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The present series of papers studies the coupling between transport phenomena and the
dynamic response of droplets in vortical flows. We derive the nonlinear relations between
the vortical flow field, droplet relaxation time, drag forces, and transport phenomena and
analyze the dynamics using a Lagrangian particle tracking method. The present work,
paper I of the series, aims to obtain a more thorough understanding of the role of mass
transport and phase change in the dynamics of droplets in the presence of Burgers vortices.
Such an analytically described flow structure serves here as a model that may capture the
essence of turbulent flows. Our theoretical study highlights the role of three dimensionless
parameters, i.e., the vortex Euler number, the vortex Reynolds number, and the droplet
initial Stokes number, characterizing the droplet transport phenomena in the vicinity of
Burgers vortices. Under certain thermodynamic and hydrodynamic conditions, droplets
may undergo evaporation and condensation when circulating the vortex core due to sharp
changes in the environmental conditions induced by the vortex. The thermodynamic gra-
dients give rise to complex dynamics. Droplets may stabilize around the vortex, revealing
a periodic solution that emerges only when the pressure drop is high enough to generate a
condensation core. This periodic behavior of the dynamic system may suggest droplet clus-
tering induced by phase change, while the emergence of the condensation region reveals a
distinct bifurcation point. Furthermore, the response of solid particles significantly differs
from the droplets’ response; mass transport to and from the droplets inevitably alters their
trajectories relative to particles. The model derived here suggests a distinctive outlook on
the role of mass transport in governing the dynamic response of droplets in vortical flow;
the following paper in the series [O. Avni and Y. Dagan, following paper, Droplet dynamics
in Burgers vortices. II. Heat transfer, Phys. Rev. Fluids 8, 083605 (2023)] focuses on the
role of heat transfer in the equilibrium and transient response of droplet-vortex systems.

DOI: 10.1103/PhysRevFluids.8.083604

I. INTRODUCTION

The interaction between droplets and vortical flows is a complex multiphase problem, as droplets
may be influenced by laminar and turbulent flow structures spanning a wide range of scales [1,2].
The scope of any general analysis is confined by nonlinear coupling between the carrier flow and the
transport of mass, momentum, and heat to the phase-changing droplet. The analysis of such multi-
phase flows using high-fidelity simulations may require the implementation of Lagrangian particle
tracking [3–6]. However, incorporating a detailed model might require high computational costs,
even for relatively simple setups. Nevertheless, some computational studies [7–11] demonstrated
nonintuitive droplet dynamics within vortices, including enhanced settling distances and clustering
due to droplet evaporation and condensation.
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On the other hand, using simplified theoretical flow models, one may employ Lagrangian
methods to track the particle and droplet trajectories and estimate their dispersion [12–16] and
entrapment within coherent flow structures [16–20]. Taking such an approach allows the isolation of
specific transport mechanisms, including Brownian motion [21], oscillatory flows [22–24], aerosol
formation [25], and particle structures [26], while studying their influence on the particle dynamics.

Among the aforementioned theoretical studies, the work of Marcu et al. [17] draws particular
interest. They resolved the dynamics of solid particles in the vicinity of an analytically described
Burgers vortex and found distinct periodic equilibrium trajectories by employing a linear stability
analysis. As an exact solution of the Navier-Stokes equation, the Burgers vortex may serve as a flow
model that constitutes the essence of vortical turbulent flow structures. However, the study of Marcu
et al. [17] concerned solid particles and thus did not incorporate mass transport to the particle and
its coupling to the thermodynamic gradients induced by the flow. Specifically, the shift from droplet
evaporation to condensation and even freezing may be induced by intense vortices and inherently
alter the droplet’s transport characteristics.

In the present series of papers, we revisit the original framework of Marcu et al. [17] to uncover
the underlying physical mechanisms governing the dynamics of droplets within vortical structures.
The effect of transport phenomena on the motion of liquid droplets is studied by tracking the
Lagrangian particle properties in the vicinity of an analytically described Burgers vortex; moreover,
we compare it to the response of solid particles under similar flow conditions. In the present paper
we isolate the influence of mass transport mechanisms on droplet dynamics. The following paper in
the series [27], henceforth referred to as paper II, builds upon foundations laid here and studies the
fundamental role of heat transfer processes on droplet dynamics in the vicinity of Burgers vortices.

A mathematical formulation for the carrier flow and the Lagrangian model is presented in Sec. II.
In Sec. III we analyze the thermodynamics of Burgers vortices and find the parameters influencing
the onset and characteristics of a condensation core that may occur within them. Section IV
presents the dynamics of droplets circulating such condensation cores. The droplets’ trajectories
and diameters are analyzed and studied for various thermodynamic and flow properties. The model
reveals essential features common to multiphase vortex flows, including the possible clustering of
droplets around the vortex condensation core. The results obtained for droplets are compared to the
behavior of solid nonevaporating particles under similar conditions in Sec. V. The implications and
outlook of the present analysis are discussed in Sec. VI.

II. GOVERNING EQUATIONS

The transport of discrete micron-size droplets within a steady, analytically described Burgers
vortex is analyzed here using a Lagrangian approach. The single droplet’s spatial location x̄p,
velocity ūp, and diameter dp are traced and coupled to the local flow ū f , pressure p f , and temperature
Tf fields. We assume the droplets are dispersed and dilute enough such that their motion does not
affect the flow field; furthermore, any potential interactions between droplets are discounted. The
equations for the carrier flow and the Lagrangian droplet are presented in the following sections.

A. Carrier flow

The investigated carrier flow, i.e., the well-known Burgers vortex, describes an axisymmetric
vortical structure under constant axial strain rate σ [28,29]. The velocity field of such flow may be
expressed in cylindrical coordinates as

ũ f ,r = −σ r̃, ũ f ,θ = �

2π r̃

[
1 − exp

(
−σ r̃2

2ν f

)]
, ũ f ,z = 2σ z̃, (1)

where � is the vortex circulation and ν f is the fluid kinematic viscosity. The viscous decay and axial
strain opposing effects give rise to a distinctive vortex viscous core of size δ = √

ν f /σ . We set δ

as the characteristic length and 1/σ as the characteristic timescale and define the vortex Reynolds
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number Rev = �/2πν f . Hence, Eq. (1) may be written in a nondimensional form as

u f ,r = −r, u f ,θ = Rev

r

[
1 − exp

(
−1

2
r2

)]
, u f ,z = 2z. (2)

By introducing Eq. (2) into the Navier-Stokes equations, we may derive the fluid’s pressure
variation due to the vortical flow (see the Appendix)

∇p f = ρ f σν f

p0

[(
u2

f ,θ

r
− u f ,r

du f ,r

dr

)
ēr +

(
d2u f ,θ

dr2
+ 1 − ru f ,r

r

du f ,θ

dr
− 1 + ru f ,r

r2
u f ,θ

)
ēθ

−
(

u f ,z
du f ,z

dz

)
ēz

]
(3)

normalized with respect to the pressure at the origin p0, the stagnation pressure. Notably, the tangen-
tial component zeros as the acceleration and viscous terms cancel each other. Integration of Eq. (3)
from the origin to the abscissa (r, z), while using the exponential integral Ei(x) = ∫ ∞

−x e−ξ /ξ dξ

notation, yields

p f = 1 − ρ f σν f

2p0

[ 
p1︷ ︸︸ ︷
r2 + (2z)2 +

(
Rev

r

[
1 − exp

(
− 1

2
r2

)])2

+


p2︷ ︸︸ ︷
Re2

v

[
Ei

(
− 1

2
r2

)
− Ei(−r2) + ln 2

] ]
. (4)

One may note two distinct contributions to the pressure field: the ideal inviscid pressure term

p1 = 1

2ρ|ū f |2 and the modulation to Bernoulli’s equation due to viscous effects 
p2. We inves-
tigate the droplets’ dynamics near a vortical structure, and thus we may state that r, z � Rev , i.e.,
we assume the pressure changes are induced only by the circulation. Under such an approximation,
Eq. (4) simplifies to

p f = 1 − Eu

⎡
⎣(

1 − exp
( − 1

2 r2
)

r

)2

+ Ei

(
−1

2
r2

)
− Ei(−r2) + ln 2

⎤
⎦, (5)

where

Eu = ρ f σν f Re2
v

2p0
(6)

is the nondimensional vortex Euler number, signifying the ratio between the dynamic pressure drop
and the stagnation pressure p0.

The suggested formulation for the vortex Euler number combines the effects of the vortical flow
(represented by Rev) and the radial suction flow (represented by σν f ) on the dynamic pressure.
Figure 1 demonstrates the relation between Eu and the pressure field around Burgers vortices; an
increase of Eu, by either intensive suction or circulatory flow, manifests in lowers absolute pressures
at the origin of the vortex. In the next section we formulate the coupling between the Lagrangian
droplet dynamics and the derived, analytically described pressure field.

B. Lagrangian equations: Momentum and mass

Maxey and Riley [30] formulated the generalized equations of motion for small particles in
nonuniform unsteady flows; they considered gravity, drag, virtual mass, and the Basset history force.
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FIG. 1. Normalized pressure radial distribution pf (r) for various values of the nondimensional Euler
number Eu, as predicted by Eq. (5).

This study concerns the motion of a small liquid droplet in a gaseous medium; as such, the particle-
medium density ratio is large and the droplet’s characteristic length is much smaller than the vortex
viscous core size. Hence, we neglect the forces due to undisturbed flow, virtual mass, Faxen’s drag
correction, rotational inertia, and particle history terms. Additionally, we do not account for gravity
and assume a linear drag term; the latter influence on the droplet dynamics is examined in paper
II, while the study of gravitational effects is left for future studies. We may now reduce the general
form of the equations to

dx̄p

dt
= ūp, (7)

dūp

dt
= ū f − ūp

Stk0d2
p

, (8)

where x̄p and ūp are the droplet location and velocity vectors in the vortex frame of reference,
respectively, dp is the particle diameter normalized by its initial diameter, and

Stk0 = τp,0

τ f
= σρpd2

0

18ν f ρ f
(9)

is the droplet initial Stokes number, i.e., the ratio between the particle’s initial relaxation time and
flow relaxation time.

The diameter of the Lagrangian particle is governed by mass and heat transfer processes. Kulmala
et al. [31,32] formulated the diffusive mass transfer at the droplet-gas interface for a quasistationary
case while assuming that the medium is an ideal gas, the droplet-gas interface is saturated, and a
zeroth-order mass fraction profiles around the droplet. Although droplet ventilation may enhance
the mass transfer out of the droplet, we aim to isolate the role of mass diffusivity and consider it as
the primary transfer mechanism. In terms of droplet diameter, the mass equation is

d (d2
p )

dt
= 4ρ∗

v,∞
9 Sc Stk0ρ f

ln

(
p f − pv,p

p f − pv,∞

)
, (10)

where Sc is the nondimensional Schmidt number, ρ∗
v,∞ is the vapor ideal gas density in ambient

conditions, pv,p is partial vapor pressure at the particle interface, and pv,∞ is the ambient partial
vapor pressure. The difference between the vapor partial pressure at the interface and the vapor
partial pressure at the far field dictates the mass flux to and from the droplet. Thus, we will estimate
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both by assuming the Lagrangian particle consists of pure liquid water and the gaseous medium
is an air-vapor mixture with a relative humidity of RH. We restrict the scope of our model here in
order to illuminate the physical essence of the phenomena. An extended model is offered in paper
II, applicable to various fluids.

The diffusive driving force in Eq. (10) takes the form

p f − pv,p

p f − pv,∞
= 1 + RHpsat(T0) − psat(Tp)

p f − RHpsat(T0)
, (11)

where Tp is the droplet temperature normalized with respect to the ambient temperature T0. Let
us consider that the droplet temperature is equal to the temperature of the air surrounding it Tp ≈
Tf , i.e., the thermal relaxation time is shorter than the flow’s characteristic relaxation time. This
assumption eliminates the influence of heat transfer to and from the droplet, allowing one to reduce
the number of independent variables and solely focus on mass transport processes. We also consider
the Burgers vortex to be adiabatic; hence, one may couple the temperature field within the vortical
viscous core to the pressure field thereof Tf = (p f )2/7, given by Eq. (5). We may now encapsulate
the intricate impact of the thermodynamic properties varying due to the vortex presence into a single
parameter: the mass transfer coefficient

Cm = RHpsat(T0) − psat
(
p2/7

f

)
p f − RHpsat(T0)

. (12)

The mass transfer coefficient sign and value indicate the nature of the mass transfer. Evaporation
occurs when Cm < 0 and the droplet interface vapor pressure is higher than the far-field pressure.
On the other hand, condensation occurs when Cm > 0 and the far-field vapor pressure is higher
than the droplet interface pressure. The mass flux value is proportional to the transfer coefficient
ṁ ∝ |Cm|. Though relatively simple, the mass transfer coefficient will prove a powerful tool for
studying the transport phenomena in the vicinity of Burgers vortices; the following section analyzes
the influence of both thermodynamic conditions and vortex properties on Cm fields within it, giving
rise to distinctive condensation zones.

III. CONDENSATION CORE

Both ambient thermodynamic conditions and their local variations due to the vortex presence
set the mass transfer coefficient; these variations might alter the thermodynamic conditions to such
an extent that the coefficient changes its sign near the vortex center. Specifically, given the right
conditions, condensation initiates in the vortex viscous core, as exhibited in many natural phe-
nomena and industrial applications. Figures 2–5 illuminate the relation between ambient and local
properties to the evolving vortex condensation core. Mass transfer coefficient radial distributions
at atmospheric pressure p0 = 1 atm, found using Eq. (12), are analyzed for varying vortex Eu
numbers, ambient air temperatures, and relative humidities. Five different Cm distributions induced
by Burgers vortices of varying intensities Eu = 0.1–0.5 are presented in Fig. 2; these vortices
are generated in moist air at an ambient temperature of T0 = 300 K, and the relative humidity is
RH = 70%. Figure 2 illustrates the role of the vortex-generated dynamic pressure drop in dictating
the direction of the mass transfer. As expected, the mass transfer coefficient peaks at the center of the
vortex, where the vortex-induced velocity reaches its maximum values. For Eu < 0.1, the peak mass
transport coefficient Cm(r = 0) is negative, i.e., the vortex is not powerful enough to generate the
condensation core. However, as the vortex Euler number increases, so does the peak mass transport
coefficient, resulting in a larger core and intensified condensation without any change in the far-field
transport conditions. Ambient temperature effects are investigated and presented in Fig. 3; the
temperature varies between T0 = 280–320 K, the vortex normalized intensity is set to Eu = 0.3,
and the air’s relative humidity to RH = 70%. The distributions reveal that all cases share the same
rudimentary characteristics: evaporation at the far field, condensation near the center of the vortex,
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FIG. 2. Mass transport coefficient radial distributions Cm for different vortex Euler numbers Eu, ambient
temperatures of T0 = 300 K, and a relative humidity of RH = 70%. The dashed horizontal line denotes the
condensation-evaporation transition, where Cm = 0.

and a similar point of transition (or condensation core size) between the two. However, one may
note that the transfer coefficient gradients become steeper when increasing the ambient temperature,
especially near the condensation core edge. As expected, the increased temperature results in faster
droplet evaporation far from the vortex, whereas the same increase, while keeping the air’s relative
humidity constant, leads to amplified condensation due to higher vapor mass content near and within
the vortex’s viscous core.

The influence of the air’s relative humidity is demonstrated in Fig. 4, where different Cm radial
distributions are plotted for Eu = 0.3, T0 = 300 K, and relative humidity varying from 50% to
90%. Unlike Fig. 3, the change in relative humidity shifts the entire radial distribution, towards
condensation when increased and towards evaporation when decreased, rather than altering the
distribution shape itself. Higher relative humidities, for example, will result in slower evaporation at
the far field, intensified condensation near the viscous core, and a larger condensation core compared
to drier environments.

FIG. 3. Mass transport coefficient radial distributions Cm for different ambient temperatures T0, a relative
humidity of RH = 70%, and a vortex Euler number of Eu = 0.3. The dashed horizontal line denotes the
condensation-evaporation transition, where Cm = 0.
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FIG. 4. Mass transport coefficient radial distributions Cm for different relative humidities RH, an ambient
temperature of T0 = 300 K, and a vortex Euler number of Eu = 0.3. The dashed horizontal line denotes the
condensation-evaporation transition, where Cm = 0.

Figures 2 and 4 showed that both the air’s relative humidity (or the vapor content within it) and the
vortex intensity set the size of the vortex condensation core; their combined effect is demonstrated
by Fig. 5. Here we may identify how the critical vortex Euler number, marking the onset of
condensation within the vortex, changes as a function of the relative humidity: Lower humidities
demand higher pressure drops inside the vortex for condensation to initiate. The condensation core
quickly surpasses the viscous core (r = 1) in size when the intensity of the vortex is increased
but remains on the scale of δ even for extreme values of Eu. Naturally, the values of the vortex
Euler number are limited by physical consideration. For Eu > 1.4, the pressure at the vortex
center p f (r = 0) drops below the absolute zero, an impossible thermodynamic state in gases;
realistically, the vortex Euler number limit of physically possible Burgers vortices is significantly
lower. Following the discussion presented on the generation of condensation cores, the following
section analyzes the dynamics of Lagrangian water droplets near Burgers vortices sustaining such
conditions.

FIG. 5. Condensation core radius req as a function of the vortex Euler number and the air relative humidity.
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(a) (b)

(c) (d)

FIG. 6. (a) Radial locations, (b) radial velocities, (c) diameters, and (d) angular velocities of water droplets
as a function of time. The droplets had an initial Stokes number of Stk0 = 0.01 and are placed at different
radial locations r0 relative to the center of a Rev = 200 and Eu = 0.3 Burgers vortex. The black dashed line
denotes the equilibrium state in each of the panels: (a) equilibrium trajectory around the condensation core,
(b) zero radial velocity, (c) equilibrium diameter, and (d) steady-state rotation frequency.

IV. DROPLET DYNAMICS

Since we seek to study the dynamics of water droplets near Burgers vortices wherein conden-
sation cores are forming, the air’s thermodynamic properties are fixed at p0 = 1 atm, T0 = 300 K,
and RH = 70%, while we change only the droplet’s (initial location Stk0) and vortex (Eu and Rev)
properties. Each droplet is placed at a radial location xp,0 = r0 relative to the vortex center; due to
the problem’s radial symmetry, the droplet’s tangential location does not influence its dynamics.
Furthermore, a no-slip condition is assumed as the droplet’s initial velocity is set equal to the
local flow velocity. Finally, in order to maintain the physicality of the analysis, the computational
domain is limited to r � 10 and the droplet diameter to 10% of its initial value; droplets crossing
these thresholds are eliminated from the simulation. Far from the vortex center, the radial and axial
velocities tend to infinity, while the mass equation (10) cannot capture the droplet’s complete drying
without imposing an arbitrary threshold over it.

A. Droplet properties

Let us begin by studying the influence of the droplet’s initial conditions. Figure 6 present
the dynamics of identical water droplets (Stk0 = 0.01) placed at different initial radial locations
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r0 = 0.5–5.5 relative to the center of a Burgers vortex. In this case, the vortex Euler number is
Eu = 0.3 and its Reynolds number is Rev = 200. All three outer droplets (r0 = 3.5–5.5) exhibit
similar behavior; they quickly vanish due to intense evaporation as they stray far from the center,
where Cm < 0. Furthermore, Fig. 6(c) reveals that the outer droplets’ evaporation process conforms
well to the D2 law, as d2

p (t ) is a linearly decreasing function throughout the droplets’ lifetime.
Inversely, the inner droplets (r0 = 0.5–2.5) persist and do not evaporate completely; instead, they
cluster around a distinct equilibrium trajectory. The transition from condensation conditions to
evaporation conditions generates this stable equilibrium. The steady trajectory [where up,r = 0
in Fig. 6(b)] perfectly coincides with the vortex condensation core edge req [black dashed line
in Fig. 6(a)], found numerically by solving for Cm(req) = 0. Figure 6(c) showcases the extent to
which condensation inside the vortex alters the droplets’ size; the droplets may grow up to 2 times
in surface area due to condensation when inside the core. However, the added mass leads to the
droplets being ejected from the condensation core as the intensified centrifugal force overcomes the
vortex’s strained radial flow. Once outside the core, the droplets lose mass due to evaporation and
are subsequently pulled back into the condensation core, where they condense again. The droplets
that did not evaporate completely exhibit the same cyclic pattern, albeit the droplet initially located
outside the core (r0 = 2.5) first undergoes evaporation, while the other two (r0 = 0.5, 1.5) first
undergo condensation.

This dynamic response results in the droplets stabilizing around the condensation core edge,
where their mass and diameter remain constant. Using the obtained condensation core size req,
we may estimate the droplet rotation frequency and diameter at equilibrium by balancing the
flow-induced and centrifugal forces [17]. At equilibrium, one may state that the droplet’s tangential
velocity up,θ (req) = ωp,eqreq is equal to the flow’s local velocity u f ,θ (req). Thus, the droplet’s
rotation frequency is

ωp,eq = Rev[1 − exp
( − 1

2 r2
eq

)
]

r2
eq

(13)

and the equilibrium diameter, in terms of frequency, is

d2
p,eq = u f ,r (req)

Stk0ω2
p,eqreq

= (
Stk0ω

2
p,eq

)−1
. (14)

We proceed and analyze how the droplets’ initial diameter, or Stokes number Stk0, affects their
dynamics. In Fig. 7 we keep the vortex properties constant (Eu = 0.3 and Rev = 200) and place
five droplets of varying initial Stokes number Stk0 = 0.001–0.1 at the vortex condensation core
edge. Figure 7(a) reveals that the heavier the droplet is, that is, the larger Stk0 is, the farther it
is ejected from the center, whereas other droplets are pulled back toward the vortex core as they
become lighter due to evaporation. Upon reaching the vicinity of the vortex condensation core, the
droplets (excluding Stk0 = 0.032) oscillate around its edge and subsequently relax into a steady
state.

We observe that lighter droplets respond quicker and have shorter settling times, as they tend
to overshoot less significantly. One droplet slightly deviates from this dynamic behavior; the
Stk0 = 0.032 droplet overshoots out of the core and evaporates before stabilizing about the equilib-
rium. Figure 7(b) demonstrates the relation between the initial Stokes number and the equilibrium
diameter predicted by Eq. (14); as expected, a higher Stokes number results in a smaller equilibrium
diameter. Only droplets of one particular diameter could maintain mechanical equilibrium at a
specific orbit around the core. Thus, the dimensional equilibrium diameter should depend on the
size of the vortex condensation core alone, while the normalized equilibrium diameter dp should
vary with Stk0, as shown by both Eq. (14) and Fig. 7(b). Since the droplet-vortex interactions are
highly sensitive to the droplet properties, we will extend our analysis and study how the dynamic
changes when modifying the vortex properties.
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(a) (b)

FIG. 7. (a) Radial locations and (b) diameters of water droplets as a function of time. The droplets have
different initial Stokes numbers Stk0 and are placed at the condensation core edge req of a Rev = 200 and
Eu = 0.3 Burgers vortex. The dashed lines denote the equilibrium state in each panel: (a) equilibrium trajectory
around the condensation core and (b) equilibrium diameters of each droplet.

B. Vortex characteristics

Here we alter the vortex characteristics and examine their influence on the radial location and
diameter of identical Stk0 = 0.01 droplets placed at the condensation core edge req. First, we
change the normalized pressure drop and the vortex Euler number Eu = 0.1–0.5 while keeping the
vortex normalized circulation, the vortex Reynolds number, at Rev = 200. As exhibited in Fig. 8,
the droplets are ejected to a similar radial location before being pulled back toward the center;
the vortex circulation and the droplet’s initial mass are constant, which leads to a roughly equal
centrifugal force acting on the droplets during the initial phase. Two droplets completely evaporate
while three persist; the droplets vanish when the vortex Euler number is low (Eu � 0.2), resulting in
a smaller condensation core and faster evaporation. The condensation core size decrease requires the
droplets to have a longer life span to reach a steady state before completely evaporating. The droplets

(a) (b)

FIG. 8. (a) Radial locations and (b) diameters of water droplets as a function of time. Droplets of initial
Stokes number Stk0 = 0.01 are placed at the condensation core edge req of a Rev = 200 and varying Euler
number Eu Burgers vortex. The dashed lines denote the equilibrium state in each panel: (a) equilibrium
trajectories around the varying condensation core and (b) the matching equilibrium diameter.
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(a) (b)

FIG. 9. (a) Radial locations and (b) diameters of water droplets as a function of time. The droplets had an
initial Stokes number of Stk0 = 0.01 and were placed at the condensation core edge req of a Eu = 0.3 Burgers
vortex and varying vortex Reynolds number Rev . The dashed lines denote the equilibrium state in each panel:
(a) equilibrium trajectory around the condensation core and (b) the matching equilibrium diameters.

that persist (Eu � 0.3) stabilize at equilibrium simultaneously, i.e., they have similar relaxation
times. Figure 8 shows that the highest vortex Euler number droplet Eu = 0.5 is critically damped,
relaxing into a steady state with neither position nor diameter oscillations. Contrarily, the other two
droplets’ radial locations and diameters are overshot, which increases when decreasing the vortex
Euler number, which lowers both the equilibrium trajectory and, through the decrease in rotation
frequency, the equilibrium diameter.

Figure 9 investigates the role of circulatory flow on the droplet-vortex interaction while retaining
the same vortex condensation core. Here we change the vortex Reynolds number Rev = 50–300
while fixing the vortex Euler number at Eu = 0.3, i.e., we alter the ratio between the strain field
and circulatory flow intensity σ/�. Unlike Fig. 8, Fig. 9 shows that the droplets were ejected to
varying radii; the higher the circulation, the farther the ejection. Once again, some droplets persist
and reach equilibrium (Rev � 200), while others (Rev � 300) evaporate beforehand. The extent to
which the droplets were ejected dictates whether the droplet reaches equilibrium; here droplets that
surpassed rp > 4.5 could not have reached the condensation core in time and have evaporated. The
droplets’ dynamic response changes as a function of Rev as well: For the lowest Reynolds number
Rev = 50 the droplet undershoots and settles to equilibrium significantly later compared to the
other two slightly overshooting droplets, which have similar settling times. The vortex condensation
core is kept at the same size when changing the vortex Reynolds number since the vortex Euler
number remains constant. However, Fig. 9(b) shows how the equilibrium diameter changes; higher
circulation dictates that in order to keep the droplets circling about the core, the mass of droplets in
equilibrium should be lower despite the intensified centrifugal acceleration.

Our present analysis shows how the circulatory motion of water droplets around Burgers vortices
proves a complex phenomenon, significantly influenced by the mass transfer between the droplet
and the air surrounding it. We will continue by examining the dynamics of nonevaporating solid
particles around Burgers vortices and compare their dynamic response to water droplets, aiming to
isolate the role of mass transfer in the vortex-particle interaction.

V. COMPARISON TO NONEVAPORATING PARTICLES

As mentioned in Sec. I, the dynamics of solid particles in Burgers vortices were investigated by
Marcu et al. [17]; they identified equilibrium points and particle trajectories both in the absence of
gravity and under its influence. As done in the present study, the equilibrium trajectory was found
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FIG. 10. Equilibrium trajectory radius for solid particles as a function of the ζ = Stk Re2
v parameter (dotted

line, lower x axis) and droplets as a function of the vortex Euler number (solid line, upper x axis) at constant
relative humidity RH = 70%.

by balancing the centrifugal forces and the inward drag forces acting on the circulating particles,

u f ,r (r = req)

Stk
= ω2

p,eqreq, (15)

where Stk is the particle Stokes number, similar in definition to the droplet’s initial Stokes number
Stk0. The stable trajectory is given implicitly by

r4
eq + Re2

vStk

[
1 − exp

(
−1

2
r2

eq

)]
= 0, (16)

which may be solved numerically for req. Investigating the roots of Eq. (16), we reveal the existence
of a supercritical Poincaré-Andronov-Hopf bifurcation in the dynamic system. For ζ = Re2

vStk < 4,
Eq. (16) has only one real solution req = 0, while for ζ � 4 the equation has at least one positive
real root, matching the physically possible equilibrium trajectory. The value ζcr = 4 signifies the
switch from a single stability point at the center of the vortex to a stable periodic trajectory. In
physical terms, when ζ < ζcr the particle cannot maintain mechanical equilibrium around the center
since the centrifugal force acting on it, due to either low inertia (small Stk) or radial velocity (small
Rev), is not high enough to overcome the vortex radial inflow, as the particle spirals towards the
vortex center. When ζ > ζcr, the heavier particles or higher-circulation vortices allow for increased
centrifugal force, giving rise to a stable periodic solution.

This bifurcation is demonstrated in Fig. 10, where a comparison between the equilibrium
trajectories’ radii for particles and droplets in the same carrier medium (in our case, air) is presented.
The particles’ equilibrium trajectories are plotted as a function of ζ , while the droplets’ trajectories
are plotted as a function of Eu, assuming the air’s relative humidity is constant RH = 70%.
Both dynamic systems have a clear supercritical bifurcation point: ζcr = 4 for solid particles,
as predicted by Eq. (16), and Eucr = 0.1 for droplets. However, the physical mechanism giving
rise to the bifurcation is different. The existence of a condensation core generates bifurcation as
the droplets stabilize around it, as discussed previously, whereas solid particles stabilize around
the drag-centrifugal mechanical equilibrium trajectory. A similar periodic solution where both the
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(a) (b)

FIG. 11. Radial locations of water droplets (solid lines) and solid particles (dotted lines) as a function of
time. The droplets and particles are placed at r0 = 1 relative to the center of a Eu = 0.3 Burgers vortex. In
(a) the droplets’ and particles’ Stokes numbers are kept constant Stk0 = 0.01 and the vortex Reynolds number
is changed to yield different ζ parameters, while in (b) the vortex Reynolds number is constant Rev = 50 and
the Stokes number varies.

droplets and the particles circulate the vortex arises, yet the stabilizing force driving this dynamic is
entirely different.

Figure 11 compares the trajectories of droplets and particles held under the same initial con-
ditions and in a similar Eu = 0.3 Burgers vortex. The nondimensional parameters Rev and Stk
are alternately fixed to set the ζ parameter (for droplets, initial ζ parameter) between ζ = 1 and
1000. As revealed in Fig. 10, the solid particles’ equilibrium trajectories depend only on ζ ; for
ζ < ζcr a stable periodic solution could not exist and the particle is pulled toward the vortex
center. However, the vortex Reynolds number and the particle’s Stokes number influence the
particle’s dynamic response. Notably, the heaviest particle [Stk = 0.4 in Fig. 10(b)] significantly
overshoots beyond the equilibrium trajectory and oscillates around it, whereas all other particles
relax into equilibrium without overshooting. The droplet’s dynamics, on the other hand, do not
correlate with the ζ parameter, as expected; since the vortex Euler number, and consequently the
condensation core, was kept constant, the droplets clustered around it (or evaporated beforehand)
regardless of their initial Stokes number or the vortex Reynolds number. The droplet trajectory
diverges from the corresponding particle when mass transfer changes its mass enough to alter its
dynamics; the divergence between the two is nonlinear and does not seem to correlate with a specific
nondimensional number.

VI. CONCLUSION

A mathematical analysis of discrete, micron-size droplet dynamics within Burgers vortices was
conducted, revealing the complex coupling between the droplet motion and the thermodynamic
gradients generated by the vortex. We evaluated the pressure drop due to the vortical flow and
quantified it using a nondimensional vortex Euler number Eu. The resultant gradients may be large
enough to initiate condensation within the vortex core. The onset of condensation was studied by
defining a mass transfer coefficient Cm, indicating the direction and extent of mass transfer to the
Lagrangian water droplet. By mapping the emergence of the condensation core and its properties in
moist air, we investigated the influence of ambient conditions and vortex Euler number on the mass
transfer coefficient spatial distribution. The dynamics of water droplets in the vicinity of Burgers
vortices was then studied for the conditions at which such condensation cores are forming; the
droplets’ response proved highly sensitive to the initial conditions (r0 and Stk0), vortex circulation
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(Rev), and pressure drop (Eu). Droplets straying from the condensation core quickly vanish due to
uninterrupted evaporation in ambient air, whereas droplets in its vicinity cluster at the edge of the
core. The evaporation-condensation transition allows the droplets to circulate the core periodically;
they gain mass when inside the core and lose mass when ejected out, regulating the ratio between the
centrifugal force and the vortex radial flow. While some droplets may oscillate around equilibrium
prior to their relaxation into a steady state, others exhibit overdamping and significantly longer
relaxation times. This dynamic response was affected by both the droplet and vortex properties,
exhibiting the nonlinearity and coupling of the two.

Finally, we compared the trajectories of droplets and particles held under the same initial
conditions. The motion of particles and droplets was significantly different, as mass transport to
and from the droplets inevitably alters their trajectories relative to the particles. The particle-vortex
dynamic system is known to have a supercritical bifurcation point ζcr = Re2

vStk = 4, beyond which
the particle can maintain stable period circulation around the vortex. The droplet-vortex system
demonstrated a clear bifurcation point as well; nevertheless, the physical mechanism giving rise
to the bifurcation is different. Droplets can stabilize around the vortex only when the vortex Euler
number is high enough to generate a condensation core, regardless of its initial ζ parameter.

The model derived here suggests a distinctive outlook on the complex dynamic response of
droplets in the vicinity of vortical flows. This approach allows the isolation of the interactions
between mass transport and laminar vortex flows, which may theoretically represent the dynamics of
droplets within various turbulent flow fields. This approach is extended to include mass convection
and heat transfer models in paper II of this series, which focuses on the role of heat transfer in
determining the equilibrium and transient response of droplet-vortex systems.
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APPENDIX: PRESSURE FIELD DERIVATION

The Burgers vortex velocity field is time independent; thus, the pressure field gradient may be
described as

∇ p̃ f = ρ f (ν f 
ũ f − ũ f · ∇ũ f ), (A1)

and in a nondimensional form

∇p f = ρ f σν f

p0
(
ū f − ū f · ∇ū f ). (A2)

The radial and tangential velocities are a function of the radial ordinate r only, while the axial
component is of the axial ordinate z. Hence, Eq. (A2) reduces to

∇p f = ρ f σν f

p0

[(
u2

f ,θ

r
− u f ,r

du f ,r

dr

)
ēr +

(
d2u f ,θ

dr2
+ 1 − ru f ,r

r

du f ,θ

dr
− 1 + ru f ,r

r2
u f ,θ

)
ēθ

−
(

u f ,z
du f ,z

dz

)
ēz

]
. (A3)

Substituting the velocity components and their derivatives,

u f ,r = −r,
du f ,r

dr
= −1, (A4)

u f ,z = 2z,
du f ,z

dz
= 2, (A5)

u f ,θ = Rev exp
( − 1

2 r2
)

r

[
−1 + exp

(
1

2
r2

)]
, (A6)
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du f ,θ

dr
= Rev exp

( − 1
2 r2

)
r2

[
1 + r2 − exp

(
1

2
r2

)]
, (A7)

d2u f ,θ

dr2
= Rev exp

( − 1
2 r2

)
r3

[
−2 − r2 − r4 + 2 exp

(
1

2
r2

)]
, (A8)

into Eq. (A3),

∇p f = ρ f σν f

p0

[(
−r + Re2

v

r2

[
1 − 2 exp

(
− 1

2
r2

)
+ exp(−r2)

])
ēr

+
(

Rev exp
( − 1

2 r2
)

r3

{
− 2 − r2 − r4 + 2 exp

(
1

2
r2

)
+ (r2 + 1)

[
1 + r2 − exp

(
1

2
r2

)]

+ (r2 − 1)

[
− 1 + exp

(
1

2
r2

)]})
ēθ − (4z)ēz

]
, (A9)

we obtain the pressure gradient in terms of the spatial location

∇p f (r, z) = ρ f σν f

p0

[(
−r + Re2

v

[
1 − exp

( − 1
2 r2

)]2

r3

)
ēr − (4z)ēz

]
. (A10)

We proceed to integrate Eq. (A10) from (r = 0, z = 0), where p f = 1, to the abscissa (r, z),

p f (r, z) = 1 − ρ f σν f

2p0

(
r2 + (2z)2 − 2 Re2

v

∫ r

0

[
1 − exp

( − 1
2 r2

)]2

r3
dr

)
. (A11)

Using integration by parts, we further simplify the integral on the right-hand side∫ r

0

[1 − exp
( − 1

2 r2
)
]2

r3
dr = −1

2

[1 − exp
( − 1

2 r2
)
]2

r2
+ 1

2

∫ r

0

2 exp
( − 1

2 r2
) − exp(−r2)

r2
dr

(A12)

and use the exponential integral Ei(x) = ∫ ∞
−x e−ξ /ξ dξ notation

∫ r

0

2 exp
( − 1

2 r2
) − exp(−r2)

r2
dr =

∫ ∞

0

2 exp
( − 1

2 r2
) − exp(−r2)

r2
dr

−
∫ ∞

r

2 exp
( − 1

2 r2
) − exp(−r2)

r2
dr

= ln (2) + Ei

(
− 1

2
r2

)
− Ei(−r2). (A13)

Finally, Eq. (A11) yields

p f = 1 − ρ f σν f

2p0

[
r2 + (2z)2 +

(
Rev

r

[
1 − exp

(
− 1

2
r2

)])2

+ Re2
v

[
Ei

(
− 1

2
r2

)
− Ei(−r2) + ln 2

]]
. (A14)
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