts, such as coating [1], painting (for example, painting of the bodies
of automobiles [2]), heat transfer applications (for example, condensation onto the tubes within a
heat exchanger [3]), the production of confectionery [4], the coating of orthopaedic implants [5],
covering the cornea of the eye [6], and lining the lungs of land animals [7]. The special cases of
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cylindrical and spherical substrates have received particular attention because they are of interest
both in their own right and as paradigms for more complicated situations.

The pioneering work of Nusselt [8,9] considered the steady flow of a thin liquid film on the outer
surface of a stationary horizontal circular cylinder fed by a prescribed flux of liquid delivered at the
top of the cylinder and showed that the thickness of the film varies as | cos θ |−1/3, where θ is the
azimuthal angle measured anticlockwise around the cylinder from the horizontal. This analysis was
later generalized to steady flow on a uniformly rotating cylinder by Duffy and Wilson [10].

Reisfeld and Bankoff [11] theoretically investigated the unsteady flow of a thin film on the outer
surface of a stationary horizontal cylinder, developing a model which incorporates viscosity, gravity,
capillarity, thermocapillarity, and intermolecular (van der Waals) forces, and studied both isothermal
and nonisothermal situations. In particular, when the film is isothermal and van der Waals forces are
negligible, they showed that the film thins on the upper part of the cylinder and that the interface
develops a pendant-drop-like shape on the lower part of the cylinder. They also showed that two
symmetric regions of local thinning of the film occur, and that these regions move upwards and
eventually coalesce into a single region at the top of the cylinder as gravity is reduced.

Evans et al. [12] theoretically investigated the unsteady flow of a thin film on the outer surface of
a rotating horizontal cylinder, developing a three-dimensional model which incorporates viscosity,
gravity, capillarity, and centrifugation. In the special case of a two-dimensional flow on a stationary
cylinder, they showed numerically that, in agreement with Reisfeld and Bankoff [11], a pendant
drop forms on the lower part of the cylinder. In particular, Evans et al. [12] showed that this pendant
drop approaches a steady state at late times, and obtained numerical solutions for its steady-state
shape. They also showed that the film thickness at the top of the cylinder decreases monotonically
but does not reach zero in a finite time.

Takagi and Huppert [13] theoretically and experimentally investigated the unsteady flow of a
thin film with an advancing front on the outer surface of both a stationary circular cylinder and a
stationary sphere. In both geometries they developed models which incorporate viscosity, gravity,
and capillarity, and derived asymptotic solutions for the film thickness near the top of the substrate
at late times. They found that at late times the front advances as t1/2 for the cylinder and as t1/4 for
the sphere, and that in both cases the film near the top of the substrate thins as t−1/2, where t denotes
time.

Cachile et al. [14] theoretically and experimentally investigated the unsteady flow of a thin film
on the outer surface of a stationary horizontal cylinder and developed a model that incorporates
viscosity, gravity, and capillarity. They found that on the upper part of the cylinder there is a region
in which the film thins monotonically in time as the liquid drains toward the lower part of the
cylinder. They also found that a Rayleigh–Taylor-like instability occurs on the lower part of the
cylinder, and determined the wavelength of the fastest-growing linear mode.

However, none of these studies obtained the complete description of the late-time behavior of
the film: each focused on specific regions of the flow (such as, for example, the film thickness near
the top of the cylinder or the pendant drop which forms on the lower part of the cylinder), but
none of them determined how the solutions in the different regions connect together to give the
complete description. A recent study which did attempt to do this, albeit for flow on a sphere rather
than a cylinder, is that by Qin et al. [15], who theoretically investigated the unsteady flow of a thin
film on the outer surface of a stationary sphere using a special case of the axisymmetric model
developed by Kang et al. [16] that incorporates viscosity, gravity, and capillarity. They derived an
asymptotic solution for the film thickness which shows that its evolution from an initially uniform
film is independent of capillarity at early times. They also performed numerical simulations of the
film thickness, from the results of which they inferred that four distinct “zones” of behavior emerge
at late times: a “thin-film” zone on the upper part of the sphere, a quasistatic “pendant-drop” zone on
the lower part of the sphere, and two narrow inner zones that connect them, namely a “dimple-ring”
zone and a “ridge-ring” zone. They obtained asymptotic solutions for the film thickness in each of
the zones and sought to match them to those in the neighboring zones. In particular, in the thin-film,
dimple-ring, and ridge-ring zones they derived and numerically validated similarity solutions and
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LATE-TIME DRAINING OF A THIN LIQUID FILM

FIG. 1. The geometry of the system considered in the present work.

scaling laws for the film thickness, while in the pendant-drop zone they derived and numerically
validated an analytical solution for the film thickness. We defer further discussion of this key paper
to Sec. III.

In the present work we use a combination of analytical and numerical techniques to investi-
gate the late-time draining of a two-dimensional thin film on the outer surface of a stationary
horizontal circular cylinder. The two-dimensional model can, of course, be readily extended to
three dimensions, and we anticipate that the corresponding analysis of this problem would have
many of the same features with that described in the present work. Nevertheless, in the present
work we restrict our attention to the two-dimensional problem both as an interesting problem in
its own right and as an essential first step toward understanding the three-dimensional problem.
Note that the two-dimensional problem can be realized physically by preventing the occurrence
of a three-dimensional instability in the axial direction by, for example, using a sufficiently short
cylinder and/or imposing an axial electric field (see, for example, González et al. [17]).

II. PROBLEM FORMULATION

We consider the unsteady two-dimensional flow of a thin film of an incompressible Newtonian
liquid of constant density ρ̂ and viscosity μ̂ on the outer surface of a stationary circular cylinder of
radius R̂ with axis aligned horizontally and gravitational acceleration ĝ acting vertically downward.
The geometry of the system is shown in Fig. 1. Figure 1 also shows the three regions of qualitatively
different behavior which emerge at late times: these regions will be analyzed in detail in Secs. IV,
V, and VI, respectively. The liquid film is surrounded by air at constant atmospheric pressure p̂a,
and the liquid-gas interface has constant coefficient of surface tension σ̂ . We use two-dimensional
polar coordinates (r̂, θ ) centered on the axis of the cylinder, with θ measured anticlockwise from the
horizontal on the right-hand side of the cylinder. Throughout the present work we assume that the
flow has left-to-right symmetry, and so we restrict our attention to the left-hand side of the cylinder
and hence work in the domain π/2 � θ � 3π/2. The thickness of the film at time t̂ is denoted by
ĥ(θ, t̂ ), so that the interface of the liquid is located at r̂ = R̂ + ĥ(θ, t̂ ). The film has a uniform
initial thickness ĥ|t̂=0 = ĥ0. The liquid has pressure p̂(r̂, θ ) and velocity û(r̂, θ )er + v(r̂, θ )eθ ,
where er and eθ denote the unit vectors in the radial and azimuthal directions, respectively. We
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nondimensionalize and scale the system according to

r̂ = R̂(1 + εR), ĥ = εR̂H, p̂ − p̂a = μ̂Ûref

R̂
P, û = ε3ÛrefU, v̂ = ε2ÛrefV, t̂ = R̂

ε2Ûref
T,

(1)

where Ûref = ρ̂ĝR̂2/μ̂ is a characteristic velocity scale, to find that at leading order in the limit of
small aspect ratio ε = ĥ0/R̂ → 0 the system is governed by the lubrication equations, namely

UR + Vθ = 0, PR = 0, VRR = Pθ + cos θ, (2)

subject to the normal and tangential stress conditions at the interface,

P|R=H = 1

εγ
[1 − ε(H + Hθθ )], VR|R=H = 0, (3)

where γ = μ̂Ûref/(εσ̂ ) = ρ̂ĝR̂2/(εσ̂ ) is an appropriately defined capillary number of order unity
(see, for example, Oron et al. [18] and Craster and Matar [19]). These can be solved in the usual
way to determine the pressure P and the azimuthal velocity V , and hence the kinematic condition
yields the governing thin-film equation

HT + Qθ = 0, (4)

where Q = Q(θ, T ) defined by

Q =
∫ H

0
V (R, θ ) dR = −1

3
H3 cos θ + 1

3γ
H3(H + Hθθ )θ (5)

is the azimuthal volume flux per unit width, subject to the initial condition

H |T =0 = 1. (6)

While this equation would normally be solved subject to periodic conditions, we instead exploit the
symmetry of the system to impose the symmetry conditions

Hθ = Hθθθ = 0 at θ = π

2
and

3π

2
. (7)

Equation (4) with Q given by Eq. (5) and subject to Eqs. (6) and (7) is the basis of all of the analysis
that follows.

Numerical solutions of Eq. (4) are obtained using a fully implicit centered-finite-difference code
that is second order in both space and time. This code has previously been successfully used to
solve other problems (see, for example, Wray et al. [20] and Wray and Cimpeanu [21]). To enable
computations to be performed up to the longest final times of up to T = O(1011) required to validate
the present asymptotic solution while still resolving the fine spatial structures that occur, we used
a nonuniform grid formulation. The grid spacing is reduced smoothly from 5×10−3 in the bulk
of the domain to 10−6 within π/18 of the azimuthal location of the inner region, denoted by θ =
θI (π/2 � θI � 3π/2). The inner region is shown in Fig. 1 and analyzed in Sec. VI. Derivatives
are computed using standard centered finite differences, with convergence being verified in both
space and time. The linear algebra required to compute the Newton–Raphson iterations for the fully
implicit time-stepping was performed using the Eigen C++ template library for linear algebra [22].

In the present work we investigate the draining of the film at late times. However, for complete-
ness, we also give a brief account of the draining of the initially uniform film at early times in the
Appendix.
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LATE-TIME DRAINING OF A THIN LIQUID FILM

FIG. 2. Snapshots of the interface for γ = γπ given by Eq. (8) at times T = 0, 100, 101, 102, 103, and
104. The arrows indicate the direction of increasing time. (a) Polar plot in which the film thickness has been
exaggerated for illustrative purposes by using the artificial value ε = 1. (b) Semi-log plot showing the film
thickness H as a function of θ .

III. LATE-TIME DRAINING

As mentioned in Sec. I, and as sketched in Fig. 1, three regions of qualitatively different behavior
emerge at late times. As in the corresponding problem of flow on a spherical substrate studied by
Qin et al. [15], different balances of forces determine the dominant behavior in each region, leading
to different simplifications of the governing equation (4). Therefore, the overall evolution of the film
at late times can be investigated by analyzing each region separately and performing the appropriate
asymptotic matching between them. On the upper part of the cylinder, gravity dominates capillarity,
resulting in a draining flow which causes the film to thin, corresponding to the thin-film zone of Qin
et al. [15] in the spherical case. We shall refer to this region as the “draining region” and it will be
discussed in Sec. IV. On the other hand, on the lower part of the cylinder, gravity and capillarity
balance, resulting in the formation of a quasistatic pendant drop, corresponding to the pendant-drop
zone of Qin et al. [15] in the spherical case. We shall refer to this region as the “pendant-drop
region” and it will be discussed in Sec. V.

The draining and pendant-drop regions do not match directly with each other, but do so via a
narrow intermediate region. We shall refer to this region as the “inner region.” We will show that
this inner region consists of an infinite sequence of alternating “dimples” (i.e., narrow regions in
which the film thickness has a local minimum) and “ridges” (i.e., narrow regions in which the
film thickness has a local maximum). The inner region and, in particular, the qualitative difference
between the structure of the inner region and that described by Qin et al. [15] in the spherical case
will be discussed in Sec. VI.

Figure 2 shows snapshots of the interface for

γ = γπ = 8π

π2 − 8
� 13.4428 (8)

at various times. In Sec. V it will be shown that this value of γ leads to θI = π (i.e., the inner
region is located at the waist of the cylinder), and this is confirmed by the results shown in Fig. 2.
Figure 3 shows snapshots of the interface for various values of γ at time T = 104. In particular,
Fig. 3 shows that the effect of varying γ is mainly to change the location of the inner region θI and,
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FIG. 3. Snapshots of the interface for γ = 10−1, 100, 101, 102, and 103 at time T = 104. The arrows
indicate the direction of increasing γ . (a) Polar plot in which the film thickness has been exaggerated for
illustrative purposes by using the artificial value ε = 1. (b) Semi-log plot showing the film thickness H as a
function of θ .

correspondingly, the widths of the draining and pendant-drop regions. Specifically, decreasing the
value of γ , corresponding to weakening gravity, results in a narrower draining region and a wider
pendant-drop region, consistent with the numerical results of Reisfeld and Bankoff [11] mentioned
in Sec. I. Figure 4 shows the film thickness H for γ = γπ given by Eq. (8) at time T = 1010. In
particular, while only the first dimple and ridge are immediately apparent in Figs. 2, 3, and 4(a), the
second and third dimple and ridge are discernible in the enlargement of Fig. 4(a) near θ = θI = π

shown in Fig. 4(b).

FIG. 4. The film thickness H for γ = γπ given by Eq. (8) at time T = 1010. (a) Solution for π/2 � θ �
13π/10. The rectangle indicates the location of the enlargement shown in panel (b). (b) Enlargement of panel
(a) near θ = θI = π .
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IV. DRAINING REGION

The results of the present numerical calculations indicate that at late times the film becomes thin
in the draining region. Therefore, we seek a late-time asymptotic solution in which H � 1, and
hence at leading order the governing equation (4) becomes simply

HT +
(

−1

3
H3 cos θ

)
θ

= 0. (9)

We seek a separable solution to Eq. (9) of the form H (θ, T ) = η(θ )T n, yielding

nT n−1η +
(

−1

3
T 3nη3 cos θ

)
θ

= 0. (10)

Balancing powers of n in Eq. (10) yields n = −1/2, and hence Eq. (9) has a solution of the form

H (θ, T ) = η(θ )T −1/2, (11)

where the function η = η(θ ) satisfies the first-order ordinary differential equation (ODE)

d

dθ
(η3 cos θ ) + 3

2
η = 0. (12)

Solving Eq. (12) subject to the symmetry conditions (7) yields

η(θ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
3

2
ϕ(θ )

)1/2

for
π

2
� θ � π,( √

π 

(

1
3

)
| cos θ |2/3 


(
5
6

) − 3

2
ϕ(θ )

)1/2

for π � θ � 3π

2
,

(13)

where ϕ(θ ) is the hypergeometric function

ϕ(θ ) = 2F1

(
1

3
,

1

2
;

4

3
; (cos θ )2

)
. (14)

Equation (11) shows that the film in the draining region thins as T −1/2, consistent with the result
of Takagi and Huppert [13] for a film with an advancing front mentioned in Sec. I, and that H is
a monotonically increasing function of θ . In particular, this means that at any instant in time the
leading-order film thickness in this region increases from a minimum value of

H

(
π

2
, T

)
=

√
3

2
T −1/2 (15)

at the top of the cylinder (i.e., at θ = π/2) to a maximum value at θ = θI.
Substituting the solution for H in the draining region (11) into the flux (5) shows that the

contributions to the flux due to gravity and capillarity are

Qgrav = −1

3
H3 cos θ = O(T −3/2) � 1, (16)

Qcap = 1

3γ
H3(H + Hθθ )θ = O(T −2) � 1, (17)

respectively. In particular, Eqs. (16) and (17) show that Qcap � Qgrav � 1 at late times, confirming
the validity of neglecting capillarity in the draining region.

Figure 5 shows a log–log plot of H , Qgrav, and Q evaluated at the top of the cylinder obtained
from numerical solutions of Eq. (4) for γ = γπ given by Eq. (8) as functions of T , and compares
them with the corresponding late-time asymptotic scalings T −1/2, T −3/2, and T −3/2 obtained from
Eqs. (11) and (16). In particular, Fig. 5 confirms that the interface has the predicted asymptotic
behavior at sufficiently late times. This conclusion is confirmed by the numerical values shown in
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FIG. 5. Log–log plot of H (diamonds), Qgrav (triangles), and Q (squares) evaluated at the top of the cylinder
for γ = γπ given by Eq. (8) as functions of T , and the corresponding late-time asymptotic scalings T −1/2,
T −3/2, and T −3/2. Note that the triangles and the squares almost lie on top of each other.

Table I, which shows that the asymptotic scalings are in excellent agreement with the slopes of the
corresponding lines of best fit to the numerical results for T � 109/4 shown in Fig. 5. Note that, as
a consequence of the symmetry conditions (7), Qcap ≡ 0 at the top of the cylinder, and so is omitted
from both Fig. 5 and Table I.

Figure 6 shows snapshots of the scaled film thickness η = HT 1/2 for γ = γπ given by Eq. (8)
at various times together with the leading-order asymptotic solution in the draining region (11),
confirming that the interface does indeed approach the asymptotic solution at late times.

To perform the asymptotic matching with the inner region, it will be useful to determine
the azimuthal volume flux out of the draining region, denoted by Qdrain = Q(θI, T ) = Qdrain(T ).
Integrating the governing equation (4) across the draining region gives an expression for Qdrain,
namely

Qdrain = −
∫ θI

π/2
HT dθ, (18)

where H is given by Eq. (11), and hence

Qdrain = 1

2
T −3/2

∫ θI

π/2
η(θ ) dθ, (19)

showing that the flux out of the draining region decreases as T −3/2 at late times.

TABLE I. The late-time asymptotic scalings for H , Qgrav, and
Q evaluated at the top of the cylinder, and the slopes of the cor-
responding lines of best fit to the numerical results for T � 109/4

shown in Fig. 5.

Asymptotic scaling Numerical result

H −0.5 −0.5021
Qgrav −1.5 −1.5045
Q −1.5 −1.4999
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FIG. 6. Snapshots of the scaled film thickness η = HT 1/2 for γ = γπ given by Eq. (8) at times T = 103,
104, 105, and 106. The arrow indicates the direction of increasing time. The dashed line shows the leading-order
asymptotic solution in the draining region (11).

V. PENDANT-DROP REGION

The results of the present numerical calculations indicate that at late times the pendant-drop
region shown in Figs. 2(a) and 3(a) is quasistatic so that H = H (θ ) is independent of T , and hence
at leading order the governing equation (4) becomes

(H + Hθθ )θ = γ cos θ. (20)

Equation (20) is a third-order ODE for the film thickness H which requires three boundary
conditions. At the edge of the pendant-drop region, the interface approaches the surface of the
cylinder tangentially, i.e., H satisfies the two boundary conditions

H |θ=θI = 0, (21)

Hθ |θ=θI = 0. (22)

The third boundary condition is the symmetry condition at the bottom of the cylinder (7).
Solving Eq. (20) subject to Eqs. (21), (22), and (7) yields the solution for H in the pendant-drop

region, namely

H = γ

4
[(3π − 2θ ) cos θ − (3π − 2θI ) cos θI + {2 + (3π − 2θI ) tan θI}(sin θ − sin θI )] (23)

for θI � θ � 3π/2.
The solution (23) contains an unknown constant, namely the azimuthal location of the inner

region θI, which can be determined by imposing global conservation of mass. To leading order, all
of the liquid initially on the cylinder is contained within the pendant-drop region, so that∫ 3π/2

θI

H dθ =
∫ 3π/2

π/2
H (0) dθ = π. (24)

Substituting the asymptotic solution for H given by Eq. (23) into the global mass conservation
condition (24) and evaluating the integral yields an implicit equation for θI in terms of γ , namely

γ = 8π cos θI

4[1 + cos(2θI )] − (3π − 2θI )[3π − 2θI + sin(2θI )]
. (25)
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FIG. 7. Snapshots of the film thickness H for γ = γπ given by Eq. (8) at times T = 0, 100, 101, 102,
103, and 104. The arrow indicates the direction of increasing time. The (barely visible) dashed line shows the
leading-order asymptotic solution in the pendant-drop region (23).

Note that, unlike the corresponding equation in the spherical case obtained by Qin et al. [15], it is
not possible to invert Eq. (25) to obtain an explicit expression for θI in terms of γ . In particular, as
mentioned in Sec. III, Eq. (25) predicts that θI = π (i.e., the inner region is located at the waist of
the cylinder) when γ = γπ given by Eq. (8).

Figure 7 shows snapshots of the film thickness H for γ = γπ given by Eq. (8) at various times
together with the leading-order asymptotic solution in the pendant-drop region (23), confirming that
the interface does indeed approach the asymptotic solution at late times. In particular, Fig. 7 shows
that the leading-order film thickness in this region increases from zero at θI = π to a maximum
value of

H

(
3π

2

)
= −γ

4
{(3π − 2θI ) cos θI + [2 + (3π − 2θI ) tan θI](1 + sin θI )} = 2π (π − 2)

π2 − 8
� 3.8366

(26)
at the bottom on the cylinder.

Figure 8 shows the relationship between γ and θI. Specifically, Fig. 8 shows that the asymptotic
expression (25) is in very good agreement with the position of the inner region calculated from
numerical solutions of the governing equation (4) for five values of γ at time T = 104. In particular,
Fig. 8 shows that θI is a monotonically increasing function of γ , confirming that weakening gravity
results in a narrower draining region and a wider pendant-drop region, consistent with the results
shown in Fig. 3.

Substituting Eq. (25) into Eq. (23) and taking the limit θ → θ+
I yields the local behavior of the

interface in the pendant-drop region as it approaches the inner region, namely

H = π [sin(2θI ) − (3π − 2θI )]

4[1 + cos(2θI )] − (3π − 2θI )[3π − 2θI + sin(2θI )]
(θ − θI )

2 + O[(θ − θI )
3] as θ → θ+

I .

(27)
This result will be used in Sec. VI A when performing the asymptotic matching of the solution in
the pendant-drop region to that in dimple 1.

VI. INNER REGION

The matching between the draining and pendant-drop regions occurs via the inner region located
at θ = θI. Figure 9 shows a sketch of the asymptotic structure of the inner region, which, as
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FIG. 8. The relationship between γ and θI. The dashed line shows the asymptotic expression (25), and the
circles show the position of the inner region calculated from numerical solutions of the governing equation (4)
for γ = 10−1, 100, 101, 102, and 103 at time T = 104.

mentioned above, consists of an infinite sequence of alternating dimples and ridges. This “capillary-
ripple” structure is qualitatively different from that of one dimple-ring zone and one ridge-ring zone
described by Qin et al. [15] in the spherical case. In fact, we anticipate that a corresponding infinite
sequence of alternating dimple-ring zones and ridge-ring zones also occurs in the spherical case. The
flaw in the analysis of Qin et al. [15] is that the flux out of their thin-film zone is not, in fact, of the
same order as the fluxes due to gravity and capillarity in their ridge-ring zone. This mismatch is not
apparent in their numerical results because they never computed beyond a final time of T = O(105)
(compared to a final time of T = O(1011) used in the present work), and (extrapolating from the
behavior of the present solution described in Sec. VI C), the other dimple-ring and ridge-ring zones
presumably only become apparent at larger values of T . However, capillary-ripple structures similar
to that described here have been found in other situations, most famously by Wilson and Jones
[23], who showed that an infinite sequence of steady dimples and ridges is necessary to match a
thin liquid film of uniform thickness flowing down a vertical wall to a quiescent pool of liquid.
Following this pioneering work, similar structures have been found in rimming flow [24], levitated
drops [25], liquid films or drops on inclined planes [26–28], elastic-plated gravity currents [29], and
Leidenfrost levitation of particles [30].

FIG. 9. A sketch of the asymptotic structure of the inner region.
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We determine the asymptotic solutions for H in dimple 1 and ridge 1 in Secs. VI A and VI B,
respectively. We then generalize this analysis to determine the asymptotic solutions for H in dimple
n and ridge n for n = 2, 3, 4, . . . in Sec. VI C.

A. Dimple 1

The results of the present numerical calculations indicate that, as Fig. 4 illustrates, dimple 1
is narrow and thin (specifically, thinner than the draining region). Motivated by these numerical
results, we seek a leading-order asymptotic solution for H in the self-similar form

H = ψ1(ξ1)

T α1
, θ − θI = ξ1

T β1
, (28)

where the exponents α1 > 1/2 and β1 > 0 are positive constants which we shall determine.
Equating the flux out of the draining region given by Eq. (19) with the flux in dimple 1 obtained

from Eq. (5) with Eq. (28) yields

T −3/2K = −1

3
ψ3

1 T −3α1 cos θI + 1

3γ
ψ3

1 [T −4α1+β1ψ1ξ1 + T −4α1+3β1ψ1ξ1ξ1ξ1 ], (29)

where

K = 3γ

2

∫ θI

π/2
η(θ ) dθ > 0 (30)

is a positive constant.
Considering the possible leading-order balances in Eq. (29) and imposing asymptotic matching

with the pendant-drop region yields two equations relating α1 and β1, namely

− 3
2 = −4α1 + 3β1 and − α1 + 2β1 = 0, (31)

and so α1 and β1 are given by

α1 = 3

5
, β1 = 3

10
, (32)

and hence the solution for H given by Eq. (28) becomes

H = ψ1(ξ1)

T 3/5
, θ − θI = ξ1

T 3/10
, (33)

where the function ψ1 = ψ1(ξ1) satisfies

ψ3
1 ψ1ξ1ξ1ξ1 = K. (34)

In particular, Eq. (33) shows that dimple 1 has the same asymptotic scalings as the dimple-ring zone
in the spherical case found by Qin et al. [15]. Note that equation (34) (sometimes referred to as “the
current equation”) arises in a variety of other draining and coating flows (see, for example, Lamstaes
and Eggers [31] and van Limbeek et al. [32]).

Substituting the solution for H given by Eq. (33) into the flux (5) shows that

Qgrav = −1

3
H3 cos θ = O(T −9/5) � 1, (35)

Qcap = 1

3γ
H3(H + Hθθ )θ = O(T −3/2) � 1, (36)

confirming the validity of neglecting gravity in dimple 1.
Figure 10 shows a log–log plot of H , Qgrav, Qcap, and Q evaluated at the minimum of dimple

1 obtained from numerical solutions of Eq. (4) for γ = γπ given by Eq. (8) as function of T , and
compares them with the corresponding late-time asymptotic scalings T −3/5, T −9/5, T −3/2, and T −3/2

obtained from Eqs. (33), (35), and (36). In particular, Fig. 10 and Table II confirm that the interface
has the predicted asymptotic behavior at sufficiently late times.
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FIG. 10. Log–log plot of H (diamonds), Qgrav (triangles), Qcap (circles), and Q (squares) evaluated at the
minimum of dimple 1 for γ = γπ given by Eq. (8) as functions of T , and the corresponding late-time asymptotic
scalings T −3/5, T −9/5, T −3/2, and T −3/2. Note that the circles and the squares almost lie on top of each other.

The shape of the interface of dimple 1 is determined by solving Eq. (34) for ψ1 subject to
appropriate far-field and boundary conditions. The first condition arises from matching with the
pendant-drop region, i.e.,

ψ1ξ1ξ1 |ξ1→+∞ = Hθθ |θ→θ+
I

= L0 := 2π [sin(2θI ) − (3π − 2θI )]

4[1 + cos(2θI )] − (3π − 2θI )[3π − 2θI + sin(2θI )]
, (37)

where H is given by Eq. (27). The second condition arises from matching with ridge 1, i.e.,

ψ1ξ1ξ1 |ξ1→−∞ = 0. (38)

Note that Eqs. (37) and (38) mean that the leading-order film thickness in ridge 1 grows quadratically
in the limit ξ1 → +∞ but only linearly in the limit ξ1 → −∞. The third condition fixes the location
of the minimum of ψ1 at ξ1 = 0, i.e.,

ψ1ξ1 |ξ1=0 = 0. (39)

The constants K and L0 can be scaled out of the problem (34) and (37)–(39) by setting

ψ1 = K2/5L−3/5
0 ψ̃, ξ1 = K1/5L−4/5

0 ξ̃ , (40)

yielding the rescaled (parameter-free) problem

ψ̃3ψ̃ξ̃ ξ̃ ξ̃ = 1, (41)

ψ̃ξ̃ ξ̃ |ξ̃→+∞ = 1, (42)

TABLE II. The late-time asymptotic scalings for H , Qgrav, Qcap,
and Q in dimple 1, and the slopes of the lines of best fit to the
numerical results for T � 109/4 shown in Fig. 10.

Asymptotic scaling Numerical result

H −0.6 −0.5974
Qgrav −1.8 −1.7773
Qcap −1.5 −1.4877
Q −1.5 −1.4953
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FIG. 11. (a) Solution of the rescaled problem (41)–(44) expressed in rescaled variables ξ̃ and ψ̃ . (b) Snap-
shots of the film thickness for γ = γπ given by Eq. (8) at times T = 102, 103, 104, 105, and 106 expressed in
scaled variables ξ1 and ψ1. The arrow indicates the direction of increasing time. The dashed line shows the
leading-order asymptotic solution in dimple 1 (33).

ψ̃ξ̃ ξ̃ |ξ̃→−∞ = 0, (43)

ψ̃ξ̃ |ξ̃=0 = 0. (44)

Figure 11(a) shows the numerical solution of the rescaled problem (41)–(44) expressed in
rescaled variables ξ̃ and ψ̃ , and Fig. 11(b) shows snapshots of the film thickness for γ = γπ given
by Eq. (8) at various times together with the leading-order asymptotic solution in dimple 1 (33)
expressed in scaled variables ξ1 and ψ1, confirming that the interface does indeed approach the
asymptotic solution at late times. In particular, the limiting value of the slope of the interface in the
rescaled problem as ξ̃ → −∞ is found to be

ψ̃ |ξ̃→−∞ = −m̃, (45)

where

m̃ = 0.9626. (46)

This result will be used in Sec. VI B when performing the asymptotic matching between dimple 1
and ridge 1, and again in Sec. VI C when performing the asymptotic matching between dimple n
and ridge n.

B. Ridge 1

The results of the present numerical calculations indicate that, as Fig. 4 also illustrates, ridge 1 is
narrow (but wider than dimple 1) and thin (but thicker than the draining region). Motivated by these
numerical results, we seek a leading-order asymptotic solution for H in the self-similar form

H = φ1(ζ1)

T δ1
, θ − θI = ζ1

T λ1
, (47)

where the exponents 0 < δ1 < 1/2 and 0 < λ1 < β1 are positive constants which we shall deter-
mine.

Equating the flux out of the draining region given by Eq. (19) with the flux in ridge 1 obtained
from Eq. (5) with Eq. (47) yields

T −3/2K = −1

3
φ3

1T −3δ1 cos θI + 1

3γ
φ3

1[T −4δ1+λ1φ1ζ1 + T −4δ1+3λ1φ1ζ1ζ1ζ1 ], (48)

where the constant K is again given by Eq. (30).
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FIG. 12. Log–log plot of H (diamonds), Qgrav (triangles), Qcap (circles), and Q (squares) evaluated at the
maximum of ridge 1 for γ = γπ given by Eq. (8) as functions of T , and the corresponding late-time asymptotic
scalings T −9/20, T −27/20, T −27/20, and T −3/2. Note that the triangles, circles, and squares almost lie on top of
each other.

Analogously to the corresponding analysis of dimple 1 described in Sec. VI A, considering the
possible leading-order balances in Eq. (48) and imposing asymptotic matching with dimple 1 yields
two equations relating δ1 and λ1, namely

δ1 − 3λ1 = 0 and − δ1 + λ1 = − 3

10
, (49)

and so δ1 and λ1 are given by

δ1 = 9

20
, λ1 = 3

20
, (50)

and hence the solution for H given by Eq. (47) becomes

H = φ1(ζ1)

T 9/20
, θ − θI = ζ1

T 3/20
, (51)

where the function φ1 = φ1(ζ1) satisfies

φ1ζ1ζ1ζ1 = γ cos θI. (52)

In particular, Eq. (51) shows that ridge 1 has the same asymptotic scalings as the ridge-ring zone in
the spherical case found by Qin et al. [15].

Substituting the solution for H given by Eq. (51) into the flux (5) shows that

Qgrav = −1

3
H3 cos θ = O(T −27/20) � 1, (53)

Qcap = 1

3γ
H3(H + Hθθ )θ = O(T −27/20) � 1, (54)

confirming that gravity and capillarity are comparable in ridge 1.
Figure 12 shows a log–log plot of H , Qgrav, Qcap, and Q evaluated at the maximum of ridge 1

obtained from numerical solutions of Eq. (4) for γ = γπ given by Eq. (8) as a function of T , and
compares them with the corresponding late-time asymptotic scalings T −9/20, T −27/20, T −27/20, and
T −3/2 obtained from Eqs. (51), (53), and (54). In particular, Fig. 12 and Table III confirm that the
interface has the predicted asymptotic behavior at sufficiently late times.
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TABLE III. Late-time asymptotic scalings for H , Qgrav, Qcap,
and Q in ridge 1, and the slopes of the lines of best fit to the
numerical results for T � 109/4 shown in Fig. 12.

Asymptotic scaling Numerical result

H −0.45 −0.4736
Qgrav −1.35 −1.4179
Qcap −1.35 −1.3658
Q −1.50 −1.4828

Since the O(T −3/20) � 1 width of ridge 1 is asymptotically larger than both the O(T −3/10) � 1
width of dimple 1 and the width of dimple 2 (which we will shall determine in Sec. VI C), the shape
of the interface of ridge 1 is determined by solving Eq. (52) for φ1 subject to appropriate boundary
conditions on a finite (rather than an infinite) domain. Specifically, we solve Eq. (52) in the finite
domain ζ1,0 � ζ1 � ζ1,1, where the values of ζ1,0 and ζ1,1 are determined as part of the solution,
subject to boundary conditions arising from asymptotic matching with dimple 1 at ζ1 = ζ1,1, i.e.,

φ1|ζ1=ζ1,1 = 0 and φ1ζ1
|ζ1=ζ1,1 = −m1, (55)

where m1 is defined by

m1 = K1/5L1/5
0 m̃, (56)

and the numerical value of m̃ is given by Eq. (46), and asymptotic matching with dimple 2 at
ζ1 = ζ1,0, i.e.,

φ1|ζ1=ζ1,0 = 0 and φ1ζ1
|ζ1=ζ1,0 = 0. (57)

The final boundary condition fixes the location of the minimum of φ1 at ζ1 = 0, i.e.,

φ1ζ1 |ζ1=0 = 0. (58)

Solving Eq. (52) subject to Eqs. (55)–(58) yields the solution for the interface of ridge 1, namely

φ1 = 8
√

6
(
K1/5L1/5

0 m̃
)3/2 − 9γ | cos θI|ζ 2

1

[√
6
(
K1/5L1/5

0 m̃
)1/2 + (γ | cos θI|)1/2ζ1

]
54(γ | cos θI|)1/2

, (59)

where ζ1,0 and ζ1,1 are given by

ζ1,0 = −
(

8K1/5L1/5
0 m̃

3γ | cos θI|

)1/2

and ζ1,1 =
(

2K1/5L1/5
0 m̃

3γ | cos θI|

)1/2

, (60)

respectively, γ and θI are related by Eq. (25), and L0 is given by Eq. (37). For example, the solution
in ridge 1 for γ = γπ given by Eq. (8) is

φ1 = 0.5776 − 2.6949ζ 2
1 − 2.2405ζ 3

1 . (61)

Figure 13 shows snapshots of the film thickness for γ = γπ given by Eq. (8) at various times
together with the leading-order asymptotic solution in ridge 1 (61) expressed in scaled variables ζ1

and φ1, confirming that the interface does indeed approach the asymptotic solution at late times.
Figure 13 also reveals that the convergence to the leading-order asymptotic solution in ridge 1 is
significantly slower than the corresponding convergence in dimple 1 shown in Fig. 11(b): we will
return to this point in Sec. VI C.
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FIG. 13. Snapshots of the film thickness for γ = γπ given by Eq. (8) at times T = 105 + 10n/2 for n =
10, 11, . . . , 21 expressed in scaled variables ζ1 and φ1. The arrow indicates the direction of increasing time.
The dashed line shows the leading-order asymptotic solution in ridge 1 (61).

C. Dimple n and ridge n

As discussed previously, the inner region has a capillary-ripple structure consisting of an infinite
sequence of dimples and ridges, and Fig. 14 shows sketches of the leading-order asymptotic
solutions in dimple n and ridge n for n = 2, 3, 4, . . .. Fortunately, the asymptotic solutions for H in
all of the dimples and ridges can be obtained by generalizing the analysis for dimple 1 and ridge
1 described in Secs. VI A and VI B, respectively. Specifically, we seek leading-order asymptotic
solutions for H in dimple n in the form

H = ψn(ξn)

T αn
, θ − θI = ξn

T βn
, (62)

and for H in ridge n in the form

H = φn(ζn)

T δn
, θ − θI = ζn

T λn
, (63)

where the exponents αn > 1/2, βn > 0, 0 < δn < 1/2, and 0 < λn < min(βn, βn+1) are positive
constants.

FIG. 14. Sketches of the leading-order asymptotic solutions in (a) dimple n and (b) ridge n for n =
2, 3, 4, . . ..
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Equating the flux from the draining region with the flux in dimple n yields

− 3
2 = −4αn + 3βn, (64)

while matching dimple n with ridge n − 1 requires that

−αn + 2βn = −δn−1 + 2λn−1. (65)

On the other hand, equating the flux from the draining region with the flux in ridge n yields

δn − 3λn = 0, (66)

while matching ridge n with dimple n requires that

−δn + λn = −αn + βn. (67)

Solving Eqs. (64)–(67) yields

αn = 1
2 (1 + 2×10−n), βn = 1

6 (1 + 8×10−n), (68)

δn = 1
2 (1 − 10−n), λn = 1

6 (1 − 10−n), (69)

so that the solution for H in dimple n (62) becomes

H = ψn(ξn)

T (1+2×10−n )/2
, θ − θI = ξn

T (1+8×10−n )/6
, (70)

and the solution for H in ridge n (63) becomes

H = φn(ζn)

T (1−10−n )/2
, θ − θI = ζn

T (1−10−n )/6
. (71)

Note that setting n = 1 in Eqs. (68)–(71) recovers the corresponding results for dimple 1 and ridge 1
obtained in Secs. VI A and VI B, respectively. Furthermore, note that αn → 1/2+ and δn → 1/2− in
the limit n → ∞, confirming that an infinite sequence of dimples and ridges is required to achieve
matching with the draining region. Moreover, as n increases these exponents approach to their
common asymptotic value rather quickly, explaining why only the first three dimples and ridges are
discernible in Fig. 4(b). This is also the reason why the O(T −51/100)/O(T −9/20) = O(T −3/50) � 1
convergence to the leading-order asymptotic solution in ridge 1 shown in Fig. 13 is significantly
slower than the corresponding O(T −9/20)/O(T −3/5) = O(T −3/20) � 1 convergence in dimple 1
shown in Fig. 11(b). In addition, note that the values of the exponents given in Eqs. (68) and (69)
mean that all of the dimples are narrower than all of the ridges (specifically, the width of dimple n
is O(T −βn ) � 1 and the width of ridge n is O(T −λn ) � 1, where βn > 1/6 and λn < 1/6).

Generalizing the approach described in Secs. VI A and VI B shows that in dimple n the function
ψn = ψn(ξn) satisfies

ψ3
n ψnξnξnξn = K, (72)

where K is again given by Eq. (30), subject to

ψnξnξn |ξn→+∞ = Ln−1 := φn−1ζn−1ζn−1 |ζn−1→ζ+
n−1,0

, (73)

ψnξnξn |ξn→−∞ = 0, (74)

ψnξn |ξn=0 = 0, (75)

while in ridge n the function φn = φn(ζn) satisfies

φnζnζnζn = γ cos θI (76)
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on the finite domain ζn ∈ [ζn,0, ζn,1] subject to

φn|ζn=ζn,1 = 0 and φnζn
|ζn=ζn,1 = −mn, (77)

φn|ζn=ζn,0 = 0 and φnζn
|ζn=ζn,0 = 0, (78)

φnζn |ζn=0 = 0. (79)

The constants K and Ln−1 can be scaled out of the problem (72)–(75) by setting

ψn = K2/5L−3/5
n−1 ψ̃, ξn = K1/5L−4/5

n−1 ξ̃ , (80)

to exactly recover the rescaled problem (41)–(44) obtained in Sec. VI B, and so mn is given by

mn = K1/5L1/5
n−1m̃, (81)

where the numerical value of m̃ is again given by Eq. (46).
Solving Eq. (76) subject to Eqs. (77)–(79) yields the solution for the interface of ridge n, namely

φn = 8
√

6
(
K1/5L1/5

n−1m̃
)3/2 − 9γ | cos θI|ζ 2

n

[√
6
(
K1/5L1/5

n−1m̃
)1/2 + (γ | cos θI|)1/2ζn

]
54(γ | cos θI|)1/2

, (82)

where ζn,0 and ζn,1 are given by

ζn,0 = −
(

8K1/5L1/5
n−1m̃

3γ | cos θI|

)1/2

, ζn,1 =
(

2K1/5L1/5
n−1m̃

3γ | cos θI|

)1/2

, (83)

respectively, γ and θI are again related by Eq. (25), and Ln−1 is given by Eq. (73).
Using Eq. (74) we can obtain Ln terms of Ln−1, and hence inductively in terms of L0. Differenti-

ating Eq. (82) twice with respect to ζn and evaluating at ζn = ζn,0 given by Eq. (83) yields

Ln =
√

2

3

(
K1/5L1/5

n−1m̃γ | cos θI|
)1/2

, (84)

which can be written in terms of L0 given by Eq. (37) as

Ln =
(

2

3
m̃γ | cos θI|

)x/2

KyL10−n

0 , (85)

where the exponents x and y are given by

x =
n∑

i=1

1

10i−1
= 10

9
(1 − 10−n), y =

n∑
i=1

1

10i
= 1

9
(1 − 10−n), (86)

respectively.
The problem for ψn (which has to be solved numerically) and the solution for φn [given by

Eqs. (82) and (83)] are now given in terms of known constants, namely K given by Eq. (30), L0

given by Eq. (37), and m̃ given by Eq. (46), and so the leading-order shape of the interface can now
be obtained throughout the inner region.

VII. CONCLUSIONS

In the present work we used a combination of analytical and numerical techniques to give a
complete description of the late-time draining of a two-dimensional thin film on the outer surface of
a stationary horizontal circular cylinder. In this limit three regions of qualitatively different behavior
emerge, namely a draining region on the upper part of the cylinder and a pendant-drop region on the
lower part of the cylinder joined by a narrow inner region, as sketched in Fig. 1.

In the draining region, gravity dominates capillarity, the flux decreases as T −3/2 � 1, and the
film thins as T −1/2 � 1. The thickness of the film in the draining region is given by Eq. (14), which
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shows that at any instant in time the leading-order film thickness in this region increases from a
minimum value given by Eq. (15) at the top of the cylinder to a maximum value at θ = θI.

In the pendant-drop region (which, to leading order, contains all of the liquid initially on the
cylinder), there is a quasistatic balance between gravity and capillarity. The thickness of the film in
the pendant-drop region is given by Eq. (23), which shows that the leading-order film thickness in
this region increases from zero at θI = π to a maximum value given by Eq. (26) at the bottom of the
cylinder.

The solutions in the draining and pendant-drop regions match via the inner region located at
θ = θI, where θI is given implicitly by Eq. (25). In particular, Eq. (25) shows that weakening the
effect of gravity results in a narrower draining region and a wider pendant-drop region. Within the
inner region the film has a capillary-ripple structure consisting of an infinite sequence of alternating
dimples and ridges, as sketched in Fig. 14. Gravity is negligible in the dimples, which are all thinner
than the film in the draining region (specifically, the thickness of dimple n is O(T −αn ) � 1, where
αn > 1/2). On the other hand, gravity and capillarity are comparable in the ridges, which are all
thicker than the film in the draining region (specifically, the thickness of ridge n is O(T −δn ) � 1,
where δn < 1/2). The dimples and the ridges are all asymmetric: specifically, the leading-order
thickness of the dimples grows quadratically in the downstream direction but linearly in the
upstream direction, whereas the leading-order thickness of the ridges goes to zero linearly in the
downstream direction but quadratically in the upstream direction. Matching between the inner and
the draining region is achieved in the limit n → ∞, in which the exponents αn and δn both approach
their common asymptotic value of 1/2. The asymptotic solutions in the draining and pendant-drop
regions, as well as those in dimple 1 and ridge 1 in the inner region, were verified by comparison
with numerical solutions of the governing thin-film equation. As Fig. 6 illustrates, as T increases the
regions that have the largest deviation from the O(T −1/2) thickness of the draining region (namely,
dimple 1 followed by ridge 1) are the first to become discernible, with the other dimples and ridges
subsequently becoming apparent in turn. However, since the exponents αn and δn both approach
1/2 rather quickly as n increases [specifically, αn and βn both only differ from 1/2 by O(10−n)],
the other dimples and ridges only become apparent for rather large values of T , i.e., only the first
few dimples and ridges are likely to be discernible for large but finite times. This is presumably the
reason why the corresponding infinite sequence of dimples and ridges was overlooked by Qin et al.
[15] in their study of the corresponding problem on a spherical substrate.

While several aspects of the structure of the late-time solution described in the present work have
been described by previous authors, such as the formation of a pendant drop on the lower part of
the cylinder discussed by Reisfeld and Bankoff [11] and Evans et al. [12] and the thinning of the
film on the upper part of the cylinder analyzed by Takagi and Huppert [13], the present work is the
first to provide a complete description of it. In particular, the present work is the first to describe the
surprisingly complicated capillary-ripple structure of the inner region which joins the draining and
pendant-drop regions.

Note that the late times for which the present analysis is relevant may, in practice, correspond
to only minutes or hours. For example, using the representative dimensional parameter values
R̂ = 0.1 m, ρ̂ = 103 kg m3, and μ̂ = 10−3 kg m−1 s−1, together with ε = 0.1, yields a characteristic
timescale of R̂/(ε2Ûref ) = μ̂/(ε2ρ̂ĝR̂) = O(10−4) s. Hence, T = O(106), for which the present
late-time asymptotic solution already provides a good description of the flow, corresponds to about
2 minutes. Of course, as the film thins disjoining pressure effects, which are not included in the
present analysis, will eventually become important. Specifically, for the representative parame-
ter values used previously together with σ̂ = 10−1 N m−1 and Hamaker constant Â = 10−20 J,
disjoining pressure due to van der Waals forces (see, for example, Reisfeld and Bankoff [11])
becomes comparable to the pressure due to capillarity in dimple 1 [where the film is thinnest
and H = O(T −3/5)] when T = O(108), corresponding to about 3 hours. Hence, while the longest
final times of up to T = O(1011) required to validate the present asymptotic solution correspond to
around four months and are therefore almost certainly unphysical, there is likely to be a considerable
period of time during which the present asymptotic solution provides a good description of the flow.
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FIG. 15. The evolution of the film thickness at the top of the cylinder for γ = γπ given by Eq. (8) until
time T = 102. The solid line shows the numerical solution of Eq. (4), the dashed line shows the early-time
asymptotic solution (A1), and the dotted line shows the late-time asymptotic solution (15).

Finally, we note that all of the results in the present work were based on the assumption that the
film is thin and is therefore governed by the thin-film equation (4) with Q given by Eq. (5), and so
it would be of interest to see to what extent these results still hold for nonthin films governed by the
full Navier–Stokes equation.
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APPENDIX: EARLY-TIME DRAINING

In this Appendix, we briefly describe the draining of the initially uniform film at early times.
As in the corresponding problem of flow on a spherical substrate studied by Qin et al. [15], the
asymptotic solution for the film thickness H = H (θ, T ) at early times is found by expanding it in
powers of T � 1 and solving order by order to obtain

H = 1 − T

3
sin θ − T 2

6
cos(2θ ) + O(T 3). (A1)

The absence of γ from Eq. (A1) shows that, as expected given its small deviation from uniformity, at
early times the evolution of the film is independent of capillarity up to at least O(T 2) � 1. Figure 15
shows the evolution of the film thickness at the top of the cylinder for γ = γπ given by Eq. (8) until
time T = 102, and confirms that the early-time asymptotic solution (A1) (shown with the dashed
line) is valid at the top of the cylinder at early times. For completeness, Fig. 15 also includes the
corresponding late-time asymptotic solution (15) (shown with the dotted line) and confirms that it
is valid at late times.
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