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Free evolution vortex in a magnetic field
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The prolonged temporal evolution of a magnetohydrodynamic (MHD) vortex influenced
by a steady magnetic field along its axis is investigated both numerically and experi-
mentally within a cubic domain. We directly validate the theory proposed by Davidson
[J. Fluid Mech. 299, 153 (1995)] through numerical analysis: the angular momentum
parallel with a magnetic field of a single vortex is conserved, whereas the perpendicular
angular momentum decayed exponentially during a free-decay evolution. Moreover, as
observed by Sreenivasan and Alboussière [J. Fluid Mech. 464, 287 (2002)], the initial
linear phase, characterized by the dominant influence of the Lorentz force over the inertial
force (Nt � 1, where Nt represents the true interaction parameter), and the subsequent
nonlinear phase, marked by an equilibrium between the Lorentz force and the inertial
force (Nt ∼ 1), are successfully corroborated through numerical and experimental means,
particularly at a substantial initial interaction parameter (N0 > 1, where N0 denotes the
initial interaction parameter). The transition time from linear phase to nonlinear phase
varies with the square of N0. The relative magnitude of the Lorentz force and the inertial
force plays a pivotal role during the free-decay evolution, and we propose the governing
equations for such a flow. Nevertheless, numerical simulations and experiments indicate
that these two phases and the ensuing transition, as depicted by the velocity decay curve,
are primarily limited to the vicinity of the vortex’s periphery, exhibiting a certain degree
of locality. By considering the scaling of the global kinetic energy [∼(t/τ )−0.8, where t
denotes the physical evolution time normalized by the Joule time τ ], the Joule dissipation
[∼(t/τ )−2], and the parallel length [∼(t/τ )3/5], it becomes evident that the global behavior
of a vortex bears greater resemblance to the nonlinear phase rather than undergoing a direct
transformation from one phase to another, even when subjected to a substantial initial
interaction parameter.

DOI: 10.1103/PhysRevFluids.8.083703

I. INTRODUCTION

Magnetohydrodynamic (MHD) flows exhibit two distinct characteristics that set them apart from
conventional flows. First, the presence of a magnetic field causes the flow structures to elongate and
align themselves uniformly along the field. Second, the movement of liquid across the magnetic
field induces electric currents, resulting in Joule dissipation. Extensive experimental and numerical
investigations have observed these properties under the assumption of a low magnetic Reynolds
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number, denoted as Rm (where Rm = μmσU0L, with μm representing the magnetic permeability
of vacuum, σ denoting the electrical conductivity, and U0 and L0 being the typical characteristic
velocity and length scale, respectively). In the context of Rm � 1, the induced magnetic field b is
significantly smaller than the applied field B (b ∼ RmB � B), making it a suitable condition for
laboratory-scale configurations.

In MHD flows, the presence of Joule dissipation induced by velocity gradients along the magnetic
field is known to suppress turbulence intensities in that direction, leading to what is known as
quasi-two-dimensional (Q2D) turbulence. Similar to 2D approximation of ocean flow [1], rotation
[2], and stratification [3] flow, this phenomenon is characterized by velocity correlation coefficients
approaching unity in the direction of the field and an energy spectrum with a slope of −3 in the
presence of a strong magnetic field, as observed by Alemany et al. [4] and Zikanov et al. [5],
coinciding with the behavior of two-dimensional turbulence [6,7]. Detailed studies on turbulence
under a magnetic field and its dimensionality have been conducted using the Flowcube platform
[8–10]. These studies experimentally demonstrated the existence of a cutoff length scale that
distinguishes between large Q2D structures and small three-dimensional structures, as well as the
presence of inverse and direct energy cascades. However, Eckert et al. [11] investigated a sodium
channel flow with a transverse magnetic field, and their experimental findings showed a spectral
slope that varied from −5/3 for low interaction parameters (N � 1) to −4 for high interaction
parameters (N ∼ 120). This continual change in the spectral exponent was partially explained
using a helical model proposed by Branover et al. [12]. The contradiction between the theoretical
explanation for Q2D MHD turbulence and the experimental results indicates the existence of a
complex mechanism within MHD turbulent flows.

Given that a turbulent flow field is commonly perceived as a conglomeration of vorticity
[13], numerous scholars endeavor to expound upon MHD turbulence through the evolution of a
singular flow structure, such as a solitary vortex. This approach offers valuable insight into the
characteristics of MHD turbulence. The seminal and nuanced theoretical works by Sommeria and
Moreau [14] and Davidson [15] laid the foundation for this field of study. Assuming a substantial
interaction parameter (N � 1) and a high Reynolds Number (Re), indicating the predominance of
the Lorentz force over inertial and viscous forces, Sommeria and Moreau [14] revealed that vorticity
is transported along the magnetic field via diffusion, while the length scales of the flow structures
adhere to a certain relationship

l‖ ∼ l⊥(t/τ )1/2, (1)

where l‖ and l⊥ represent the parallel and perpendicular length scales to the magnetic field,
respectively. The physical evolution time is denoted as t , while τ stands for the Joule time, defined
as τ = ρ/σB2, which represents the time scale for Joule damping of fluid motion [4]. Here, ρ

denotes density, σ refers to electrical conductivity, and B represents the magnetic field strength. It
has been demonstrated by Davidson [15] that the Lorentz force is incapable of creating or destroying
any angular momentum parallel to the magnetic field in volumes that are infinite or bounded by
insulating walls. This discovery carries significant implications, particularly in scenarios where the
viscosity force can be neglected (large Re, a state easily achieved in liquid metal flows due to
low viscosity coefficients). In such cases, the angular momentum remains conserved during the
unrestricted evolution of flow structures. When the magnetic field attains sufficient strength, the
flow tends to exhibit quasi-two-dimensional (Q2D) behavior, which arises from the preservation of
angular momentum parallel to the field, while the perpendicular components decay exponentially, as
proposed by Davidson [16]. However, these phenomena can only be observed and studied through
decaying turbulence rather than forced turbulence, as mentioned previously.

Burattini et al. [17] conducted a numerical investigation of the decay of initial homogeneous
turbulence under an imposed magnetic field by large-eddy simulations. The kinetic energy decay
law, ∼(t/τ )−1/2, in the initial linear phase, which was earlier considered by Moffatt [18], and the
complex nonlinear decay were discussed in detail. However, the angular momentum is difficult to
calculate in homogeneous MHD turbulence. As much as the authors know, the conclusion was only
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verified through the velocity decay law by an experimental study [19], which focused on the free
evolution of a single vortex flow under a vortex-axis magnetic field. According to their findings, after
an initial linear phase where the dominance of the Lorentz force over other forces allowed neglect
of nonlinear inertial terms, the induced current density resulting from the velocity field diminished
until the Lorentz force equaled the nonlinear inertial force in magnitude. The fully decaying stage
was described by Sreenivasan and Alboussière [20] through order-of-magnitude analysis. During
the initial linear phase, following the concept proposed by Moffatt [18], the decay of kinetic energy
followed a (t/τ )−1/2 behavior. By combining this with the evolution equation for length scale Eq. (1)
and the conservation equation for angular momentum, the formulas can be expressed as

E ∼ (t/τ )−1/2, l‖ ∼ l⊥(t/τ )1/2, E1/2l2
⊥l1/2

‖ = constant, (2)

where E is the global kinetic energy. For the nonlinear phase, they considered the balance between
the Lorentz force and the inertial force and assumed that the true interaction parameter Nt , indicating
the actual ratio of the Lorentz to the inertial forces, remained a constant of order unity

Nt ∼ σB2l⊥
ρu

(
l⊥
l‖

)2

= N

(
l⊥
l‖

)2

∼ 1, (3)

where u is the typical velocity of the motion and N is the interaction parameter representing the
ratio of the turn-over time of an eddy (l⊥/u) to the Joule time (τ ). Furthermore, as for a MHD flow,
the decay of the global kinetic energy can be expressed as

dE

dt
= −ε − D, (4)

where ε and D are the viscous and Joule dissipation, respectively. Sreenivasan and Alboussière [19]
argued that the Joule dissipation was dominant over the viscous dissipation so that the latter could
be neglected during the whole evolution time and an order-of-magnitude study [20] of energy decay
showed that

ε

D
∼ lnRe(k0)

Re(k0)
, (5)

where k0 is the large (energy-containing) scales. Considering the dominant Joule dissipation over
the viscosity dissipation and the parallel angular momentum conservation equation, the formulas
for the nonlinear phase can be written as

dE

dt
∼ −E

τ

(
l⊥
l‖

)2

,
σB2l⊥

ρu

(
l⊥
l‖

)2

∼ 1, E1/2l2
⊥l1/2

‖ = constant. (6)

As a result, the evolution of the global kinetic energy E , the perpendicular length scale l⊥, the
parallel length scale l‖, along with nondimensional time t/τ could be deduced from Eqs. (2) and
(6), respectively, as

E/E0 ∼ (t/τ )−1/2, l⊥/l0 = constant, l‖/l0 ∼ (t/τ )1/2, linear phase,

E/E0 ∼ (t/τ )−1, l⊥/l0 ∼ (t/τ )1/10, l‖/l0 ∼ (t/τ )3/5, nonlinear phase, (7)

and combined with Eq. (3), the transition between the two phases is located at t = N2
0 τ , where the

subscript “0” represents the initial state. The experimental validation of these formulas was carried
out by Sreenivasan and Alboussière [19] through the measurement of local velocity decay using
a five-point-electrode system. This system consisted of four negative electrodes positioned at the
corners of a square, with a positive electrode placed at the center. The initial vortex was generated
by applying a current pulse through the positive electrode. By considering Eq. (7) and estimating
the kinetic energy as E = ∫

V u2dV ∼ u2l2
⊥l‖, the average of the squared velocity emerges:

u2 ∼ (t/τ )−1, linear phase,

u2 ∼ (t/τ )−9/5, nonlinear phase. (8)

083703-3



WANG, CHEN, CAO, KE, YANG, AND NI

FIG. 1. (a) Geometry of the cubic box with y direction magnetic field. (b) Vorticity field of ωy at t = 6τ of
N0 = 8.

In the experiment conducted by Sreenivasan and Alboussière [19], the characteristic velocity
was measured using wall potential probes positioned at the outer edge of the vortex. While the two
scaling laws [Eq. (8)] have been well established, along with Eq. (7) and the verification of parallel
angular momentum conservation, there remain several unanswered questions. First, the energy
decay equation during the nonlinear phase (Nt ∼ 1) suggests that Joule dissipation is dominant.
Therefore, it is reasonable to expect that this property should hold even better during the linear
phase (Nt > 1), which contradicts the linear decay law [Eq. (2)]. Second, due to limitations in
the experimental measurement method, the evolution of vortex length scale and the total kinetic
energy decay in the presence of a magnetic field are still unclear. Furthermore, considering the local
velocity measurements in the experiment, a deeper investigation is needed to understand the velocity
evolution within the inner region and the laws governing the conservation of parallel angular
momentum. These unresolved aspects have motivated the undertaking of numerical simulations
to study the detailed evolution of a single vortex. Additionally, a sophisticated experiment has been
conducted to further validate the findings of the numerical simulations.

II. PROBLEM STATEMENT AND FORMULATION

A. Governing equations and numerical simulation

The physical model, depicted in Fig. 1(a), consists of a cubic domain with dimensions x ×
y × z = 70 mm × 80 mm × 70 mm filled with mercury. A current pulse is injected from the
positive electrode, located at the center of the bottom wall with a diameter of d+ = 1 mm, and
exits the liquid through an annular negative electrode on the bottom. The center of the annular
negative electrode coincides with the origin, similar to the positive electrode, with an inner radius
of r0 = 5 mm and a width of d− = 1 mm. The properties of mercury are assumed constant (density
ρ = 1.3529 × 104 kg/m3, kinematic viscosity ν = 1.1257 × 10−7 m2/s, and electrical conductivity
σ = 1.055 × 106 S/m). An external homogeneous magnetic field B is applied along the y direction
[B = (0, B, 0)]. In the regime of low magnetic Reynolds number (Rm), the governing equations for
MHD flows can be expressed as [21]

∇ · u = 0, (9)

∂u
∂t

+ (u · ∇ )u = − 1

ρ
∇p + ν	u + 1

ρ
( j × B), (10)

j = σ (−∇φ + u × B), (11)

∇ · j = 0, (12)
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where j, φ, ν, p, and ρ denote the current density, the electric potential, the kinematic viscosity, the
pressure, and the density, respectively.

The injected current interacts with the magnetic field and gives rise to a swirl motion near the
bottom. The liquid accelerated by the Lorentz force during the pulse time could be approximatively
written as

∂u
∂t

= 1

ρ
( j × B). (13)

For simplicity, the local cylindrical coordinate (r, θ ) is used to describe the local swirl motion of
liquid metal, as shown in Fig. 1(b). Thus, after the current pulse, the characteristic swirl velocity
can be estimated by integrating the above equation:

uθ ∼ tpIB

πr2
0ρ

, (14)

where tp represents the duration of the current pulse in seconds, I denotes the injected current, and
r0 corresponds to the inner radius of the annular negative electrode. It is important to note that the
chosen value for the current pulse duration, tp, should be shorter than the Joule time. This ensures
that the generation of the vortex does not significantly impact its elongation, as the characteristic
time for elongation is determined by the Joule time during the subsequent free decay period.
Conversely, excessively small values of tp would result in a flattened vortex along the bottom wall,
preventing the initial vortex (or the vortex formed at the end of the current pulse) from exhibiting
three-dimensional characteristics. For instance, when considering a magnetic field strength of 0.6 T
acting on mercury, the Joule time is estimated to be approximately 35 ms. Hence, a current pulse
duration of tp = 10 ms would be suitable in this case. The Hartmann number Ha, the Reynolds
number Re, and the initial interaction parameter N0 are defined as

Ha = Bh
√

σ

ρν
, Re = uθ L

ν
, N0 = σB2L

ρuθ

, (15)

where h is the height of the cubic domain, L is the characteristic length of the vortex.
Following the experiment of [19], no-slip conditions for velocity are applied at all walls. As for

the electric potential, perfectly insulating conditions are applied on walls except for electrodes on
the bottom

u = 0, ∂yφ = 0. (16)

At the positive electrodes on the bottom,

u = 0, ∂yφ = I

S+σ
, t � tp,

u = 0, ∂yφ = 0, t > tp, (17)

TABLE I. Grid details.

Grid points in Minimum mesh size in Number of cells in Maximum deviation of
Meshes y direction, Ny y direction, 	ymin/h positive electrode uθ from G3

G1 300 7.5 × 10−5 148 1.1%
G2 400 3.25 × 10−5 256 0.05%
G3 450 1.6 × 10−5 256
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FIG. 2. Grid sensitivity study.

where S+ is the area of the positive electrodes. And at the annular negative electrodes on the bottom,

u = 0, φ = 0, t � tp,

u = 0, ∂yφ = 0, t > tp. (18)

The direct numerical simulations of the governing equation are performed on the finite volume
approach based on a consistent and conservative scheme [22]. The detail and the verification of
the approach can be referred in Chen et al. [23]. Regarding the grid resolution, three variations of
meshes are employed in the numerical investigation with B = 0.8 T and N0 = 5. As illustrated in
Table I and Fig. 2, the grid denoted as G2 is adequately refined and surpasses the required level of
resolution for our particular problems.

B. Experimental setup and procedure

Experiments are conducted within a cylindrical enclosure characterized by electrically insulating
boundaries and subject to a vertical magnetic field, as depicted in Fig. 3. The enclosure, possessing
an inner diameter of D = 70 mm and a height of h = 80 mm, is filled with gallium-indium-tin
eutectic (GaInSn). Similar to the numerical simulation, the liquid is propelled by a current pulse,
which is introduced through a positively charged central electrode (with a diameter of d+ = 1 mm)

FIG. 3. (a) Sketch of the experiment set up (D = 70 mm, h = 80 mm). (b) Details of the point positive
electrode (red), the annular negative electrode (blue), and the wall potential probes (yellow) on the bottom.
(c) The cylindrical cavity filled with GaInSn.
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FIG. 4. Different types of wall potential probes arrangement and the position information of the probes can
be referred to Table II. (a) Type A for measuring velocity decay at the outer edge of the vortex. (b) Type B for
measuring the global velocity decay.

and exits the liquid via a ring-shaped negative electrode (with an inner radius of r0 = 5 mm and a
width of d− = 1 mm) located at the bottom.

Velocity is locally measured using multiple wall potential probes positioned on the bottom,
a widely employed technique in MHD flows [19,24]. In Fig. 4, two different configurations of
potential probes are utilized to assess the velocity decay at the outer periphery of the vortex (Type
A) and the global evolution of the vortex (Type B). For Type A, twelve pairs of probes are uniformly
distributed azimuthally from r1 = 2.5 mm to r2 = 4.5 mm, with a spacing of 2 mm between each
pair. Here, r1 and r2 denote the radial positions for a single pair of probes. In the case of Type B,
four sets of potential probes with varying radial positions (r1 = 1.5, 2.0, 2.5, 3.0 mm, r2 = r1 + 1.5)
are employed to measure the velocity at different radii, and the average value among them signifies
the global velocity evolution. All potential signals are recorded at a sampling rate of 500 Hz. By
subtracting background noise and averaging the signals over eight repetitions, reliable results are
obtained. For detailed information regarding the measurement scheme and probe positions, please
refer to Table II.

III. RESULTS AND DISCUSSION

Table III lists the initial conditions and the dimensional groups of simulations.

TABLE II. Position information of the wall potential probes.

Probs position r1–r2/mm Number of measuring points

Type A 2.5–4.5 01–02, 03–04, 05–06, 07–08, 09–10, 11–12,
13–14, 15–16, 17–18, 19–20, 21–22, 23–24

Type B 1.5–3.0 01–02, 08–09, 15–16, 22–23
2.0–3.5 06–07, 13–14, 20–21, 27–28
2.5–4.0 04–05, 11–12, 18–19, 25–26
3.0–4.5 02–03, 09–10, 16–17, 23–24
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TABLE III. Simulated cases.

B(T) τ (s) tp(s) I(A) Re N0 Ha

0.8 0.0200 0.01 13.33 8915 5.0 1684
0.8 0.0200 0.01 9.50 6354 7.0 1684
0.8 0.0200 0.01 7.30 4882 9.0 1684
0.75 0.0228 0.01 7.75 4859 8.0 1579
0.65 0.0304 0.01 13.4 7281 4.0 1368
0.6 0.0356 0.01 8.20 4113 6.0 1263
0.6 0.0356 0.01 20.0 10032 2.5 1263

A. The evolution of angular momentum

Davidson [15] initially postulated that the angular momentum H = ∫
V x × udV of a vortex

decaying in the presence of an axial magnetic field undergoes evolution according to the following
equation:

H‖ = constant, H⊥ = H⊥(0)e−t/4τ (19)

in the direction parallel and perpendicular to the field, respectively, based on the assumption of
inviscid flow. Owing to the viscosity of the liquid metal and the no-slip Hartmann wall, there exists a
disparity between the theoretical prediction, Eq. (19), and the outcomes of our simulations. Figure 5
illustrates the simulated decay process of both the perpendicular and parallel angular momentum.
During the current pulse, the Lorentz force generated by the electric current impels the rotation of
the liquid metal around the positive electrode, while the fluid motion is propelled away from the
bottom wall under the influence of viscosity and the magnetic field. As the driving force predom-
inates during this period, the initial flow structure is established in a three-dimensional manner.
As depicted in Fig. 5(a), the perpendicular angular momentum, denoted as H⊥, when normalized
by the value at the termination of the current pulse, exhibits satisfactory agreement across various
initial interaction parameters N0. Furthermore, a commendable concurrence is observed between the
numerical findings presented here and the fitting curve

H⊥
H⊥(0)

= 1.2e−t/4τ , (20)

indicating an exponential decay of H⊥ and corresponding well with the theory of Davidson [15].
On the other hand, as shown in Fig. 5(b), the parallel angular momentum H‖ decays nearly linearly

FIG. 5. Time evolution of parallel and perpendicular angular momentum.
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FIG. 6. Time evolution of mean square velocity (a ∼ g), linear-nonlinear transition time (h) for numerical
simulations.
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(a) (b)

FIG. 7. Experiment measure for mean square velocity as a function of time. (a) N0 = 3.1, B = 0.4 T.
(b) N0 = 5.9, B = 0.5 T.

during the whole evolution (∼102τ ) with a decrease of 15%. Compared with the decay time of
perpendicular angular momentum (∼10τ ), it can be concluded that the parallel momentum is
conserved during vortex decay. Besides, from the result of slip Hartmann wall configuration, the
parallel angular momentum decreases less than 1%. So in our simulation cases, the Hartmann
friction near the bottom wall is mainly responsible for the slight decrease of H‖. In a more general
sense, regarding the evolution of vortices in the bulk region under the influence of a magnetic field,
the conservation of parallel angular momentum is expected.

B. Linear and nonlinear phase

One of the noteworthy conclusions drawn by Sreenivasan and Alboussière [19] is the indirect
demonstration of Eq. (7), supported by the observation of two distinct phases, namely the linear
and nonlinear phases, in the velocity decay curve. However, due to limitations in the measure-
ment method, the velocity information is only collected at the outer edge of the central vortex.
Additionally, the center vortex is unavoidably influenced by the vorticity accumulated around the
negative electrodes, leading to physical fluctuations as reported in Sreenivasan and Alboussière [19].
Nonetheless, such issues are effectively addressed in our annular negative electrode configuration.
Similar to the experiment, local velocity is measured by assessing the potential difference on the
bottom wall at the outer edge of the vortex (r/r0 ∈ [0.8, 0.9]) in each case. To ensure reliable
results, the square of velocity u2 is averaged over forty samples in the θ direction. Normalized by
the average value at t = τ (denoted as u2

1), Fig. 6 depicts the decay processes under various initial
conditions. The linear phase, characterized by a slope of approximately −1, and the nonlinear phase,
characterized by a slope of approximately −1.8, are confirmed and align with our experimental
findings using the Type A wall potential probes arrangement (Fig. 7). Furthermore, the transition
time ttr between these two phases exhibits a good fit with the curve ttr/τ ∼ N2

0 , as demonstrated in
Fig. 6(h).

C. Single-phase scaling laws for the global evolution

1. Elongating effect of Lorentz force

The conservation of H‖, coupled with ongoing Joule dissipation, leads to the elongation of eddies
along the magnetic field. The ratio between the parallel length scale l‖ and the spatial extent in the
direction of the magnetic field h plays a crucial role in determining the dimensionality of turbulence
[9,10]. In our configuration, the vortex is generated on the bottom wall during the current pulse and
subsequently spreads upward under the influence of viscosity and the magnetic field. Figure 8(a)
illustrates the evolution of uθ at different y positions, specifically at r/r0 = 0.75. It can be observed
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(a) (b)

FIG. 8. Velocity evolution at different y/h (a) and evolution of the parallel length scale (b) for N0 = 7 of
numerical simulations.

that the liquid metal undergoes acceleration by the underlying fluid, reaching a maximum velocity
before gradually decelerating. The relationship between y and the time location of these maxima,
indicated by black data points in Fig. 8(a), reflects the time evolution of the parallel length scales
for N0 = 7. Figure 8(b) depicts this relationship between the parallel length l‖ and time, obtained
from the average uθ at r/r0 = 0.75. With the exception of the initial few Joule times, l‖ exhibits a
slope of 3/5 throughout the entire simulation, particularly at larger initial interaction parameter N0,
which aligns well with the nonlinear phase decay described in Eq. (7) [19]. It is reasonable for a
deviation to occur when the initial interaction parameter is small, such as N0 = 4, as the forcing is
strong initially and the Lorentz force does not dominate in such a scenario. Furthermore, it appears
that the linear phase, characterized by a growth rate of l‖/l0 ∼ (t/τ )1/2, is not observed during
the entire decay process, nor is there a clear transition between the linear and nonlinear decay
phases. Additionally, it is worth noting that similar results can be obtained from velocity data at
r/r0 = 0.6 and r/r0 = 0.9, indicating that the elongation of a vortex tends to be a nonlinear process.
Moreover, Fig. 8 demonstrates that the parallel length scale l‖/h hardly reaches unity even after a
long evolution period (∼102τ ). In other words, the fluid near the top wall is consistently accelerated
by the underlying liquid metal, and a Q2D state is not achieved by the end of the evolution. This
finding is further supported by the velocity profile along the z direction, which exhibits a velocity
gradient, contrasting with the results obtained using a velocity correlation coefficient in Sreenivasan
and Alboussière [19].

2. Joule dissipation and energy decay

Sreenivasan and Alboussière [19] attempted to close the governing equations for the nonlinear
phase by considering the dominance of Joule dissipation over viscous dissipation, allowing the
neglect of the latter during the evolution time. The ratio between these dissipation terms is expressed
in Eq. (5). However, it should be noted that this estimation appears to be inadequate for the nonlinear
phase. In line with the approach proposed by Davidson [25], an alternative estimation for the viscous
dissipation can be derived as follows:

ε ∼ α
u3

l⊥
, (21)

where α is a coefficient of order unity. On the other hand, the Joule dissipation can be estimated as

D = 1

ρσ

∫
V

j2dV. (22)

From Ohm’s law,

∇ × j = σ∇ × (u × B) = σ (B · ∇ )u. (23)

083703-11



WANG, CHEN, CAO, KE, YANG, AND NI

When the imposed magnetic field is uniform, the current can be estimated as

j ∼ σBu

(
l⊥
l‖

)
. (24)

Hence, the Joule dissipation can be derived as

D = β
σB2

ρ

(
l⊥
l‖

)2 ∫
V

u2dV = β
E

τ

(
l⊥
l‖

)2

, (25)

where β is a coefficient of order unity. When the two terms, Eqs. (21) and (25) are in the same order,
a simple order-of-magnitude study can be conducted as

u3

l⊥
∼ u2

τ

(
l⊥
l‖

)2

. (26)

It can be easily concluded that the true interaction parameter is on order of unity, Nt ∼ 1. Such a
result is very interesting since it states that the Joule dissipation will fall into the same magnitude
with the viscous dissipation at Nt ∼ 1. Such a state in which the viscous and Joule dissipation
are nearly equal after the initial linear phase is also discovered in decay of homogeneous MHD
turbulence [17]. Therefore, by combining Eqs. (4) and (25), the energy decay equation should be
corrected as

dE

dt
= −2β

E

τ

(
l⊥
l‖

)2

, (27)

and the angular momentum conservation

E1/2l2
⊥l1/2

‖ = constant. (28)

To close the system, we follow Davidson [25] and introduce the equation

d

dt
(l‖/l⊥)2 = 2β/τ, (29)

which is a reasonable approximation not only for N → 0 and N → ∞ but also for intermediate
N . Additionally, the direct numerical simulation (DNS) conducted by Okamoto et al. [26] provides
further support for this estimation. Finally, by integrating Eqs. (27), (28), and (29), we obtain the
decay laws as follows:

E/E0 = t̂−1, l⊥/l0 = t̂1/10, l‖/l0 = t̂3/5, (30)

where t̂ = 1 + 2(t/τ ). The derived expressions are consistent with the findings of the nonlinear
phase in Sreenivasan and Alboussière [19], and they further support the conclusion that the true
interaction parameter is on the order of unity, i.e., Nt ∼ 1.

During the linear phase, it is reasonable to assume that Joule dissipation dominates when N0 is
sufficiently large. In such cases, the energy decay equation can be expressed as follows:

dE

dt
= −β

E

τ

(
l⊥
l‖

)2

. (31)

Integrating Eqs. (31), (28), and (29) yields the decay laws

E/E0 = t̂−1/2, l⊥/l0 = constant, l‖/l0 = t̂1/2. (32)

Combined with Eqs. (30) and (32), the scaling of the Joule dissipation can be expressed as

D/D0 ∼ t̂−3/2, linear phase

D/D0 ∼ t̂−2, nonlinear phase. (33)
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(a) (b)

FIG. 9. Time evolution of Joule dissipation and kinetic energy for numerical simulations, normalized by
the value at the end of the current pulse, respectively.

Figure 9 shows the time evolution of Joule dissipation, D = 1
ρσ

∫
V j2dV , and kinetic energy, E =∫

V u2dV , in different cases, holding a slope of −2 and −0.8, respectively. For the Joule dissipation,
shown in Fig. 9(a), the global integration of Joule dissipation agrees well with the decay law for
nonlinear phase [Eq. (33)], indicating the global nonlinear behavior of the vortex evolution. Whereas
for the kinetic energy, shown in Fig. 9(b), approximately decays with a scale (t/τ )−0.8. However,
only one slope is displayed in each case and no transition exists from the linear phase to the nonlinear
phase. Combining with evolution of the Joule dissipation and the parallel scale, we consider the
global evolution of the vortex as a nonlinear process.

The global evolution of Joule dissipation and energy appears to deviate from the findings depicted
in Fig. 6, which prompts a more detailed investigation. We examine the average velocity, determined
by the potential difference between r/r0 = 0.5 and r/r0 = 0.6, as depicted in Fig. 10 for varying
values of N0. Notably, the velocity decay exhibits a consistent slope of approximately ∼ − 1.6 across
all cases, regardless of the initial interaction parameter. It is worth mentioning that this velocity scale
(∼ − 1.6) corresponds with the global energy scale (∼ − 0.8) governed by E ∼ u2l2

⊥l‖ under the
assumption of nonlinear evolution of parallel and perpendicular length, as demonstrated in Eq. (30).

FIG. 10. Velocity decay in inner space for numerical simulations (average velocity between r/r0 ∈
[0.5, 0.6]).

083703-13



WANG, CHEN, CAO, KE, YANG, AND NI

FIG. 11. Velocity decay at different location with N0 ∼ 1 for numerical simulations.

Moreover, when focusing on small initial interaction parameters (N0 ∼ 1) as depicted in Fig. 11,
the decay of velocity in different regions (inner space and outer space of the central vortex) both
exhibit a consistent scaling of t−1.6 with the disappearance of the transition between the two phases.
Notably, for a small interaction parameter, such as N0 = 0.7 observed in the experiment conducted
by Sreenivasan and Alboussière [19], only a scaling of t−1.5 is observed, which coincides with our
findings in the inner space of the vortex. Regarding the velocity decay in the inner space, Eqs. (14)
and (15) indicate that the initial interaction parameter satisfies N0 ∼ L3, where L represents the
size of circular motion. Therefore, it is the smaller rotational radius that causes the velocity decay
in the inner space of a vortex to correspond to fluid motion with a significantly smaller N0. Such
nonuniform decay gives rise to the nonlinear evolution of global kinetic energy, parallel length scale,
and Joule dissipation at larger N0.

To further validate the results, the experimental global velocity evolution is presented in Fig. 12.
The signals are averaged across various potential probes positioned at different radii (Type B), as
illustrated in Fig. 4(b). For different values of N0, the decay of mean square velocity follows a

FIG. 12. Experimental measure for global velocity decay in different N0. Each curve is averaged from all
potential probes in Type B.
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scaling of (t/τ )−1.8, which aligns with our numerical findings (Fig. 9) and suggests a nonlinear
phase in the global evolution.

IV. CONCLUSION

This paper focuses on the numerical and experimental investigation of the free decay of a solitary
vortex in a uniform axial-directional magnetic field. The numerical results strongly support the
exponential decay of perpendicular angular momentum (H⊥ ∼ H⊥(0)e−t/4τ ) and the conservation
of parallel angular momentum (H‖ = constant). Regarding the elongation of the flow structure in
the presence of a magnetic field, the parallel length scale evolves as l‖ ∼ (t/τ )3/5 for large values
of N0. Numerical simulations, together with the observed Joule dissipation (∼(t/τ )−2) and global
kinetic energy (∼(t/τ )−0.8), suggest that the global decay of the vortex can be characterized as
a nonlinear phase, even when the initial interaction parameter is sufficiently large. This finding
is further validated through our experimental findings. Furthermore, the outer edge of the vortex
confirms the existence of linear and nonlinear phases, as well as a transition region (ttr ∼ N2

0 τ )
between them. However, the decay in the inner space of the vortex exhibits a consistent slope
throughout the entire evolution, which may contribute to the global nonlinear behavior observed
in the decay of a solitary vortex.

The significant work by Sreenivasan and Alboussière [19] introduced a vortex formation
technique using the interaction between a magnetic field and an injected current, providing a
comprehensive dynamic evolution model under an applied magnetic field. However, it should
be noted that this evolution is contingent upon the rotational radius of the fluid, resulting in a
discrepancy between the velocity decay at the outer edge and the inner region of the vortex. In
terms of global energy evolution, the vortex consistently exhibits a nonlinear phase. These findings
contribute to a better understanding of MHD turbulent flows in a broader context.
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