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Droplet dynamics in Burgers vortices. II. Heat transfer
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The preceding paper [O. Avni and Y. Dagan, preceding paper, Droplet dynamics in Burg-
ers vortices. I. Mass transport, Phys. Rev. Fluids 8, 083604 (2023)] presented a theoretical
formulation and a numerical model aiming to obtain a more thorough understanding of
the role of mass transport and phase change in the dynamics of droplets in the presence
of Burgers vortices. Such vortical environments abruptly change the thermodynamic state
within the laminar vortex core, giving rise to a unique droplet orbital clustering mechanism
on the verge of the vortex condensation core. Here we provide an extension of the previous
model to account for the role of heat transfer in the equilibrium and transient response of
droplet-vortex systems. Such systems might serve as a case model for a broader range of
interactions between droplets and vortical flows. A scaling analysis is provided to elucidate
the coupled transport mechanism and uncover the timescale characteristic of each. Finally,
we analyze the extent to which nonlinear transport processes play a significant role in
the droplet’s response dynamic response. Although simplified, our analysis may serve as
an estimation for the thermodynamic conditions in which the incorporation of nonlinear
effects could be substantial.

DOI: 10.1103/PhysRevFluids.8.083605

I. INTRODUCTION

In the preceding paper [1] (henceforward referred to as paper I), we revisited the original
framework of Marcu et al. [2] and investigated the underlying physical mechanisms governing the
dynamics of droplets within vortical structures. Considering a rudimentary case of a droplet circu-
lating an analytically described Burgers vortex, a theoretical analysis of the coupling between the
droplet’s dynamic behavior and mass transfer process governed by vortex-induced thermodynamic
gradients was presented. In the present paper we build upon foundations laid in paper I and offer
a model that may allow one to study the fundamental role of heat transfer processes on droplet
dynamics in Burgers vortices vicinity.

Phase-change processes are associated with changes in surface energy and thus consume or emit
thermal energy [3]; as such, the rate at which heat is stored or transported from the interface might
limit them. For example, the simultaneous mass and energy transfer from an evaporating ventilated
droplet is a complex nonlinear process dictated by the droplet and carrier fluid thermochemical
properties [4–6]. Thus, when the phase-changing droplets are transported within or interact with a
vortical flow structure, any analysis requires considering the interaction between the two. Masoudi
and Sirignano [7,8] have thoroughly investigated the two-way coupling between simple vortices and
droplets of comparable length scale and found that these advecting vortical structures influence the
heat transfer from the droplet, and thus could significantly alter the droplet evaporation rate. On
the other hand, direct numerical simulations revealed that large vortical structures could also influ-
ence the phase-change rate of droplets [9–13]; droplet clustering, rotation, blowing, and unsteady
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convection could all influence the heat and mass transfer processes. The stability of laminar and
turbulent droplet-laden flows may be affected by the unsteady evaporation and heat transfer induced
by vortical structures [14–18].

Our recent studies [19–24] revealed the potential of using a simplified theoretical flow and
Lagrangian methods to track the particle and droplet trajectories, which allows deciphering the
underlying interactions between the two. In paper I we showed how accurately resolving mass
transport is crucial for the dynamics of liquid droplets near an analytically described Burgers
vortex, a flow model that constitutes the essence of vortical turbulent flow structures. A clustering
mechanism was identified, as droplets may stabilize around the vortex core when the pressure drop
is high enough to generate a condensation core. However, the effect of mass transport was isolated
while assuming thermal equilibrium between the droplet and its surroundings; this assumption is not
valid for all thermodynamic conditions and neglects the interdependence of heat and mass transfer.

In the present study we relax the thermal equilibrium assumption and expand the Lagrangian
formulation presented in paper I. The model presented here will enable analyzing the role of heat
transfer, governing the equilibrium and transient response of droplet-vortex systems. Such systems
might serve as a case model for a broader range of interactions between droplets and vortical flows.
Thereupon complex models are considered, resolving the broader nonlinear interactions between the
dynamic, thermal, and mass respons of phase-changing droplets in the vicinity of Burgers vortices.
Furthermore, we also develop a generalized thermodynamic model that allows estimation of the
influence of steep gradients induced by vortical flow for any carrier fluid and liquid substance by
incorporating an approximated model for temperature-dependent liquid saturation pressure.

Section III presents the equilibrium state of droplets in the vicinity of the Burgers vortex and
analyzes its sensitivity to changes in vortex and droplet thermochemical and dynamic properties.
The transient responses of such a system, before their relaxation into a steady state, are studied in
Sec. IV. First, we examine the droplet’s dynamic response in the presence of varying-intensity vor-
tices and its dependence on the initial conditions. Then an analysis of the coupled dynamic-thermal
response is presented; the fundamental characteristic of different transport regimes, represented by
the nondimensional Prandtl, Schmidt, and Stefan numbers, is offered. We evaluate the magnitude to
which nonlinear and nondiffusive transport phenomena, namely, convection and nonlinear drag,
alter the coupled dynamic-thermal response. To conclude, the implications and outlook of the
present analysis are discussed in Sec. V.

II. MODEL

We start our extended analysis by introducing a nonlinear drag force into the Lagrangian
formulation. The drag factor fd , defined as the ratio of the drag coefficient to the Stokes drag
coefficient, was correlated by Schiller and Naumann [25] to the droplet’s relative Reynolds number
Rep = d̃p| ˜̄up − ˜̄u f |/ν f as

fd = 1 + 0.15 Re0.687
p (1)

for moderate droplet Reynolds numbers Rep � 800; d̃p, ˜̄up, ˜̄u f , and ν f are the droplet diameter,
droplet velocity, carrier fluid velocity, and carrier fluid viscosity, respectively. The complete analytic
term and derivation of the analytically described flow field near a Burgers vortex are detailed in
paper I. We rewrite the droplet Reynolds number in terms of the normalized variables

Rep =
√

σd0√
ν f

dp|ūp − ū f | = |ūp − ū f |
√

18
ρ f

ρp
Stk0d2

p, (2)

where d0 is the droplet’s initial diameter, σ is the vortex stretching rate, and Stk0 is the droplet initial
Stokes number, i.e., the ratio between the particle’s initial relaxation time and flow relaxation time,
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as defined in paper I. Thus, the nonlinear droplet momentum equation takes the form

dūp

dt
= fd

Stk0

ū f − ūp

d2
p

, (3)

where the nonlinear drag effects are incorporated into the drag factor fd (x̄p, ūp, dp).
The model of Kulmala et al. for the purely diffusive mass transfer at a quasistationary droplet-air

interface [26,27] is used in the present study and was discussed in paper I; a zeroth-order mass
fraction profiles around the droplet, an ideal gas as a carrier medium, and a saturated droplet
interface was assumed. Although diffusivity was considered the sole transfer mechanism in the
original model of Kulmala et al. [26], an expansion of the solution for ventilated droplets can
be implemented using the Sherwood dimensionless number Sh, defined as the ratio of total mass
transfer to the purely diffusive flux. Thus, we may rewrite the mass equation in terms of droplet
diameter squared as

d
(
d2

p

)
dt

= 4 Shρ∗
v,∞

9 Sc Stk0ρ f
ln(1 + Cm). (4)

As described in paper I, the effects of the difference between the vapor partial pressure at the
interface and the vapor partial pressure at the far field, the diffusive driving force, could be reduced
to a single dimensionless number, the mass transfer coefficient Cm. Here we generalize the mass
transfer coefficient term as

Cm = χ∞ psat(T0) − psat(T̃p)

p f − χ∞ psat(T0)
, (5)

where T0 is the far-field carrier fluid temperature, Tp is the droplet temperature, psat(T ) is the vapor
saturation pressure at a given temperature, and χ∞ is the ratio of the species partial vapor pressure
at the far-field to its saturation pressure. This ratio ranges from 0 (the far field does not contain
any species vapor) to 1 (the far-field species vapor pressure equals its saturation pressure); for an
air-water mixture, χ∞ equals the air’s relative humidity RH. One may note that, given short thermal
relaxation times T̃p ≈ T̃f , Eq. (5) reduces to Eq. (12) of paper I. If one seeks to resolve the mass
transfer coefficient for any substance, an estimation of the vapor saturation pressure as a function of
droplet temperature should be obtained. To that end, we introduce the nondimensional temperature

θ = T̃ − T0

Tsat(p0) − T0
= T̃ − T0

�T0
, (6)

where Tsat(p0) is the vapor saturation temperature at the ambient pressure. Using a linearized
Clausius-Clapeyron relation and considering that T̃p = T0 + �T0θp, we may estimate the ratio of
vapor saturation pressure at the droplet interface and in the far field as

psat(T̃p) = psat(T0) exp

[
L

R̄T0

(
�T0θp

T0 + �T0θp

)]
, (7)

denoting the latent heat of vaporization by L and the vapor specific gas constant by R̄. Substituting
Eq. (7) into Eq. (5) yields

Cm =
χ∞ − exp

[
L

R̄T0

( �T0θp

T0+�T0θp

)]
p f (x̄p)
psat (T0 ) − χ∞

; (8)

now the mass transport coefficient is given in terms of far-field conditions, vortex-induced pressure
field, thermochemical properties of the droplet, droplet location x̄p, and droplet temperature θp.

Droplet temperature is regulated by heat conduction and convection to the carrier medium at the
droplet surface, the sensible heat stored within it, and heat advection due to mass transport. We
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derive the normalized energy conservation equation for a single droplet assuming a zeroth-order
temperature profile around the droplet as

dθp

dt
= 2

3d2
p

(
Ste∗

0

d
(
d2

p

)
dt

+ 4 Nucp, f

9 Pr Stk0cp,p
[θ f (x̄p) − θp]

)
, (9)

where θ f (x̄p) is the normalized carrier temperature at the droplet location, cp, f is the carrier fluid heat
capacity, cp,p is the droplet heat capacity, Pr = cp, f ν f /ρ f k f is the dimensionless Prandtl number,
and Nu is the dimensionless Nusselt number, correlating the convective and the purely conductive
heat fluxes. We also introduce a dimensionless number denoting the ratio between the droplet’s
maximal sensible heat stored within it and its latent heat of vaporization

Ste∗
0 = L

cp,p�T0
. (10)

This dimensionless number could be termed a modified Stefan number, adapted to the formulation
presented here. By applying a dimensional analysis based on the similarity between mass and heat
equation, we may determine that Sh = Sh(Rep, Sc) and Nu = Nu(Rep, Pr); correlations for both
Sherwood and Nusselt numbers were found experimentally for moderate Reynolds numbers [28],

Sh = 1 + 0.276 Re1/2
p Sc1/3,

Nu = 1 + 0.276 Re1/2
p Pr1/3, (11)

and will be adopted in the present study.
Hence, we may model the complete dynamic and thermal behavior of a Lagrangian droplet in

the vicinity of Burgers vortices in terms of four state variables Xp = [x̄p, ūp, d2
p, θp]. The complex

coupling between the external vortex-induced forcing and the droplet’s response gives rise to a
nonlinear dynamic system

Ẋ p = F (X p, Ẋ p, . . .). (12)

We proceed to analyze the equilibrium state Xp,eq of such a system.

III. STEADY STATE

The existence of a condensation core within the vortex generates a stable equilibrium state
wherein the droplet stabilizes at the point of transition from condensation conditions to evaporation
conditions, as shown in paper I. This steady orbit req, given implicitly by Cm(req) = 0, is distinct
from the steady orbit of solid particles around the same vortex, where the flow-induced and
centrifugal forces acting on the particle are balanced [2]. However, coupling between carrier flow
properties and condensation core size was found in paper I using a reduced model, applicable only
for moist air and in the limit of small Prandtl numbers Pr � 1, and linear drag fd = 1. Using
the extended model presented here, one may state that, generally, the droplet’s relative azimuthal
velocity vanishes,

ūp,eq ēφ = ū f (x̄p,eq )ēφ. (13)

The rest of the state variables must maintain

Cm(x̄p,eq, θp,eq) = 0, θp,eq = θ f (x̄p,eq) (14)

such that Ẋp,eq(Xp,eq) = 0. The axisymmetry constraint posed by the vortex thus yields a periodic
equilibrium where x̄p,eq = reqēr + φēφ ∀φ ∈ [0, 2π ], and req could be extracted implicitly using
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FIG. 1. Condensation core size req as a function of the vortex Euler number Eu at different thermodynamic

conditions, represented by the thermochemical parameter κ = − T0R̄
L ln(χ∞). The black line demonstrates

req(Eu) for moist air at typical room conditions, where the temperature is T0 ≈ 300 K, the relative humidity is
RH ≈ 0.5, and κ ≈ −0.05.

Eq. (14):(
1 − exp

(− 1
2 r2

eq

)
req

)2

+ Ei

(
−1

2
r2

eq

)
− Ei

( − r2
eq

) + ln 2 = 1 − [
1 − T0R̄

L ln(χ∞)
]−2/7

Eu
. (15)

Two nondimensional parameters determine the condensation core size: the vortex Euler number
Eu, the vortex-induced pressure drop (see the detailed derivation in paper I), and the condensation
factor

κ = −T0R̄

L
ln(χ∞), (16)

dictated by the carrier fluid and droplet thermochemical properties. Figure 1 demonstrates how
the size of the condensation core req changes as a function of Eu at various values of κ . As
the condensation factor diminishes, either due to a temperature drop or in the limit χ∞ → 1,
condensation is initiated inside the vortex core even for low Eu values; at the other limit κ → 1,
even significant pressure drops result in a small condensation core. The condensation factor and
the condensation core size are sensitive to changes in the vapor pressure ratio χ∞. Rather small
changes could decrease κ by orders of magnitude and thus significantly change the size of the
condensation core or eliminate it altogether. On the other hand, the droplet substance’s latent
heat of evaporation and molar weight dictate the temperature dependence. In the case of water
droplets at room temperatures, the condensation factor is practically independent of the temperature
since R̄/L ≈ 10−4. However, temperature changes could affect the condensation core when their
magnitude is comparable to R̄/L, mainly when dealing with lighter substances having low heat of
evaporation, e.g., hydrogen.

Equation 14 also allows one to estimate the droplet diameter at equilibrium. Since ūp,eq =
ū f (req), the steady-state diameter is

d2
p,eq − fd

(
d2

p,eq

)
Stk0ω2

p,eq(req, Rev )
= 0, (17)

where ωp,eq is the droplet angular velocity at equilibrium described in paper I. Here the diameter
is given implicitly due to the effect of the nonlinear drag coefficient. Notably, nonlinear drag does
not alter the droplet rotation frequency as its tangential velocity relative to the vortex-induced flow
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(a) (b)

FIG. 2. Droplet equilibrium parameters as a function of vortex Reynolds number Rev and condensation
core size req. (a) Droplet equilibrium Stokes number Stkeq. Solid lines present the solution while accounting
for nonlinear drag, whereas the dotted lines present the solution for pure Stokesian drag fd = 1. (b) Droplet
equilibrium Reynolds number Rep,eq (left-hand-side vertical axis) and, correspondingly, equilibrium drag factor
fd,eq (right-hand-side vertical axis).

is zero; nonetheless, the enhanced radial drag might lead to a reduced equilibrium diameter. Using
the equilibrium droplet size, we may define an equilibrium Stokes number Stkeq, i.e., the droplet’s
Stokes number when at equilibrium, as

Stkeq = ρpd2
0

18ρ f δ2
d2

eq = Stk0d2
eq. (18)

Likewise, we may define the equilibrium droplet Reynolds number Rep,eq, i.e., the droplet’s relative
Reynolds number when at equilibrium, as

Rep,eq = Rep(req, Stkeq) = req

√
18

ρ f

ρp
Stkeq. (19)

Figure 2 illustrates both the equilibrium Stokes number [Fig. 2(a)] and equilibrium droplet
Reynolds number [Fig. 2(b)] as a function of the vortex Reynolds number and condensation
core size; Fig. 2(b) also portrays the drag factor fd,eq = 1 + 0.15 Re0.687

p,eq corresponding to each
equilibrium droplet Reynolds number. As the vortex circulation increases, Stkeq and Rep,eq decrease;
smaller and lighter droplets will stabilize at the condensation core edge due to increased centrifugal
forces acting on them. Specifically, somewhat counterintuitively, both the drag coefficient and the
actual drag force are reduced and tend towards a linear behavior as the vortex intensifies. Oppositely,
an increase in condensation core size leads to larger and heavier droplets stabilizing around it as the
centrifugal force decreases. The Stkeq and Rep,eq may increase by up to four orders of magnitude
when req is increased by one order of magnitude due to changes in the thermodynamic conditions.
The dotted line shows equilibrium Stokes results for purely linear drag fd = 1. The linear and
nonlinear models start to diverge for larger condensation cores and low-intensity vortices, showing
that nonlinear drag effects are dominant only for large droplets.

The last condition for a steady state posed by Eq. (14) is a thermal condition; the droplet must
remain at thermal equilibrium with its surrounding, where both mass and heat fluxes to the droplet
vanish, and thus convection effects would not change the droplet’s steady-state behavior. However,
convection would affect the droplet’s transient response to small perturbations near its equilibrium
state and decrease its settling time. Figure 3 presents the convection nondimensional numbers, Sh
and Nu given by Eq. (11), as a function of Rep,eq and the corresponding diffusion parameters
Sc for mass and Pr for heat transfer. The extent to which convection might influence the droplet
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FIG. 3. Nondimensional mass (Sh) and heat (Nu) convection numbers at equilibrium as a function of
equilibrium droplet Reynolds number Rep,eq and the corresponding diffusion ratios Sc and Pr.

near-equilibrium dynamics is illustrated here. For example, at reference values of Schmidt and
Prandtl numbers Sc = Pr = 1, namely, the thermal, momentum, and mass diffusivities are equal,
convection enhances the transport by 10% (for small condensation cores and high-circulation vor-
tices) to 25% (for large condensation cores and low-circulation vortices). When the diffusive ratios
are one order of magnitude smaller Sc ≈ Pr ≈ 0.1, convective effects are confined to 2.5%. Here
the droplet response is dominated by diffusive transport and thus tends toward the purely diffusive
dynamic model presented in paper I. Following the discussion presented on the droplet’s steady-state
characteristics, we progress by analyzing the complete transient response of the nonlinear system
describing the coupled motion, mass transport, and heat transfer of a Lagrangian droplet in a flow
field induced by a Burgers vortex.

IV. TRANSIENT RESPONSE

Aiming to study the dynamic system response, the nonlinear ordinary differential equation
system Ẋp = F (Xp, Ẋp, . . .) is solved numerically using an adaptive time-stepping fourth-order
Runge-Kutta scheme. The basic setup is similar to the one described in Sec. IV of paper I: a
single Lagrangian droplet released at x̄p,0 = r0ēr , radial symmetry x̄p = rpēr , no-slip condition
ūp,0 = ū f (r0), computational domain of r � 10, and droplet diameter limiter dmin = 0.1d0. The
introduction of the energy equation requires an additional initial condition; we assume here that
initially the droplet is at thermal equilibrium with its surroundings θp(t = 0) = θ f (r0). As we seek
the system response relative to its equilibrium state, we renormalize the state variables r̄ = rp/req,
d̄2 = d2

p/d2
p,eq, and θ̄ = θp/θp,eq with respect to the equilibrium state, i.e., set their steady-state

values to 1. Moreover, we fix the carrier flow characteristics such that the condensation and viscous
vortex cores are equal in size, maintaining req = 1. Thus the nondimensional pressure drop is set to
Eu = 0.2 and correspondingly the condensation factor to κ = 0.0302.

Two types of droplets, chosen as representative limiting cases, will be analyzed: droplets whose
initial size is two orders of magnitude smaller than their steady-state size Stk0 = 0.01 Stkeq and
droplets whose initial size is one order of magnitude larger than their steady-state size Stk0 =
10 Stkeq. Henceforth they are referred to as small droplets and large droplets accordingly. These
cases might offer a preliminary model for droplet-vortex interactions of scientific and engineer-
ing importance; one might model the dynamics of tiny droplets which have nucleated within
vortex-induced condensation regions, while the other might capture the droplet scavenging effects
demonstrated by some coherent vortical structures.
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(a) (b) (c)

(d) (e) (f)

FIG. 4. Radial trajectories of droplets placed at different radial locations r0 (marked by open circles)
relative to the center of a varying intensity Burgers vortex. Two limiting initial droplet size cases were
considered: (a)–(c) droplets whose initial size is smaller than their equilibrium size Stk0 = 0.01 Stkeq and
(d)–(f) droplets whose initial size is larger than their equilibrium size Stk0 = 10 Stkeq. Three vortex intensities
were studied: (a) and (d) Rev = 50, (b) and (e) Rev = 100, and (c) and (f) Rev = 200. The dotted line marks
the droplet’s equilibrium orbit req, whereas the dashed line represents the solid particle equilibrium orbit
corresponding to the droplet’s initial size.

A. Settling and clustering

The clustering of droplets in the presence of a vortex-generated condensation core was presented
in paper I; induced by the transition from condensation inside the core to evaporation outside it,
this mechanism may lead the droplets to oscillate around and subsequently relax into a state of
steady rotation about the edge of the condensation core. However, being driven by mass transport
to and from the droplets, the timescale and onset of clustering depend on both droplet and vortex
properties. To delineate this interaction, Fig. 4 illustrates the radial trajectories of small and large
droplets initially placed at different radial locations r0 relative to the center of varying intensity
(Rev = 50, 100, 200) Burgers vortices. Considering that the carrier flow characteristics maintain
req = 1 and using Fig. 2, within such vortices the droplets’ equilibrium Stokes numbers are Stkeq =
2.6 × 10−2, 6.5 × 10−4, 1.6 × 10−4, respectively.

The small droplets [Figs. 4(a)–4(c)] are scattered between the center of the core and its proximity
(r0 = 0.01–1.5), while the large droplets [Figs. 4(d)–4(f)] are placed within the core (r0 = 0.5),
evenly spaced outside it r0 = 1–5. Reference values of Schmidt and Prandtl numbers Sc = Pr = 1
are used, namely, we assume equal thermal, momentum, and mass diffusion timescales. The
modified Stefan number is set to a reference value of Ste∗

0 = 5, which roughly corresponds to a
water droplet (L ≈ 2000 and cp,p ≈ 4) at room temperature (�T0 ≈ 100).

Figure 4 highlights the characteristic behavior of small droplets; they are pulled toward the center
of the core, grow in mass, and eventually are ejected outward. The ejection time and consequently
settling times are dictated by a balance between radial inward-directed flow and centrifugal forces.
Thus, droplets originating closer to the center of the vortex remain within the core longer as they
accumulate enough mass to escape the radial suction, whereas higher vortex intensity shortens the
ejection delay due to increasing centrifugal forces. Some droplets initially positioned outside the
core manage to reach equilibrium rather than completely evaporate. The size of this scavenging
region is controlled by vortex intensity, as the evaporation rate outside the core varies with Rev due
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(a) (b)

(c) (d)

FIG. 5. Time-dependent (a) radial locations, (b) diameters, and (c) and (d) temperatures of small (Stk0 =
0.01 Stkeq) liquid droplets in the vicinity of Burgers vortices. The droplets are initially located at the vortex
center r0 = 0.01 as their full dynamics are examined when under varying transfer regimes and a constant
modified Stefan number Ste∗

0 = 5. Results for the reference transfer regime, where all diffusive timescales are
equal Pr = Sc = 1, are illustrated by solid black lines. Correspondingly, dashed and dotted lines present results
for varying Prandtl and Schmidt numbers.

to forced convection. Vortex intensity also sets the characteristic clustering time and frequency of
oscillations around the equilibrium, which changes by order of magnitude from t ≈ 10 at Rev = 50
to t ≈ 1 at Rev = 200. The oscillation amplitude changes as well; at Rev = 200 it is amplified
to such an extent that the innermost droplet is ejected outside the core and evaporates without
reaching a steady state. Such dynamics could be significant when considering that, typically, droplet
nucleation flux tends to a maximum at the center of the core, where the temperature is lowest, and
rapidly decays when moving away from it as the temperature rises. Thereupon, Fig. 5(c) suggests
that the number and total mass of droplets reaching a stable state following their nucleation within
the core could actually decrease when increasing the vortex circulation.

Large droplets exhibit profoundly distinct dynamic patterns; due to their initial inertia, they are
less affected by mass transport in the short timescale and respond as solid particles. Regardless
of vortex intensity and initial location, large droplets cluster near the solid particle equilibrium
(denoted in Fig. 4 by a black dashed line; see Sec. V of paper I) after a timescale comparable to
the vortex timescale t ≈ 1. The clustered droplets subsequently relax together toward the droplet
equilibrium. An increase in vortex intensity increases the oscillation frequency and shortens the
relaxation time but enhances the evaporation rate; Fig. 4(f) exemplifies this enhancement, wherein
all droplets completely evaporate rather than cluster around the core. As for small droplets, one
may note that the number and total mass of droplets being scavenged by the vortex decrease and
even completely vanish when the vortex intensity is increased. Generally, Fig. 4 reveals that vortex
intensity and initial droplet location do not alter the main characteristics of its dynamic response
but alter its timescale; such changes could lead to droplet evaporation before reaching equilibrium.
Thus we fix these parameters henceforth; the vortex Reynolds number is set to Rev = 100 while
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releasing the droplets at locations characteristic of their initial size: small droplets from the vortex
center r0 = 0.01 and large droplets from the solid particle equilibrium.

B. Coupled thermal response

We proceed to analyze the coupling between the droplet’s dynamic and thermal response by
changing the carrier fluid Prandtl and Schmidt numbers, i.e., changing the ratios of timescales
characteristic of mass, momentum, and heat diffusion. The system’s sensitivity to changes in the
transfer regime is examined as the nondimensional diffusive numbers are changed by up to one
order of magnitude (Pr/Sc = 0.1–10) relative to the reference case, Pr = Sc = 1; sensitivity to
small changes in diffusion time (Pr/Sc = 0.75–1.25) is tested as well. The latter analysis may hold
particular significance as it is common to take crude estimations for the diffusive numbers rather
than using exact values; e.g., the Prandtl and Schmidt values for water droplets in room temperature
air are Pr = 0.71 and Sc = 0.63, whereas unity values Pr = Sc = 1 often used in such conditions.

Figures 5(a)–5(d) present the transient response of initially small droplets under various transfer
regimes. Changes in the diffusive numbers affect the dynamic [Fig. 5(a)] and mass [Fig. 5(b)]
response linearly, while their influence on the thermal [Fig. 5(c)] response is nonmonotonic. When
either Pr or Sc decreases, steady mass transfer (here condensation inside the core) is accelerated
and vice versa. A decrease in Sc implies that mass diffusivity is less limited by viscous dissipation,
and thus the mass flux generated at a given concentration gradient is higher. On the other hand,
a decrease in Pr leads to an increased heat flux (in this case, to the droplet) due to higher
thermal diffusivity or lower viscosity. Thus, the heat-consuming phase change is less limited by
viscous dissipation, i.e., the carrier fluid allows a higher heat flux to the droplet interface and the
condensation process stabilizes at a faster steady-state rate. The dynamic response follows the mass
response; droplets that condense faster are quicker to eject out of the core and vice versa. The
extreme cases, i.e., Pr = 10 and Sc = 10, exemplify this coupling as condensation is retarded to
such an extent that the typical ejection time is almost one order of magnitude longer than the vortex
characteristic timescale.

However, Fig. 5(c) reveals that similar dynamic responses might stem from fundamentally
different thermal behavior. Dictated solely by the Lewis number Le = Sc

Pr , the droplet’s initial
thermal response is much shorter than the dynamic and mass response timescales. As evident
in the zoomed-in view in Fig. 5(d), its characteristic time changes from 1 × 10−5 (Le = 100) to
1 × 10−4 (Le = 0.01). After stabilizing at values dictated by the Lewis number, the coupling to
the dynamic response causes a divergence between the Prandtl-modified and Schmidt-modified
cases. Lower Pr values amplify the effect of the droplet’s dynamic fluctuations and allow sig-
nificant undamped thermal fluctuations of high amplitude and frequency. On the other limit,
higher Pr values suppress the condensation and do not allow substantial temperature differences
between the droplet and its surrounding. Hence, it also suppresses both the dynamic and ther-
mal responses; even when the droplet starts escaping the core, its temperature response remains
damped.

Curiously, systems of lower Sc numbers exhibit significant dynamic responses which do not
lead to substantial thermal fluctuations. Unlike low Pr systems, the enhanced mass transfer allows
condensation to be sustained even without significant temperature gradients, as the mass flux is less
limited and thus influenced by the droplet temperature. Using the same reasoning, high Sc systems
must maintain large temperature gradients in order to sustain steady-state evaporation. As evident
in Fig. 5, a droplet under such conditions remains in the vortex center and steady-state condensation
is maintained until t = 8; only then the droplet accumulates enough mass to escape the core, and
the rapid dynamic response is followed by a sharp, undamped, temperature change.

The large droplets’ response to changes in the transfer regime generally matches the one
exhibited for small droplets, as shown in Fig. 6. Enhanced mass or thermal diffusion shortens the
settling times and increases the oscillation frequency, whereas diffusion retardation dampens the
dynamic response. However, Fig. 6 also demonstrates the nonmonotonic coupling and confluence of
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(a) (b)

(c) (d)

FIG. 6. Time-dependent (a) radial locations, (b) diameters, and (c) and (d) temperatures of large (Stk0 =
10 Stkeq) liquid droplets in the vicinity of Burgers vortices. The droplets are initially located at the solid particle
equilibrium point r0 = 2.89, denoted by a dash-dotted horizontal line; their full dynamics are examined under
varying transfer regimes and a constant modified Stefan number Ste∗

0 = 5. Results of the reference transfer
regime, where all diffusive timescales are equal to Pr = Sc = 1, are illustrated by black solid lines. The droplet
equilibrium state is marked by a vertical dash-dotted line, while colored dashed and dotted lines present results
for varying Prandtl and Schmidt numbers, respectively.

the transport phenomena in such systems. While small perturbations in the diffusive numbers merely
shift the system’s characteristic response time, order-of-magnitude changes might completely alter
its response. Specifically, retardation or acceleration of the diffusive phenomena could lead to an
overdamped or underdamped system; both may result in the droplet straying from its equilibrium
state. The coupling between heat transfer and dynamic behavior is illustrated in Fig. 6; for Pr = 0.1,
the evaporation outside the core is accelerated by the enhanced heat transfer to such an extent that the
droplet completely evaporates before reaching equilibrium. On the other end, when retarding either
diffusive mechanism, the droplets respond almost as if they were solid particles. One may note that,
as expected, the initial thermal response [Fig. 6(d)] retains its dependence on the Lewis number.
Nevertheless, its characteristic time is longer by up to three orders of magnitude, between t = 0.01
and t = 0.1, matching the scale difference of initial size. The droplet’s substance latent heat of
vaporization L could also alter its thermal response, together with the entire coupling between the
transport phenomena. In our model, the latent heat is normalized by the maximal potential for
sensible heat storage in the droplet prior to the onset of boiling; this ratio is the modified Stefan
number Ste∗

0, introduced here in Eq. (10). The effect of latent heat may be analyzed using Fig. 7,
presenting solutions obtained for both small and large droplets of different Stefan numbers at the
reference values of the transfer coefficients Pr = Sc = 1. For substances of lower latent heat, i.e.,
lower Stefan numbers, we note a decrease in the response time for both large and small droplets.
Since less heat is consumed at the interface during the phase change, it transforms to sensible heat,
leading to a larger temperature gradient between the droplet and its environment. This temperature
gradient supports higher heat fluxes, which in turn accelerates the phase change rate; this may
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(a) (b)

(c) (d)

FIG. 7. Time-dependent radial locations and temperatures of small [(a) and (b) Stk0 = 0.01 Stkeq] and large
[(c) and (d) Stk0 = 10 Stkeq] liquid droplets in the vicinity of Burgers vortices; their dynamic and thermal
response are examined when under reference transfer regime Pr = Sc = 1 and varying modified Stefan number
Ste∗

0. Small droplets are initially located at the vortex center r0 = 0.01, whereas the large droplets are at their
solid particle equilibrium point r0 = 2.89. The droplet equilibrium state is marked by a vertical dash-dotted
line, while results for the reference latent heat ratio, where Ste0 = 5, are illustrated by black solid lines.

lead to complete droplet evaporation, as evident in Figs. 7(c) and 7(d). While low latent heat
amplifies the system’s response, high latent heat dampens it. Here the phase change is retarded due
to higher energetic costs associated with it, and the droplets tend to remain in their initial locations:
Small droplets remain trapped inside the core longer, while large droplets remain near their particle

(a) (b)

FIG. 8. Time-dependent diameters of small (Stk0 = 0.01 Stkeq, green lines) and large (Stk0 = 10 Stkeq,
gray lines) liquid droplets in the vicinity of Burgers vortices under reference thermochemical conditions Pr =
Sc = 1 and Ste∗

0 = 5. The effects of nonlinear drag and convection on the mass transport to and from the droplet
are demonstrated by comparing the full nonlinear model (solid lines) to linear-drag (dashed lines) and purely
diffusive (dotted lines) models. Small droplets are initially located at the vortex center r0 = 0.01, whereas the
large droplets are at their solid particle equilibrium point r0 = 2.89. A horizontal dash-dotted line marks the
droplet equilibrium diameter.
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FIG. 9. Non-linear transport correction factors in the vicinity of Burgers vortices; the time-dependent
diameters of the phase-changing droplets were presented in Fig. 8. The droplets’ transient drag factor fd (t )
is illustrated by dashed lines, while dotted lines depict their convection correction terms Sh and Nu.

equilibrium. Following our analysis of the parameters dictating the complex coupling between the
transport phenomena, in the following section we complete our parametric study by estimating the
extent to which it is dictated by nonlinear processes.

C. Convection and nonlinear drag

In this section we examine the influence of nonlinear drag and nonlinear heat and mass con-
vection on the dynamic response of droplets in the vicinity of Burgers vortices. To that aim,
Fig. 8 compares the mass response of small and large droplets under three different assumptions:
the full nonlinear model (solid lines), linear drag fd = 1 (dashed lines), and zero heat and mass
convection Sh/Nu = 1 (dotted lines). Specifically, comparing the latter two to the reference case
might uncover the extent to which these nonlinearities alter the mass response specifically and
generally the system’s response. Figure 8 is supplemented by Fig. 9, illustrating the time-dependent
value of the nonlinear terms fd , Sh, and Nu of the droplets when circulating the vortex. On a general
note, Fig. 8 reveals that incorporating nonlinearities does not significantly change the droplet’s
response. In the case of large droplets, the addition of nonlinear drag is more dominant, causing
a slight delay (roughly one order of magnitude shorter than the vortex timescale) in the droplet
response. Although peaking at an increase of 3%, as evident in Fig. 9, its effect on the dynamics
is more significant than convection effects, which reaches almost 10% at the early stage of the
droplet motion. For small droplets, both nonlinear drag and convection are rather insignificant;
the accumulated effect of convection, here the dominant of the two, adds up to a delay of about
t = 0.01 in the droplet’s response, which is negligible compared to the vortex timescale. Finally,
Fig. 9 illustrates the convergence of both cases to the same steady state, which depends on Stkeq;
here the nonlinear factors are negligible when the droplet is at equilibrium. However, there might
exist systems for which nonlinear effects at equilibrium are more pronounced, as predicted in Figs. 2
and 3; under such conditions, incorporating nonlinear effects might alter the system’s response to a
greater extent.

V. CONCLUSION

This series of papers investigated the complex coupling between liquid droplet motion and
the thermodynamic gradients generated by vortical flow structures by conducting a mathematical
analysis of Lagrangian droplet dynamics within a Burgers vortex. The role of mass transport and
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phase change on the dynamics of droplets was the focus of paper I. The present study broadened the
scope of the analysis; the thermal equilibrium assumption was relaxed, allowing a complete analysis
of the role of heat transfer governing the dynamics and phase-change response of liquid droplets in
the vicinity of Burgers vortices.

By approximating the mass transfer coefficient term, two nondimensional parameters were found
to determine the condensation core radius, i.e., the droplet steady-state orbit. The two are the vortex
Euler number Eu, the normalized pressure drop due to the vortex stretching, and the condensation
factor κ , denoting the condensation potential stored in the carrier fluid. The influence of the two
was mapped, revealing the thermodynamic conditions in which the condensation core emerges
for a given vortex intensity. Droplet steady-state properties were also mapped: Stokes number
Stkeq, Reynolds number Rep,eq, drag factor fd,eq, and convection coefficients Sh/Nu, serving as
an indication for the droplet behavior near its equilibrium state. Our analysis revealed that as the
vortex circulation intensifies, the drag coefficient and the actual drag force are reduced and tend
towards a linear behavior. This nonintuitive drag reduction stems from increased centrifugal forces
acting on the droplets, leading to the stabilization of smaller and lighter droplets at the condensation
core edge compared to less energetic vortices.

The transient response of the nonlinear droplet-vortex system was studied as well; chosen as
representative limiting cases, we analyzed the dynamics of initially large droplets (Stk0 = 10 Stkeq)
and initially small droplets (Stk0 = 10 Stkeq). The vortex-induced condensation core pulls the small
droplets toward the center of the core, where they grow in mass and eventually are ejected outward
and may cluster around the core. The ejection and settling times are dictated by a balance between
radial inward-directed flow and centrifugal forces and thus strongly depend on vortex intensity
and carrier fluid thermochemical properties. On the other hand, independent of vortex intensity,
large droplets cluster near the solid particle equilibrium after a timescale comparable to the vortex
timescale; due to their large inertia, heat or mass transport may alter their dynamics only at the
long timescale. Hence, the ratio between the diffusive timescales and the latent heat released during
phase change was studied as well.

An analysis of the coupled dynamic-thermal response to fundamentally different transport
regimes, represented by the nondimensional diffusive numbers (Sc and Pr) and latent heat ratio
(Ste∗

0), was offered. This allowed us to dissect the coupled transport mechanism and uncover the
timescale characteristic of each. We found that the droplet’s initial thermal response is solely
determined by the Lewis number; moreover, its characteristic time is much shorter than the
timescales associated with mass or momentum transfer. However, the thermal response coupling
to the dynamic behavior may cause a divergence in systems of equal Lewis numbers when changing
the Prandtl number compared to changing the Schmidt number. Considering droplets may undergo
various thermally activated processes, e.g., vapor-solid nucleation and chemical reactions, our
preliminary results suggest that accurate estimations and modeling of the diffusion-driven processes
is critical, as their strong coupling to their dynamic response could lead to substantial differences
between seemingly similar cases. Furthermore, we evaluated the magnitude to which convection
and nonlinear drag alter the coupled dynamic-thermal response. For the conditions examined in
the present paper, incorporating nonlinearities did not significantly change the droplet’s response;
it may cause a slight delay (roughly one order of magnitude shorter than the vortex timescale)
in the dynamic response of large droplets. Nonetheless, the steady-state analysis suggests there
may exist thermodynamic conditions for which the incorporation of nonlinear effects could be
substantial. Thus, the results presented here offer a guideline for future studies, allowing one
to roughly estimate whether nonlinear transport may be substantial in a given droplet-laden
vortical flow.

The models derived and presented in this series of papers suggest a distinct outlook on the
complex dynamic response of droplets in a vortical flow vicinity. This approach allows the isolation
of the interactions between mass transport, heat transfer, and laminar vortex flows; such flows might
serve as an exploratory model, approximating the dynamics of droplets within various turbulent flow
fields. This approach may be extended to include various nucleation mechanisms (freezing, melting,
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and droplet condensation) and the triple-phase behavior of Lagrangian particles, which are currently
being investigated.

ACKNOWLEDGMENT

This research was supported by the Israel Science Foundation (Grant No. 1762/20).

[1] O. Avni and Y. Dagan, Preceding paper, Droplet dynamics in Burgers vortices. I. Mass transport, Phys.
Rev. Fluids 8, 083604 (2023).

[2] B. Marcu, E. Meiburg, and P. K. Newton, Dynamics of heavy particles in a burgers vortex, Phys. Fluids
7, 400 (1995).

[3] V. P. Carey, Liquid-Vapor Phase-Change Phenomena, 3rd ed. (CRC, Boca Raton, 2020).
[4] J. Schwarz and J. Smolík, Mass transfer from a drop—I. Experimental study and comparison with existing

correlations, Int. J. Heat Mass Transf. 37, 2139 (1994).
[5] M. Kulmala, T. Vesala, J. Schwarz, and J. Smolik, Mass transfer from a drop—II. Theoretical analysis of

temperature dependent mass flux correlation, Int. J. Heat Mass Transf. 38, 1705 (1995).
[6] R. Kurose, A. Fujita, and S. Komori, Effect of relative humidity on heat transfer across the surface of an

evaporating water droplet in air flow, J. Fluid Mech. 624, 57 (2009).
[7] M. Masoudi and W. A. Sirignano, The influence of an advecting vortex on the heat transfer to a liquid

droplet, Int. J. Heat Mass Transf. 40, 3663 (1997).
[8] M. Masoudi and W. A. Sirignano, Collision of a vortex with a vaporizing droplet, Int. J. Multiphase Flow

26, 1925 (2000).
[9] J. Bellan and K. Harstad, The dynamics of dense and dilute clusters of drops evaporating in large, coherent

vortices, Symp. (Int.) Combust. 23, 1375 (1991).
[10] F. Fichot, K. Harstad, and J. Bellan, Unsteady evaporation and combustion of a drop cluster inside a

vortex, Combust. Flame 98, 5 (1994).
[11] K. Harstad and J. Bellan, Behavior of a polydisperse cluster of interacting drops evaporating in an inviscid

vortex, Int. J. Multiphase Flow 23, 899 (1997).
[12] K. Harstad and J. Bellan, Evaluation of commonly used assumptions for isolated and cluster heptane

drops in nitrogen at all pressures, Combust. Flame 127, 1861 (2001).
[13] H. Niazmand and M. Renksizbulut, Heat transfer from a rotating sphere interacting with a vortex, Int. J.

Heat Mass Transf. 47, 2269 (2004).
[14] Y. Dagan, E. Arad, and Y. Tambour, On the dynamics of spray flames in turbulent flows, Proc. Combust.

Inst. 35, 1657 (2015).
[15] Y. Dagan, E. Arad, and Y. Tambour, The evolution of local instability regions in turbulent non-premixed

flames, J. Fluid Mech. 803, 18 (2016).
[16] S. Taamallah, Y. Dagan, N. Chakroun, S. J. Shanbhogue, K. Vogiatzaki, and A. F. Ghoniem, Helical vortex

core dynamics and flame interaction in turbulent premixed swirl combustion: A combined experimental
and large eddy simulation investigation, Phys. Fluids 31, 025108 (2019).

[17] N. W. Chakroun, S. J. Shanbhogue, Y. Dagan, and A. F. Ghoniem, Flamelet structure in turbulent premixed
swirling oxy-combustion of methane, Proc. Combust. Inst. 37, 4579 (2019).

[18] Y. Dagan, N. W. Chakroun, S. J. Shanbhogue, and A. F. Ghoniem, Role of intermediate temperature
kinetics and radical transport in the prediction of leading edge structure of turbulent lean premixed flames,
Combust. Flame 207, 368 (2019).

[19] Y. Dagan, D. Katoshevski, and J. B. Greenberg, Particle and droplet clustering in oscillatory vortical flows,
Atomization Spray. 27, 629 (2017).

[20] Y. Dagan, J. Greenberg, and D. Katoshevski, Similarity solutions for the evolution of polydisperse droplets
in vortex flows, Int. J. Multiphase Flow 97, 1 (2017).

083605-15

https://doi.org/10.1103/PhysRevFluids.8.083604
https://doi.org/10.1063/1.868778
https://doi.org/10.1016/0017-9310(94)90315-8
https://doi.org/10.1016/0017-9310(94)00302-C
https://doi.org/10.1017/S0022112009005862
https://doi.org/10.1016/S0017-9310(96)00382-1
https://doi.org/10.1016/S0301-9322(99)00107-X
https://doi.org/10.1016/S0082-0784(06)80403-0
https://doi.org/10.1016/0010-2180(94)90194-5
https://doi.org/10.1016/S0301-9322(97)00011-6
https://doi.org/10.1016/S0010-2180(01)00292-9
https://doi.org/10.1016/j.ijheatmasstransfer.2003.11.021
https://doi.org/10.1016/j.proci.2014.07.044
https://doi.org/10.1017/jfm.2016.490
https://doi.org/10.1063/1.5065508
https://doi.org/10.1016/j.proci.2018.06.181
https://doi.org/10.1016/j.combustflame.2019.06.004
https://doi.org/10.1615/AtomizSpr.2017019152
https://doi.org/10.1016/j.ijmultiphaseflow.2017.07.014


ORR AVNI AND YUVAL DAGAN

[21] Y. Dagan, D. Katoshevski, and J. B. Greenberg, Similarity solutions for the evolution of unsteady spray
diffusion flames in vortex flows, Combust. Sci. Technol. 190, 1110 (2018).

[22] Y. Dagan, Settling of particles in the vicinity of vortex flows, Atomization Spray. 31, 33 (2021).
[23] O. Avni and Y. Dagan, Dynamics of evaporating respiratory droplets in the vicinity of vortex dipoles, Int.

J. Multiphase Flow 148, 103901 (2022).
[24] O. Avni and Y. Dagan, Dispersion of free-falling saliva droplets by two-dimensional vortical flows, Theor.

Comput. Fluid Dyn. 36, 993 (2022).
[25] C. T. Crowe, J. D. Schwarzkopf, M. Sommerfeld, and Y. Tsuji, Multiphase Flows with Droplets and

Particles, 2nd ed. (CRC, Boca Raton, 2011).
[26] M. Kulmala, A. Majerowicz, and P. E. Wagner, Condensational growth at large vapour concentration:

Limits of applicability of the mason equation, J. Aerosol Sci. 20, 1023 (1989).
[27] M. Kulmala and T. Vesala, Condensation in the continuum regime, J. Aerosol Sci. 22, 337 (1991).
[28] N. A. Fuchs, in Evaporation and Droplet Growth in Gaseous Media, edited by R. S. Bradley (Pergamon,

London, 1959), Chap. III, pp. 60–67.

083605-16

https://doi.org/10.1080/00102202.2018.1430030
https://doi.org/10.1615/AtomizSpr.2021035800
https://doi.org/10.1016/j.ijmultiphaseflow.2021.103901
https://doi.org/10.1007/s00162-022-00633-y
https://doi.org/10.1016/0021-8502(89)90752-0
https://doi.org/10.1016/S0021-8502(05)80011-4

