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Floquet stability and Lagrangian statistics of a nonlinear
time-dependent ABC dynamo
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The Lagrangian statistics of a time-dependent ABC flow are considered, with time
dependence introduced via harmonic oscillation with frequency �. By calculating the
finite-time Lyapunov exponents (FTLEs), the Lagrangian statistics of the system are
determined for a range of values of �. These statistics are calculated for the kinematic
regime where the flow remains an ABC flow, the nonlinear regime with dynamo action
present, and a second hydrodynamic state reached through instability of the original ABC
flow. It is found that there are significant differences between these three states, with most
cases showing a decrease in their FTLEs as the flow deviates from its original ABC
form. Furthermore, these changes are highly dependent on �, with lower frequencies
leading to higher FTLEs in the nonlinear regime, and unstable regimes. By examining
the Lagrangian statistics with respect to the dynamo behavior observed, we discuss their
potential relevance to nonlinear saturation, self-killing dynamos, and the importance of the
initial hydrodynamic state. The numerical code developed for this project is also available.
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I. INTRODUCTION

In an electrically conducting fluid, the coupling between the velocity field and magnetic field can
lead to a self-sustaining magnetic field. This phenomena is termed dynamo action, and is an impor-
tant physical process underpinning the behavior of many astrophysical flows [1]. The Lagrangian
properties of dynamo flows have been conjectured to play a key role in the kinematic and dynamic
properties of dynamo action; certainly, this is the case in the kinematic regime at asymptotically
high magnetic Reynolds number (Rm)—the so-called fast dynamo problem. Dynamical systems
theory applied to fast dynamo action demonstrates that the topological entropy of the flow bounds
the asymptotic growth rate of the dynamo [2]; see also Ref. [3]. This rules out the possibility of fast
dynamo action for integrable flows and shows that chaotic particle paths are required for a flow to
be a fast dynamo.

These results have led to a sustained interest in the Lagrangian properties of saturated dynamo
flows. It is hoped that an analysis of such statistics can lead to some progress on the thorny issue
of how dynamos saturate. It is clear that the mechanism for dynamo saturation is not universal—
dynamos saturate in different ways. For example, large-scale dynamos, where the field is generated
on scales larger than a typical velocity scale, may saturate through a modification of the degree
of breaking of reflectional symmetry of the flow (so-called α-quenching see, e.g., Ref. [4]) or by
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modifying the properties of large-scale shear flows. It is fair to say that the first mechanism described
above is more contentious than the second, and there are fundamental uncertainties about the level
at which large-scale magnetic fields saturate [5] and indeed how long it takes to reach saturation
(see, e.g., the detailed discussion in Ref. [6]); these can be linked to the irreversibility in the dynamo
system, which is often measured by the degree to which magnetic helicity is conserved [7–9].

It is an interesting question as to what can be determined about the mechanism for dynamo
saturation from a consideration of the Lagrangian statistics. Since growth of a magnetic field relies
on stretching overcoming the dissipative action of magnetic diffusion, it could be that dynamos
saturate (and become statistically marginal) in the nonlinear regime by either reducing the stretching
(which would be manifested as a suppression of the chaos in the high Rm limit), enhancing the
diffusion, or a combination of the two. How the magnetic field might act so as to reduce the
stretching is undetermined. It might be that the field acts so as to reduce the amplitude of dynamo
flow back to the marginal state—i.e., the flow amplitude might be reduced so Rm ≈ Rmc for
dynamo action. This drastic intervention of the flow seems unlikely at high Rm (as argued in
Cattaneo and Tobias [10]). More likely is that the field acts to reduce the amplitude of the flow
somewhat but also suppresses its stretching properties in a subtle manner [11].

This suppression of chaos was shown to be important in a simplified 2.5-dimensional dynamo—
here a 2.5-dimensional flow is one that has all three components of the velocity but each component
only depends on two spatial coordinates. To maintain two-dimensionality in the nonlinear regime,
the Lorentz force was projected back onto the z-invariant velocity [11]. However, firm conclusions
for models that include the full Lorentz force in three dimensions are much more difficult to draw.
A variety of investigations have been carried out on the Lagrangian properties of saturated dynamo
states for a variety of driving mechanisms; not all of these have included a description of the
stretching as measured by the Lyapunov exponents.

Zienicke et al. [12] considered a forcing based on the steady ABC flow at moderate scale. This
flow, with standard parameters, is known to be weakly chaotic; however, at high Re this flow goes
unstable to a flow with a range of spatial scales and complicated time dependence. At moderate
Reynolds number (Re) and Rm, they found that the growth of a large-scale field can excite velocity
modes that can lead to the mean Lyapunov exponents of the saturated state being much larger than
that of the kinematic flow, as the flow has many more excited modes in the nonlinear state.

Rempel et al. [13] considered the Lagrangian properties of the velocity field of a helical mag-
netohydrodynamic (MHD) dynamo, with moderate scale, steady forcing. In addition to computing
the Lagrangian coherent structures, they also calculated the statistics of the finite-time Lyapunov
exponents (FTLEs) and showed that these decay as a linear function of magnetic energy of the
saturated dynamo.

Homann et al. [14] considered dynamo action in a forced Taylor-Green system and analyzed
the statistical properties of both the velocity and magnetic fields in Eulerian and Lagrangian frame-
works. They found that these statistics are changed between the kinematic and saturated regimes,
with the saturated trajectories aligning more with the mean magnetic field and the probability
density functions (PDFs) of the magnetic field changing to quasi-Gaussian. Moreover they observed
a dramatic increase of the correlation time of the velocity and magnetic fields in the saturated regime.
However, for this flow, the stretching properties as given by the FTLEs remained unmeasured.

Of particular relevance to our study is that of Brummell et al. [15], who considered an ABC flow
with an added harmonic time dependence which oscillates the ABC flow along the line x = y = z.
By introducing this time dependence, the chaotic nature of the original ABC flow is enhanced, with
the time-dependent flow showing decreased areas of integrability. The degree of chaos induced in
the flow depends on the frequency of the oscillation of the imposed flow (or forcing) (see also
Ref. [16]).

This is confirmed by considering the FTLEs of the flow. It is shown that this added chaos aids
kinematic dynamo action, with the time-dependent ABC flow showing stronger growth rates, as well
as behaving as a quick dynamo, i.e., a dynamo “that reaches a neighborhood of its maximal growth
rate quickly as a function of Rm” [17]. Brummell et al. [15] also considered the nonlinear regime by
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performing simulations of the coupled Navier-Stokes and induction equations, where the ABC flow
is initially sustained by a body forcing. Although in all cases the flow is a kinematic dynamo, for
some frequencies of the oscillations, the dynamo is not sustained in the nonlinear regime and decays
until only a turbulent hydrodynamic stated termed U1 is left. Note that this secondary hydrodynamic
state can also be reached through hydrodynamic instability of the original ABC flow.

Our current paper builds upon the work of Brummell et al. [15] through calculating the FTLEs
of the flow in both the nonlinear regime where the Lorentz force is saturating the dynamo and also
for the flow U1. This involves solving the coupled Navier-Stokes and induction equations together
with tracking Lagrangian particles. By calculating the FTLEs in these two flow regimes, we hope to
further elucidate the dynamics responsible for dynamo saturation, as well as to explain why some
dynamos are unable to sustain themselves in the nonlinear regime.

As well as calculating the FTLEs, we also consider the Floquet stability [18] of the time-
dependent ABC flow to both hydrodynamic and magnetic perturbations. In this manner, all the
unstable directions of the original flow together with their growth rates can be systematically
captured. The paper proceeds as follows: Section II outlines the mathematical and numerical setup,
containing the details of the governing equations, Floquet stability analysis, and FTLEs. The results
are then presented in Sec. III, with conclusions subsequently being offered in Sec. IV.

II. MATHEMATICAL AND NUMERICAL SETUP

A. Formulation: Governing equations and numerical methods

The system is governed by the magnetic induction and Navier-Stokes equations, which in
nondimensional form are

(∂t − Rm−1∇2)B = ∇ × (U × B), (1)

(∂t − Re−1∇2)U + U · ∇U = −∇p + J × B + F, (2)

∇ · U = ∇ · B = 0. (3)

The nondimensional variables are the fluid velocity U , magnetic field B, pressure p, and electric
current J = ∇ × B. By nondimensionalizing time with respect to a typical turnover time of the flow
(U ) and space with respect to the length scale of the domain (L), the nondimensional parameters of
Reynolds number Re = UL/ν and magnetic Reynolds number Rm = UL/η have been introduced.
Moreover, in this nondimensionalization, the field is measured in units of the Alfvén speed. The
domain is taken to be (x, y, z) ∈ [0, 2π ]3 with periodic boundary conditions. Following Brummell
et al. [15], the external (Re-dependent) forcing term F is chosen such that in the absence of magnetic
field there exists an order unity solution for the velocity field U0 given by

U0 = (sin(z + ε sin(�t )) + cos(y + ε sin(�t )),

sin(x + ε sin(�t )) + cos(z + ε sin(�t )),

sin(y + ε sin(�t )) + cos(x + ε sin(�t ))). (4)

For ε = 0, this flow corresponds to an ABC flow with A = B = C = 1. However, by varying ε, the
flow is allowed to wobble around the ABC state with amplitude ε and angular frequency �. The
initial kinetic energy density is displayed in Fig. 1, showing that it has large scale structures. For
low Re, this flow is hydrodynamically stable.

To solve this system numerically, we first replace the magnetic induction equation for B with
an equation for the magnetic vector potential A defined such that B = ∇ × A and with A taken to
satisfy the Coulomb gauge condition ∇ · A = 0. The resulting system is solved numerically using
spectral methods via the open-source partial differential equation (PDE) solver DEDALUS [19]. A
resolution of 96 × 96 × 96 is used for all dynamo calculations when particles are not being tracked
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FIG. 1. Contour plot of the initial kinetic energy density connected with U 0.

(see the next section) to ensure that the resolution is high enough to prevent spurious dynamo
solutions [6]. Two-thirds dealiasing is used to treat all nonlinear terms.

B. Floquet stability analysis

The hydrodynamic state q0 = (B,U , p)T = (0,U0, P0)T (with P0 found through rearrangement
of the momentum equation) is an exact periodic solution to Eqs. (1)–(3). Therefore, the stability of
the periodic solution q0 to perturbations can be found via a Floquet stability analysis [18] (though
traditionally the stability of such flows to dynamo action has usually been found by time stepping).
To this end, we first rewrite Eqs. (1)–(3) for the state q = (B,U , p)T in the more general form

M
∂q
∂t

= N (q, F ), (5)

where the matrix

M =

⎛
⎜⎜⎝

1 0 0
0 1 0
0 0 0
0 0 0

⎞
⎟⎟⎠ (6)

ensures there is no time-derivative term in the continuity equation, or solonoidal condition for B,
and the operator

N =

⎛
⎜⎜⎝

∇ × (U × B) + Rm−1∇2B
−U · ∇U − ∇p + J × B + Re−1∇2u + F

∇ · U
∇ · B

⎞
⎟⎟⎠ (7)

represents the right-hand side of the equations. We then linearize these equations about q0 to give
the linearized equations

M
∂q′

∂t
= A(t )q′, (8)

where

A(t ) = ∂N
∂q

∣∣∣∣
q=q0(t )

. (9)
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As Eq. (8) is linear, the solution at any time t can be obtained from an initial condition at time
t0 using the state-transition matrix �(t, t0) via q′(t ) = �(t, t0)q′(t0). The matrix �(t0 + T, t0) that
propagates a state forward by one period T is known as the monodromy matrix. By taking the
eigenvalue decomposition of this matrix, i.e., by solving �(t0 + T, t0)qi(t0) = μiqi(t0), we can write
any perturbation in terms of the decomposition as

q′ =
∑

i

qi exp(tλi), (10)

where λi = ln(μi )/T . The stability of the flow can then be determined from the Floquet multipliers
μi, with the flow stable if |μi| < 1 and unstable if |μi| > 1.

Our linearized Eqs. (8) can be written as

(∂t − Re−1∇2)U ′ + U0 · ∇U ′ + U ′ · ∇U0 = −∇p′, (11)

∇ · U ′ = 0, (12)

(
∂t − Rm−1∇2)B′ = ∇ × (U0 × B′), (13)

∇ · B′ = 0. (14)

This shows that Eq. (8) can be decoupled into two Floquet stability analyses: one for the hydro-
dynamic stability obtained through solving Eqs. (11) and (12) and another for the stability of the
magnetic field through solving Eqs. (13) and (14). In other words, the hydrodynamic stability of the
U0 flow is independent from the stability of the magnetic field. Hence we should expect that, in the
kinematic regime, perturbations to the velocity and magnetic fields will grow independently of each
other in accordance with their Floquet multipliers. It is important to note that this is the case only for
a hydrodynamic basic state; decoupling would not occur for the Floquet stability of an MHD basic
state. Although Floquet analysis around a periodic MHD state is also possible and would be relevant
to the instability of saturated dynamo solutions to long wavelength instabilities, this is beyond the
scope of our current paper.

Numerically, we solve the hydrodynamic and magnetic stability problems separately following
the method discussed by Barkley and Henderson [20]. For the hydrodynamic stability problem, we
let the state transition matrix for the linear problem given by Eqs. (11) and (12) be denoted by �U .
The action of �U (T ) on a vector a is then provided in a matrix-free manner by solving Eqs. (11) and
(12) with initial condition U ′ = a over one period T = 2π/�. The eigenvalues of �U (T ) can then
be found from this matrix-free operation using an eigenvalue solver, yielding the Floquet multipliers
and modes. The magnetic stability problem is solved using the same procedure with Eqs. (13)
and (14).

This procedure is achieved in Python by using the linearOperator functionality contained in the
linalg module in the scipy library. This allows us to define a linear operator by providing a routine
that defines a matrix-vector product. For us, this matrix-vector product is defined through using
DEDALUS to solve the linear time-periodic equations, whose initial condition is the given vector,
over one period. This linear operator can then be given to the eigs routine, a Python wrapper of the
ARPACK library, also contained in the linalg module. In this manner, we can find the eigenvalues
of the linear operator without explicitly constructing a matrix, i.e., only matrix-vector products are
needed. Even though solving the PDE over one period each time the eigenvalue routine needs to
evaluate a matrix-vector product is costly, the fact that the algorithm finds eigenvalues exp(λiT )
that are largest in magnitude first means that in practice we naturally obtain eigenvalues for which
the growth rate Real(λi ) is largest. As these are the fastest growing modes which are physically
the most important, this means that this approach is efficient and converges to the eigenvectors of
interest without the need for a good initial guess.
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C. Finite-time Lyapunov exponents

As noted in the Introduction, information about the degree of stretching in the flow can be gained
by calculating the distribution of FTLEs. To calculate these, we follow the algorithm of Soward [21]
(see also Ref. [22]) and consider tracking a set of particles that are passively advected by the fluid.
Taking N particles with positions {pi}N−1

i=0 , we track the particles by solving

d

dt
pi = U (p). (15)

Letting S denote the fluid velocity gradient tensor with S (p) = ∇x=pU , we also solve

d

dt
D = S(p)D (16)

for each particle path starting with D = diag(2−1/2, 2−1/2, 0). For each time t , we form the matrix

C(t ) = D(t )T D(t ). (17)

The FTLE connected to the position x0 is then the slope of l (t ; x0) = ln(
∑

i, j Ci, j (t )/2)/2, where
C arises from a particle whose initial position is x0. The slope of the line is found using linear
regression.

When calculating the FTLEs, we solve the governing equations as described in the previous
section, tracking the particles using a particle tracking code for DEDALUS developed for this paper.
For what follows, we will concentrate on the calculation of FTLEs on the plane z = 0, i.e., the
initial particle positions are taken to be equispaced (xi, yi, 0), with the x − y plane consisting of
128 × 128 particles and a time horizon of T = 30 matching that of Brummell et al. [15]. Due to
the increased numerical burden of tracking the particles, the resolution is decreased to 64 × 64 ×
64 when calculating the FTLEs. However, the initial condition for tracking the particles always
comes from the higher resolution results. This, coupled with the fact that the time horizon for the
FTLE calculations is small, means that we stay close enough to the high resolution solution while
keeping the computation feasible. The numerical code for particle tracking in DEDALUS V2 and
FTLE calculation has been made available as part of the companion code for this paper [23].

D. Passive vector field evolution

A less rigorous, though still informative method for calculating the stretching properties of a flow
is to calculate the response of a passive vector field to the flow. Following Cattaneo and Tobias [10],
we will also consider the evolution of a passive vector field which satisfies the induction equation but
does not couple with the velocity field via a Lorentz force. To this end, we solve Eqs. (1)–(3) together
with

(∂t − Rm−1∇2)Z = ∇ × (U × Z), (18)

∇ · Z = 0. (19)

By tracking Z, we are able to see how a magnetic field would behave for the velocity field stemming
from a nonlinearly saturated dynamo. While it seems that Z, which solves the same equation as B,
must follow the same trajectory as B, this is in fact only true if the initial condition for Z is the
same as that of B. The reason for this is that there is no Z-based Lorentz force, meaning that U is
independent of Z and that the evolution of Z is completely linear. As no particles are being tracked
in this case, the resolution is again set at 96 × 96 × 96. The aim here is to determine how well one
can understand the chaotic properties of the flow using this proxy method, which is simpler (and
less expensive) computationally than calculating the FTLEs.
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FIG. 2. Floquet exponents for ε = 1, Re = Rm = 100. The stability boundary is shown as a dotted line in
each figure (a) Hydrodynamic Floquet exponents and (b) Magnetic Floquet exponents.

III. RESULTS

A. Floquet stability analysis

We begin our results by considering the stability of the periodic state U0, using the procedure out-
lined in Sec. II B. Again, we stress that around a purely hydrodynamic base state, the hydrodynamic
and magnetic stability problems decouple and may be considered separately. Figure 2 shows the
Floquet exponents found for the two cases at two representative frequencies. For Floquet exponents
λ with Real(λ) > 0, there will be an exponential growth of the mode, indicating instability. Hence,
exponents above the line Real(λ) = 0 indicate unstable directions.

For Re = Rm = 100 the flow is, in general, more unstable to magnetic perturbations rather than
hydrodynamic perturbations, agreeing with the observations of Brummell et al. [15]. However, for
� = 0.5 this is not the case and the flow is much more unstable to a hydrodynamic perturbation with
Imag(λ) = 0, which shows that it is a purely growing instability and has no oscillation frequency
associated with it. This is made clearer by considering the maximum growth rate for each frequency,
displayed in Fig. 3.

FIG. 3. Maximum growth rates for the hydrodynamic and magnetic stability problems (a) Maximum
growth rates for the kinetic energy and (b) Maximum growth rates for the magnetic energy.
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FIG. 4. Kinetic and magnetic energies over time for ε = 1, Re = 100, and Rm = 100, starting from a small
magnetic perturbation and a velocity field in U 0.

For verification of our Floquet approach, the results of Brummell et al. [15] are added to Fig. 3(b).
As we can see, there is a good quantitative agreement with our results bounded above by those
of Brummell et al. [15]. The reason for this can be attributed to the method used to obtain the
growth rates. Ours stem from a single modal structure, whereas those of Brummell et al. [15] are
obtained via linear regression of the magnetic energy obtained from a simulation, meaning that the
superposition of two or more growing modes can give rise to a higher magnetic energy growth rate.
Figure 3 also shows the results of the Floquet analysis at Rm = 120. As the maximum growth rate
does not change significantly, we can postulate that we are in a regime where the growth rate has
saturated as a function of Rm; in this sense, the time-dependent flows are acting asquick dynamos
[17]. This asymptotic behavior is believed to set in at lower magnetic Reynolds numbers for time-
varying hydrodynamic states [6,15], than for steady ABC flow [24].

B. Nonlinear evolution

Before considering the FTLEs, we first summarize the flow behavior of an initial state con-
sisting of a small magnetic field and the hydrodynamic state U0. Figure 4 shows the results for
Re = Rm = 100. We see that for all frequencies there is an initial exponential growth of the
magnetic field. This is not surprising, as the results of the Floquet analysis show that the flow is
unstable to magnetic perturbations. More interesting is the subsequent behavior. For the considered
frequencies � � 1.5, the magnetic energy saturates, showing that the Lorentz force acts to stabilze
the growth of the magnetic field. However, for higher frequencies the magnetic energy eventually
decays. This means that the velocity field that results after deviation from its initial U0 form is
stable to magnetic perturbations. In this case, the magnetic energy eventually decays to negligible
values, leaving a purely hydrodynamic state. We note that as, at the Reynolds numbers considered,
the state U0 is unstable (see Sec. III A), this secondary hydrodynamic state can also be reached
from a hydrodynamic simulation via the instability of the base state to hydrodynamic perturbations.
In other words, the magnetic field is not essential in reaching this state, but can cause it to not
appear in cases where a nonlinear dynamo is produced. Following Brummell et al. [15], we call this
secondary purely hydrodynamic state, seen for � � 2 when the magnetic field is negligible, U1.
When the magnetic field does not decay, we do not reach U1 but instead a joint MHD state.
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FIG. 5. Kinetic and magnetic energies over time for ε = 1, Re = 100, and Rm = 120, starting from a small
magnetic perturbation and a velocity field in U 0.

Repeating this procedure at the higher magnetic Reynolds number of Rm = 120, we obtain
Fig. 5. In this case, for all frequencies the dynamo saturates, leading to a nonlinear dynamo solution.
As the Floquet analysis revealed that there is no significant change in the stability properties of U0

for Rm = 120, the reason behind this saturation must either lie in the stability properties of U1 to
magnetic perturbations or in nonlinear interactions between the magnetic field and velocity field via
the Lorentz force. Hence, to investigate this we examine the stability properties of U1.

As U1 is not an exact periodic solution of the governing equations but is instead a quasiperiodic
state, we cannot use Floquet theory to determine the behavior of a small magnetic field. Instead we
run a simulation starting from an initial state in the U1 attractor and seed it with a small random
magnetic field. The results of this for Rm = 100 and Rm = 120 are shown in Figs. 6 and 7, respec-
tively. For Rm = 100, Fig. 6 shows that the frequencies at which the magnetic energy eventually
decays are the same frequencies at which U1 is stable to magnetic perturbations. This means that
if nonlinear effects are unable to alter the velocity field, then the magnetic field will eventually
decay with no chance to grow again. For this reason, at Re = 100 where the hydrodynamic state
U0 is unstable, it is unclear whether these dynamos are self-killing initially through an unfavorable
modification of the velocity field via the Lorentz force or whether they decay through the rise of
the stable U1 hydrodynamic state. It is also worth noting that although the other frequencies are
unstable to magnetic perturbations, the growth rates are significantly reduced than that obtained for
U0, indicating that while U1 is still susceptible to kinematic dynamo action, it is less efficient. For
all frequencies � in which the magnetic field grows, we will eventually reach the same nonlinear
dynamo solution achieved more efficiently when starting from U0.

Turning our attention to Rm = 120, we see from Fig. 7 that all frequencies show a positive
growth rate. However, for � � 2 this growth rate is extremely small, with � = 2.5 not rising
significantly on a long timescale. Therefore, on short timescales the flow will appear neutral to
magnetic perturbations and we can expect that only a slight nonlinear effect via the Lorentz force
will be needed to saturate the growth of magnetic energy. Again we note that for all frequencies, the
growth rates for U1 are lower than that of U0.

We conclude this section by summarizing the possible states observed for our system sketched
in Fig. 8. The first state is that of U0 defined through Eq. (4). This state is hydrodynamically
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FIG. 6. Kinetic and magnetic energies over time for ε = 1, Re = 100, and Rm = 100 starting from a small
magnetic perturbation and a velocity field in U 1.

unstable, as shown in Sec. III A, and hence a purely hydrodynamic simulation starting from U0

will lead to a second new quasiperiodic hydrodynamic state termed U1 following Ref. [15]. As
the results of the Floquet analysis confirm that U0 is much more unstable to magnetic rather than
hydrodynamic perturbations, introducing a small magnetic field leads to kinematic dynamo action
on a timescale in which the velocity field does not deviate from its unstable U0 configuration.
This kinematic dynamo action can lead to two distinct possibilities dependent upon the magnetic
Reynolds number Rm and frequency �. One is that the Lorentz force modifies the velocity field

FIG. 7. Kinetic and magnetic energies over time for ε = 1, Re = 100, and Rm = 120 starting from a small
magnetic perturbation and a velocity field in U 1.
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FIG. 8. Sketch summarizing the various states of interest as well as the possible paths between them. The
dashed line represents paths that are dependent on the magnetic Reynolds number Rm and frequency �. The
solid line shows a purely hydrodynamic pathway that always occurs at the Reynolds number in this paper.

leading to an MHD state, denoted U2, B2 in Fig. 8. The second is that there is kinematic dynamo
action but a self-sustaining MHD state does not occur, leading to the eventual decay of the magnetic
field leaving the hydrodynamic state U1. In the cases where U1 is unstable to magnetic perturbations
kinematic dynamo action is also possible by seeding U1 with a small magnetic field. The amplifies
until saturation leads to the MHD state U2, B2.

C. Lagrangian statistics

Now that the nonlinear evolution of a magnetic field has been described for a range of parameters,
we turn our attention to understanding the growth and saturation of the magnetic field via an
examination of the Lagrangian statistics of the flow field. We first seek to verify the particle tracking
code with the work of Brummell et al. [15]. To this end, we set Re = 100, Rm = 100, ε = 1
and consider a range of values for � on the plane z = 0. For these parameters the flow field U
remains close to U0 despite the exponentially growing magnetic field due to the stability properties
of the hydrodynamic state (see Sec. III A). This means that by calculating the FTLEs with a time
integration of 30 time-units, we stay within this kinematic regime and our results should match those
of Brummell et al. [15] for which the U0 flow is imposed.

Figure 9(a) shows the mean FTLEs calculated with our current approach and with the results of
Brummell et al. [15]. We see that the calculated values show good agreement, both verifying our
approach and showing that the results of Brummell et al. [15] hold in the presence of a small, but
nonzero, magnetic field. The weak field here has had very little impact on the degree of chaos in
the flow. As in Ref. [15], we see that there is a qualitative correspondence between the mean FTLEs
and the stability properties of U0. Indeed, larger values of the FTLE occur at frequencies for which
the magnetic growth rate [shown in Fig. 3(b)] is highest.

Having verified our particle tracking approach, we now consider calculating the FTLEs for the
secondary hydrodynamic state U1. Figure 9(b) shows that the flow U1 is on average less chaotic
than U0 with the FTLEs for most frequencies decreasing. The exception to this is the lowest
frequency considered, � = 0.5. For this frequency, the mean FTLE for U1 is significantly greater
than for U0. One possible explanation for this can be obtained by examining the stability of U0

to hydrodynamic perturbations. There are two main reasons for suspecting this link. The first is
that there is a correspondence between the maximum growth rates of the kinetic energy [shown
in Fig. 3(a)] and the mean FTLEs of U1, where the maximum in both cases is found for � = 0.5
with relatively flat behavior for all other frequencies. The second is that there are more unstable
directions for � = 0.5 than for all other frequencies. Hence, it seems plausible that the increased
propensity to hydrodynamic instability for � = 0.5 could lead to a more chaotic flow.
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FIG. 9. Mean FTLEs for U 0 and U 1 for a range of values of � and ε = 1 at Re = 100 (a) Mean FTLEs for
U0 using an MHD code in the kinematic regime with Rm = 100. Also shown are the results of Brummell et al.
[9] for comparison and (b) Mean FTLEs for U1 calculated with a purely hydrodynamic simulation. The results
for U0 are also shown.

Before moving on to cases with a magnetic field present, we examine the structure of the FTLEs
on the plane z = 0 for our two hydrodynamic states. Given that we have just shown that the FTLEs
do not differ significantly from purely kinematic results in which the flow U0 is specified, we present
results for U0, obtained from a code that fixes the velocity field, at a higher resolution than is feasible
for our other cases in Fig. 10. The figure shows that for all frequencies the flow is quite chaotic with
very few integrable patches (indicated by dark regions). We note that the ridges present in these
figures are related to Lagrangian coherent structures and act as barriers through which particle paths
do not cross [26,27].

The FTLEs for U1 are displayed in Fig. 11. It is immediately clear that the Lagrangian statistics
are quite different from that of U0. For low frequencies, in which the mean FTLEs increase or
remain similar, we see that the flow remains chaotic nearly everywhere. This is especially evident
for � = 0.5, which shows very little areas of integrability. However, for the frequencies where the
mean FTLEs decrease the areas of integrability are substantially larger, with thin ridges separating
them. These changes from U0 reflected in the structure, and mean, of the FTLEs shows that as for
U0 there is a clear link between the FTLEs and the magnetic energy growth rates for U1 (discussed
in Sec. III B).

It is important to note that, although the FTLE for � = 0.5 is higher for U1 than U0, the growth
rate is smaller. This reminds us that care is needed when interpreting the FTLEs and that formally the
link between the growth rate of a magnetic field and the FTLEs is obtained for Rm → ∞. However,
for U0 we see from our Floquet results that it may be a quick dynamo, setting into this asymptotic
fast dynamo behavior at our current parameters. Therefore, the discrepancy for U1 suggests that we
have simply not reached this asymptotic behavior (if, in fact, it exists).

With the hydrodynamic behavior discussed, let us turn our attention to cases in which a magnetic
field is present. For Rm = 100, Sec. III B showed that, unlike for Rm = 120, not all frequencies
have a region in which a nonlinear dynamo is sustained. Therefore, we calculate the FTLEs starting
from states at a few points in the region where the kinematic growth phase has ended, but before
the eventual decay of the magnetic field. For Rm = 120, a nonlinear dynamo is sustained at all
frequencies, hence we start the FTLE calculation from a representative state in the nonlinear regime.

Figures 12(a) and 12(b) show the mean FTLE for Rm = 100 and Rm = 120, respectively. From
Fig. 12(a), we see that the mean FTLE does not depend strongly on the state at which the calculation
is started. The slight variations can therefore be mainly attributed to the natural slight variation that
can be expected when starting the FTLE calculation from a different point of the attractor. For low
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FIG. 10. FTLEs in the kinematic regime with ε = 1. A greyscale color map is used, with a FTLE of zero
being black and the maximum FTLE being white. Movies of their evolution over five periods are available as
Supplemental Material [25].

frequencies, the mean FTLE of the nonlinear state is different from that of U1 [shown in Fig. 12(b)].
This indicates that the Lorentz force is large enough that is has significantly altered the flow field
from its U1 form. However, for higher frequencies the mean FTLEs are close to that of U1, showing
that no such flow modification is taking place, leading to the eventual decay of the magnetic field.

For Rm = 120, we see from Fig. 12(b) a similar pattern to that obtained for Rm = 100. It is
clear that for � = 0.5 and � = 1.0 that the Lorentz force is significantly altering the flow field,
leading to lower FTLEs and a less chaotic flow in the nonlinear dynamo regime. However, for
higher frequencies there is an overall agreement for the mean FTLE in the nonlinear regime and
for the hydrodynamic state U1. As in these cases the flow remains a nonlinear dynamo, despite not
significantly modifying the purely hydrodynamic flow, it is reasonable to suspect that the marginal
instability of U1 to magnetic perturbations (shown in Sec. III B) is partially responsible for its
saturation. The FTLEs for Rm = 120 on the plane z = 0 are shown in Fig. 13. These FTLE images
support the findings of the mean FTLEs, namely, that for � = 0.5 and � = 1.0 the flow is less
chaotic than U1 (see Fig. 11), but has no noticeable difference from U1 for other frequencies.

To provide clearer evidence for whether the magnetic field is altering the FTLEs, we can consider
the PDFs of the FTLEs. For this purpose, we consider two frequencies: � = 0.5, for which the
mean FTLE is altered, and � = 2.5, which shows little difference. For both frequencies, a normal
distribution is found to be a good fit, with the resulting PDFs shown in Fig. 14. For � = 0.5,
Fig. 14(a) shows that there us a clear difference in the distribution of the FTLEs between U0 and U1,
with the flow becoming more chaotic in U1 and any integrable regions present for U0 disappearing.
Importantly, we see that the distribution for the nonlinear dynamo is between that of U0 and U1.
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FIG. 11. FTLEs for U 1 with Re = 100 and ε = 1. A greyscale color map is used, with a FTLE of zero
being black and the maximum FTLE being white.

Therefore, it is clear that the Lorentz force is playing a major role in this case, preventing the
emergence of a U1-type flow, and modifying the velocity field to an overall less chaotic one (than
U1—though this is still more chaotic than U0).

FIG. 12. Mean FTLEs for a range of frequencies with Re = 100 and ε = 1 (a) Mean FTLEs for the
nonlinear regime at Rm = 100 and (b) Mean FTLEs for the nonlinear regime at Rm = 120.
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FIG. 13. FTLEs in the nonlinear regime with Re = 100, Re = 120, and ε = 1. A grayscale color map is
used, with a FTLE of zero being black and the maximum FTLE being white.

Conversely, Fig. 14(b) shows seemingly identical distributions for U1 and the nonlinear dynamo
regime. This supports the hypothesis that the Lorentz force is doing very little to modify the
velocity field for � = 2.5. The reason then for saturation of the dynamo can mainly be attributed

FIG. 14. Probability density function of the FTLEs at Rm = 120. (a) � = 0.5 and (b) � = 2.5.
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FIG. 15. The ratio of the mean FTLE of the nonlinear dynamo for Rm = 120 to the mean FTLE of the U 1

state (R) versus the mean ME of the saturated solution.

to the marginal (almost neutral) instability to magnetic perturbations properties of U1 at � = 2.5.
Therefore, even though the magnetic field must influence the velocity field to saturate, it need only
do so very weakly and on long timescales. Hence, the nonlinear dynamo regime can have a velocity
field that remains close to U1. In general, Fig. 15 illustrates that the mean-field strength of the
dynamo is anticorrelated with the agreement between the mean FTLEs of the nonlinear dynamo
and the hydrodynamic state U1. This indicates that the frequencies at which the magnetic field
strength is lower (� � 1.5) are the same as those for which the nonlinear dynamo has the same
chaotic properties as U1.

D. Passive kinematic dynamo

We conclude the results by examining the stability properties of a passive vector field, governed
by Eq. (18). By time stepping this passive dynamo in the flow field of the nonlinear dynamo
regime, we can see whether the flow field remains able to amplify a kinematic vector field despite
dynamo saturation. The evolution of Z starting from a small random initial condition is shown in
Fig. 16. From Fig. 16(a), we see that only � = 0.5 has a significantly positive growth, with all
other cases being only slightly positive or negative. This is further highlighted by the growth rates
illustrated in Fig. 16(b). From these results, we can see that, as in Ref. [10], the flow field from
a saturated nonlinear dynamo can remain a kinematic dynamo. The reason for this can be related
to the correspondence between the growth rates of Fig. 16(b) and the mean FTLEs [Fig. 12(b)],
again highlighting the link between the FTLEs of a flow field and the kinematic growth rate of a
magnetic field as conjectured by Cattaneo and Tobias [10]. Hence, calculating the evolution of a
passive vector field is a good proxy for a full Lagrangian calculation.

As for � = 0.5, the passive scalar dynamo is unstable—it shows that the form of the magnetic
field and its link to the velocity field is crucial in providing saturation in this case. In other words,
although kinematic growth is possible, as suggested by the FTLEs, nonlinear growth is not due to
the way in which the velocity and magnetic fields nonlinearly interact. Hence, it can be thought that
for nonlinear regimes with more chaotic properties, nonlinearity is crucial in providing saturation,
and the flow field must be significantly modified via the Lorentz force. For the other frequencies, the
growth rate is smaller and we should not read too much into their exact values. Indeed, the results
of Sec. III B show that very small growth rates for the magnetic field are possible on a timescale
not considered for the passive dynamo. Instead, as the flow remains close to U1, we should expect
that the passive scalar dynamo, although eventually increasing as it should for U1 (Fig. 7), can have

083701-16



FLOQUET STABILITY AND LAGRANGIAN STATISTICS …

FIG. 16. Magnetic energy evolution and growth rates for a passive kinematic dynamo Z in the nonlinear
regime for Rm = 120 (a) Magnetic energy evolution for a range of frequencies � and (b) Growth rates obtained
by linear regression of the magnetic energy time series [shown as dotted lines in (a)].

local periods of stability as shown in Fig. 16(b). These local areas of stability could result from a
weak Lorentz force and are enough to saturate the flow.

IV. CONCLUSION

In this paper, we have revisited the dynamo properties of a class of periodic (in space) oscillatory
dynamo flows for a range of oscillation frequencies and fluids and magnetic Reynolds numbers.
We have calculated the stability of such flows, both to hydrodynamic and magnetic perturbations
using a Floquet analysis. Furthermore, we have examined the Lagrangian stretching properties of the
kinematic and saturated dynamo flows, using a particle tracking method that enables the calculation
(in the open source software DEDALUS) of the FTLEs [23]. We find that, depending on the frequency
of oscillation, the stretching in the saturated state as measured by the average FTLE may increase
or (more usually) decrease. The distribution of FTLEs remains well-approximated by a normal
distribution in the saturated regime though the mean and variance of this distribution is modified by
the presence of the magnetic field.

We further demonstrate that the calculation of the evolution of a passive vector field gives a very
good proxy for a full Lagrangian calculation, validating the approach taken by Cattaneo and Tobias
[10]. Interestingly, Cattaneo and Tobias [10] found cases in both convecting systems and forced
shell models where the growth rate of a passively stretched vector field for a saturated dynamo state
increased from that for the hydrodynamic velocity field. This was the case for a subset of the forced
models considered here—confirmed via calculation of the FTLEs. Hence, it is not simple to predict
a priori whether the presence of a magnetic field in the saturated state will lead to the diminution of
chaos. It remains an interesting avenue for future investigation when the structure of dynamo flows
and the generated magnetic field does lead to a system with increased stretching and chaos.

There are certainly systems where such an increase in chaos and turbulence is believed to be
significant. For example, in essentially nonlinear dynamos, a finite amplitude magnetic field can
lead to the onset of turbulence and hence chaotic stretching. Such dynamos are often subcritical and
we conjecture that subcriticality may sometimes be associated with an increase of chaotic stretching
imparted by the change in stability provided by a finite amplitude magnetic field.

Finally, we note that the Floquet analysis we perform here about the hydrodynamic state is
particularly simple, as it separates into two independent classes of modes. The case of Floquet
analysis about a saturated MHD state is more complicated. This case is relevant in determining the
stability of saturated MHD states to long wavelength instabilities (see Ref. [28], for example) and
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hence the important problem of the generation of large-scale magnetic field from a fully saturated
small-scale dynamo.
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