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A resolvent-based methodology is employed to obtain spatiotemporal estimates of
turbulent pipe flow from probe measurements of wall shear-stress fluctuations. Direct
numerical simulations (DNSs) and large-eddy simulations (LESs) of turbulent pipe flow
at a friction Reynolds number of 550 are used as databases. We consider a DNS database
as the true spatiotemporal flow field, from which wall shear-stress fluctuations are extracted
and considered as measurements. A resolvent-based estimator is built following our earlier
work [Amaral et al., J. Fluid Mech. 927, A17 (2021)], requiring a model for the nonlinear
(or forcing) terms of the Navier-Stokes equations system, which are obtained from another
DNS database, as in our earlier work, and from a series of computationally cheaper
LES databases with coarser grids; the underlying idea is that LESs may provide accurate
statistics of nonlinear terms related to large-scale structures at a low computational cost.
Comparisons between the DNS and the estimates indicate that sufficiently accurate results
can be achieved with estimators built with statistics from LESs with an order of magnitude
fewer grid points than the DNSs, with estimates closely matching the reference DNS results
up to the buffer layer and reasonable agreement up to the beginning of the log layer.
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I. INTRODUCTION

Estimation of space-time flow fluctuations from noisy, low-rank measurements is an interesting
option for the understanding of turbulence physics, design of flow control strategies, and recon-
struction of missing or corrupted data. For wall-bounded turbulent flows, wall quantities such as
shear stress and/or pressure are usually employed as inputs for the estimation algorithms, as for
practical applications the measurement of such quantities is easier to obtain than, e.g., the velocity
components at a given distance from the wall. To build the estimator, model-based methodologies
can be used [1–6], although it is also possible to conduct flow estimations based solely on data
[7–10]. For both model- and data-driven methodologies, the basic idea is to obtain transfer functions
between the measurements and the estimated flow state, bearing in mind that the model-based
methodologies have the additional advantage of providing insight into the underpinning physics.

In recent years, the use of linear models to understand the physics that drive turbulent wall-
bounded flows has become widespread. Linear models provide a simple framework to work with,
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and the emergence of tools such as resolvent analysis enables modeling coherent structures and
self-sustaining mechanisms in flows [11–16]. In the resolvent framework, the Navier-Stokes system
is written in state-space form, and the nonlinear terms are interpreted as external forcing terms
[17–20], hence providing a convenient input-output formulation, relating the flow response and the
forcing modes to nonlinear terms in the Navier-Stokes system.

The input-output formulation enables the use of control theory tools [21], which can be adapted
to estimate the flow state components after low-rank measurements. Towne et al. [22] introduced a
resolvent-based estimator for flow statistics, which was further generalized by Martini et al. [23]
for time-domain estimates. For the latter case, in order to build the transfer functions between
the low-rank measurements and the flow state components, it is necessary to inform the algorithm
with the cross-spectral density (CSD) of the nonlinear terms of the Navier-Stokes system, treated
as forcing. If the true forcing CSD is used, optimal estimates of time-varying flow quantities are
obtained. Other forcing models provide sub-optimal estimates. Such estimates are not causal, as
the full time series of sensor data is required for estimation; extension to causal estimation, using
only past sensor information, is proposed by [24]. In our previous work, we have successfully
applied the methodology developed by Martini et al. [23] to direct numerical simulation (DNS)
of turbulent channel flow, using wall shear-stress and pressure low-rank measurements [25]. Results
show a close agreement between estimates and reference DNS fluctuations in the near-wall region,
and good agreement for large-scale structures throughout the channel. A key feature is the use of
forcing statistics extracted from the DNS database, which leads to an optimal estimator but requires
expensive simulation and postprocessing to obtain the forcing CSD. One option to model the forcing
statistics is to consider it as spatially white noise. Amaral et al. [25] show that this is a good choice
for near-wall structures estimates, close to where the measurements were taken, whereas far from
the wall, the estimator failed to deliver good results. The work also explored the use of a standard
eddy-viscosity model that Cess [26] and del Álamo and Jiménez [27] embedded within the linear
operator to somehow account for the nonlinear terms that are missing in the linearized Navier-Stokes
(LNS) system. The eddy viscosity improved the channel flow large-scale structure estimates but at
the cost of worsening the near-wall structure estimates.

Chinta and Luhar [28] employed the resolvent framework to estimate the velocity field of
turbulent channel flow after low-rank measurements. Their method differs from that of Martini et al.
[23] as they compute the resolvent modes for various wave-number/frequency combinations and
then assume that the flow state is a linear combination of such modes, calibrating linear coefficients
after the input/measurements data. In other words, the method by Chinta and Luhar [28] seeks to
identify the resolvent modes that best represent the measurement data. It is interesting to note that
the inclusion of an eddy-viscosity model in the linear operator also had a dual effect in the results
of Chinta and Luhar [28]: although it improved the flow statistics, it also increased the velocity field
estimates errors.

Obtaining optimal resolvent-based estimators to turbulent flow was shown to be feasible in
Ref. [25], but with a high computational cost related to the extraction of forcing statistics from
a DNS database. In the present paper, we employ the Martini et al. [23] resolvent-based method-
ology to estimate the space-time velocity fluctuation components of turbulent pipe flow at friction
Reynolds number Reτ ≈ 550 using wall shear-stress measurements. In addition to DNS, we also
explore the capability of wall-resolved large-eddy simulations (LESs) to construct estimators. A
first DNS database is used as the reference case from which we extract low-rank measurements of
wall-shear stresses. A second DNS and the other LES databases provide the forcing (nonlinear)
statistics to build the linear estimators. The underlying assumption is that the LES provides
sufficiently accurate statistics of large-scale structures, including associated nonlinear terms, and
thus may be used to construct estimators with near-optimal performance. Here we investigate the
capability of such LES databases in the reconstruction of the space-time flow field, aiming to obtain
a reliable and lower-cost estimator that could be used for various high-Reynolds-number flows of
practical interest.
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The remainder of the manuscript is organized as follows. Section II presents the methods em-
ployed in this work, including the resolvent-based estimator algorithm and details on the turbulent
pipe flow simulations. Section III contains the results, including a direct comparison among the
reference DNS and the estimators using the different strategies to model the nonlinear terms of the
LNS equations, as well as metrics to evaluate the performance of each estimator. Finally, Sec. IV
presents the conclusions of this study.

II. METHODOLOGY

A. Resolvent-based estimator

Let us begin by applying a Reynolds decomposition over the flow state, i.e., q = q̄ + q′, where
q̄ and q′ denote mean flow and fluctuation around the mean flow components. In the resolvent
framework, a forcing term is obtained gathering all nonlinear terms on q′. The vector of velocity
components is given by u = [uxuruθ ], with ux, ur , and uθ as the streamwise, radial, and azimuthal
velocity components, respectively. The full state vector is written as

q = [up]T , (1)

with q = q(x, r, θ, t ), where r and θ indicate the radial and azimuthal directions, respectively, t
denotes time, and p is the pressure component.

The linear Navier-Stokes (LNS) equations in cylindrical coordinates can be written as

∂t u + ur∂rŪex + Ū∂xu = ∇p + 1

Re
∇2u + f , (2a)

∇ · u = 0, (2b)

where ∂ denotes partial derivatives with respect to t , r, or x for time, radial, and streamwise
directions, respectively, Ū is the mean turbulent velocity profile, ∇ is the gradient operator, Re
is the Reynolds number based on bulk velocity, f denotes the forcing components, and ex is the unit
vector in the streamwise direction. For use in resolvent analysis, the forcing f includes the nonlinear
terms in the Navier-Stokes equation, f = (−u · ∇u), such that Eqs. (2b) are an exact rearrangement
of the full Navier-Stokes system.

Regarding the forcing components, they are structured as

f = [ fx fr fθ ]T , (3)

with f = f (x, r, θ, t ). Only molecular viscosity is considered in the present work, such that Eq. (2b)
is exact if the full forcing f is used [29]. In the following, primes (′) will be dropped from the state
and forcing notations for simplification.

In a discretized state-space form, considering a grid with Nr points in the radial direction, the
LNS equations take the form

M
dq(t )

dt
= Aq(t ) + B f , (4a)

z(t ) = Cq(t ) + n(t ), (4b)

where A denotes the linearized Navier-Stokes operator, B is the input matrix that restricts the forcing
terms to appear only in the momentum equation, z is the system observation (measurements), C is
the observation matrix that selects Ns sensor readings from the state vector (in the present paper,
wall-shear stresses in the axial and azimuthal directions), and n is the measurement noise. M is
a diagonal matrix whose entries are set to 1 and 0 for the momentum and continuity equations,
respectively. The dependencies on wall-normal distance, y (or radial distance r), were dropped to
simplify notations.
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The state components can be written as a superposition of Fourier modes as

q(x, r, θ ) =
∑

m

∑
α

∫ ∞

−∞
q̂(α, r, m, ω)ei(αx+mθ−ωt )dω, (5)

where ω denotes frequency, α and m indicate longitudinal and azimuthal wave numbers, respec-
tively, hats are used for Fourier-transformed quantities, m is constrained to be an integer number,
and i = √−1. Similar to the azimuthal direction, a Fourier series is taken along x, since periodic
boundary conditions are applied for the axial direction in the simulations considered here.

Equation (4b) can be written in the frequency domain as

ẑ(ω) = [C(−iωM − A)−1B] f̂ (ω) + n̂(ω), (6)

where dependencies on longitudinal (α) and azimuthal (m) wave numbers were also dropped to
simplify notations.

The term R = (−iωM − A)−1 = L−1 is the resolvent operator, which is well-posed once nonslip
boundary conditions are enforced for the three velocity components. For pipe flow, the linear
operator A is written in cylindrical coordinates [30], and linearization is around the mean turbulent
profile, considered as known; the linearized operator becomes

A =

⎡
⎢⎢⎢⎢⎢⎣

−iαŪ + �+r−2

Re −DŪ Z −iαI

Z −iαŪ + �
Re − 2imr−2

Re −D

Z 2imr−2

Re −iαŪ + �
Re −imr−1

iαI D + r−1 imr−1 Z

⎤
⎥⎥⎥⎥⎥⎦, (7)

where � = −α2I − (m2 + 1)r−2 + r−1D + D2, D = d
dr is a diagonal matrix with the radial direc-

tion derivative operator (finite-differences scheme), I is the identity matrix, r and Ū are diagonal
matrices containing the radial discretization and mean turbulent velocity profile, respectively, and Z
is the zero matrix.

The actuation/input operator B is defined as

B =

⎡
⎢⎢⎣

I Z Z
Z I Z
Z Z I
Z Z Z

⎤
⎥⎥⎦, (8)

whereas the observation/output operator C is given by

C =
[

Dwall Z Z Z
Z Z Dwall Z

]
, (9)

where Dwall means that only the derivatives corresponding to the pipe wall (i.e., the corresponding
line of the differentiation matrix) are taken into account. The diagonal matrix M is written as

M =

⎡
⎢⎢⎣

I Z Z Z
Z I Z Z
Z Z I Z
Z Z Z Z

⎤
⎥⎥⎦. (10)

From the definitions above, it is possible to obtain an optimal linear transfer function (T̂q)
between the system observation (ẑ) and the estimated flow state components ( ˆ̃q), such that

ˆ̃q = T̂qẑ, (11)

where T̂q is the transfer function, and dependency on frequency ω was dropped to simplify notations.
The tilde superscript denotes estimates.
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Martini et al. [23] derived an expression for T̂q that is based on the minimization of the error

between the true ( f̂ ) and estimated ( ˆ̃f ) forcing terms. The resulting transfer function is given by

T̂q = RBPf f H∗(HPf f H∗ + Pnn)−1, (12)

where H = CRB is the resolvent operator including the observation (C) and actuation (B) matrices,
and Pnn = 〈n̂n̂∗〉 and Pf f = 〈 f̂ f̂

∗〉 are the CSDs of sensor noise and forcing, respectively. The
asterisk (∗) indicates a Hermitian transpose.

To build the transfer function, it is necessary to specify a priori the forcing CSD (Pf f ). When true
forcing statistics are known, Eq. (12) provides the optimal linear estimator, whereas other models
for the forcing CSD provide suboptimal estimators. In the present paper, we focus on the modeling
of Pf f through DNS and LES, extracting the nonlinear terms of the Navier-Stokes system direct
from the simulations. Many other strategies can be employed to address the forcing statistics in
the context of linear modeling for turbulent flows, such as, e.g., entropy-based modeling [31] or
resolvent-based proper orthogonal decomposition (RESPOD) [32], among others. The reviews by
Zare et al. [33] and Jovanović [34] explore the importance of the forcing statistics, and the means
to obtain it, in the context of modeling and control of turbulent flows.

The measurement noise statistics (Pnn) must also be considered to evaluate the transfer function,
and nonzero noise in the sensor readings can reduce the estimation efficiency [23]. In the cited
work, it is shown that if the sensor readings are separated into a noiseless component and a noise
component, the noiseless reading can only be recovered for small values of the measurement noise.
Larger noise levels lead to smaller estimated components. In the present study, as the data are
obtained directly from the simulations, the measurement noise is virtually nonexistent. Nevertheless,
such a component regularizes the estimation, keeping the problem well-posed [23].

The transfer function obtained through Eq. (12) is noncausal, although it is possible to extend
this approach to causal estimations through the Wiener-Hopf formalism, as addressed by Martini
et al. [24] and Audiffred et al. [35]. As the focus of this work is on the applicability of using LES
forcing statistics to build estimators, optimal causal transfer functions will be left for future work.

The snapshots are reconstructed in space and time according to the procedures briefly addressed
below. First, it is necessary to take the inverse Fourier transform of the transfer function T̂q, Eq. (12),
in order to return to time domain and obtain Tq,

Tq(α, r, m, t ) =
∫ ∞

−∞
T̂q(α, r, m, ω)eiωt dω. (13)

Hence, the time-domain transfer function Tq must be convolved with the
measurements/observations z to evaluate the state estimate in time domain q̃,

q̃(α, r, m, t ) =
∫ ∞

−∞
Tq(α, r, m, τ )z(α, r, m, t − τ )dτ . (14)

Finally, double inverse Fourier transforms in the azimuthal and longitudinal directions are taken in
order to return from the wave-number domain to physical space,

q̃(x, r, θ, t ) =
∑

m

∑
α

q̃(α, r, m, t )eiαx+imθ . (15)

Note that although the notation q̃ is used on both sides of Eq. (15), on the left-hand side the estimated
state is a function of the physical domain variables, i.e., (x, r, θ, t ), whereas on the right-hand side,
the state is a function of the wave-number domain variables, i.e., (α, r, m, t ).

It is also possible to model the forcing statistics (Pf f ), which provides a cheaper and suboptimal
estimator. Another option is to consider an eddy-viscosity model in the linear operator A, Eq. (7), to
somehow take into account the nonlinear terms of the Navier-Stokes system, as discussed by Symon
et al. [36], Morra et al. [29], and Amaral et al. [25]. Appendix A addresses the linear operator

074606-5



AMARAL AND CAVALIERI

FIG. 1. Sketch of the channel flow geometry, dimensions (green), coordinate system (red), mean flow
(blue), and wall measurements employed to perform the estimations (purple).

containing an eddy-viscosity model. In this case, the forcing statistics are considered as white noise
in space. We will consider both cheap estimators to compare them with the LES ones.

B. Numerical simulations

To generate the databases, we conducted numerical simulations with the OPENPIPEFLOW code
[37]. Periodic boundary conditions were assumed in the streamwise and azimuthal directions.
Figure 1 shows a sketch of the geometry and coordinate system employed in this study.

For all simulations, the pipe length is Lx = 10R, where R is the pipe radius and the bulk Reynolds
number is Reb = UbD

ν
= 19 000, where Ub is the bulk velocity, D = 2R is the pipe diameter, and

ν is the kinematic viscosity. Table I shows the parameters for all cases, including the number
of radial (Nr), streamwise (Nx), and azimuthal (Nθ ) grid points, the mesh discretization in the
streamwise (�x+), azimuthal [(R�θ )+], and radial (�r+) directions, and the mesh points ratio with
respect to the DNS case (N/NDNS). Plus symbols denote inner (wall and/or viscous) units. The data
extracted from the simulations to obtain the measurements, forcing components, and comparisons
with the reference DNS components contain 5000 snapshots, and the time step based on outer units
is �t = 0.1. Cases starting with D denote DNS, whereas the letter L indicate LES, carried out
using the Smagorinsky [38] subgrid scale model, with a Smagorinsky constant set as Cs = 0.05;
the wall damping function of van Driest [39] was used. As estimations lose accuracy for large wave
numbers, only the lowest 16 and 32 streamwise and azimuthal wave numbers were used to construct
the estimators. Welch’s method [40] was employed to evaluate the forcing and state components
statistics, with blocks containing Nf f t = 512 time steps and 75% overlap. Appendix B shows the

TABLE I. Numerical simulation parameters.

Case Reτ Nr Nx Nθ �x+ (R�θ )+ �r+ N/NDNS

D1 550.3 128 528 528 10.4 6.5 0.07–6.3 1.000
D2 550.3 128 528 528 10.4 6.5 0.07–6.3 1.000
L1 554.1 96 288 288 18.9 11.9 0.4–14.7 0.223
L2 568.6 96 192 192 28.6 18.0 0.4–15.2 0.099
L3 569.1 64 96 96 59.3 37.2 0.7–22.2 0.017
L4 551.8 64 64 64 86.1 54.1 0.7–22.9 0.007
L5 509.6 64 32 32 159.3 100.1 0.7–22.9 0.002
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FIG. 2. Validation of the numerical simulations with reference DNS results from El Khoury et al. [41]:
mean flow velocity profile (top-left frame), axial (top-right frame), radial (bottom-left frame), and azimuthal
(bottom-right frame) velocity profiles.

results of the block size convergence test, justifying the use of Nf f t = 512. A Hann window was
applied to each block to minimize spectral leakage.

The simulations were validated with reference DNS results by El Khoury et al. [41], as shown in
Fig. 2. Cases D1, D2, and L1 show close agreement with the reference simulations, regarding mean
flow profile, axial, azimuthal, and radial velocity fluctuations, almost perfectly matching the results
by El Khoury et al. [41]. The coarser grid cases (L2, L3, L4, and L5) progressively deteriorate
the agreement, with the L5 case showing strong mismatch with all quantities, as expected for
coarser LES.

Due to computational cost and storage limit issues, the same downsampling strategy adopted in
Amaral et al. [25] was followed here, with only the first Nα streamwise and Nm azimuthal wave
numbers retained to perform the estimates, according to the values shown in Table II. Hence, the
databases were compressed by a ratio of NxNθ /(NαNm). The filtered fields nonetheless retain the
bulk of turbulent fluctuations, i.e., the peaks of the spectra in the wave-number domain are still
present after the filtering procedure. Figure 3 shows the variances for the unfiltered and filtered D2

TABLE II. Wave-number cutoff parameters used to downsample the simulations.

Case Nα Nm αcut mcut Rλθ
+

cut λm
+

cut Downsampling ratio

D1 32 48 9.425 47 365.873 73.368 182
D2 32 48 9.425 47 365.873 73.368 182
L1 32 48 9.425 47 365.873 73.368 54
L2 32 48 9.425 47 365.873 73.368 24
L3 32 48 9.425 47 365.873 73.368 14
L4 24 12 6.912 12 498.918 313.480 6
L5 24 12 6.912 12 498.918 313.480 3
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FIG. 3. Comparison between the variances of the unfiltered and filtered D2 database. Frames, from left to
right: streamwise, radial, and azimuthal velocity components.

database and the streamwise, radial, and azimuthal velocity components, indicating that at least half
of the variance of each component is retained by the filtering. The other DNS and LES databases
follow similar trends. Table II also displays the employed cutoff values in terms of streamwise and
azimuthal wave numbers in outer units, αcut and mcut, respectively, the streamwise and azimuthal
wavelengths in inner/wall units, λx

+
cut and Rλθ

+
cut, respectively, and the downsampling ratios.

Wall shear-stress measurements in the axial and azimuthal directions were extracted from the
D1 database. The other databases, i.e., D2, L1, L2, L3, L4, and L5, were employed to construct
the estimator transfer functions by extracting the forcing statistics Pf f and the mean velocity
profile. We thus avoided, even for the DNS-based estimator, the use of the ground-truth data from
the D1 simulation; a separate DNS was conducted, with different initial conditions but similar
statistics, to ensure that the estimator has no knowledge of the ground-truth data other than the wall
measurements. It is thus important to remark that the estimators employed in this study have no
information from the D1 case. The LES databases, which have coarser grids, significantly reduce
the computational cost, due to the lower number of grid points, but in turn lead to suboptimal
estimators. In this work, we employ Pf f obtained in simulations that may have different grids from
the measurements database D1 (see Table I). Hence, after the evaluation of the transfer functions
T̂q, they are interpolated to a grid equivalent to that of the measurements database D1. Moreover,
when the database employed to extract the forcing statistics does not contain data for a given pair
(α, m), the forcing terms are modeled as white noise in space. The noise CSD (Pnn) was defined as
machine precision, as we deal with DNS data mimicking measurements.

III. RESULTS

A. Snapshot estimates

Figures 4–6 show sample snapshots of the streamwise velocity fluctuations from the D1 database,
filtered to retain only the lower axial and azimuthal wave numbers (Nα and Nm), as indicated in
Table II, and corresponding estimates obtained using D2, L1, L3, L4, and L5 forcing statistics.
Results are shown at radial distances from the pipe wall of y+ = (1 − r+) ≈ 15 and 100 and
200, respectively. In the figures, we use a pseudospanwise coordinate z = rθ (λz = rλθ ) to enable
comparisons with structures found in planar wall-bounded flows, in particular with the turbulent
channel results of our previous work [25]. The white-noise forcing statistics model (white forcing)
and the linear operator containing an eddy-viscosity model (EV forcing; see Appendix A) are also
considered in the figure as a means of comparison, since with these two models there is no need for
prior evaluation of the forcing statistics, considered as white noise.

When considering the buffer layer, at a wall-normal distance of y+ ≈ 15, the resemblance
between DNS results and the estimates is remarkable, even when the white, eddy-viscosity, and
L5 forcing are employed. This is somehow expected, as in the channel flow analysis in [25] we
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FIG. 4. Comparison between streamwise velocity component instantaneous snapshot of the D1 database
and resolvent-based estimates using wall measurements of shear stress and considering white, eddy-viscosity
(EV), D2, L1, L3, L4, and L5 forcing statistics at y+ ≈ 15. Fluctuations shown in outer units.

FIG. 5. Comparison between streamwise velocity component instantaneous snapshot of filtered DNS and
resolvent-based estimates at y+ ≈ 100. See comments in the caption of Fig. 4.
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FIG. 6. Comparison between streamwise velocity component instantaneous snapshot of filtered DNS and
resolvent-based estimates at y+ ≈ 200. See comments in the caption of Fig. 4.

have shown that assuming the forcing statistics to be spatial white noise to build the estimator also
provides accurate estimates for distances close to the wall. Regarding quantitative results, as will
be seen in the next section, the typical normalized error and correlation at y+ ≈ 15 and streamwise
velocity fluctuation component are approximately 0.5 and 0.85, respectively, for the D2, L1, and L2
estimators. The L3, L4, L5, spatial white noise, and eddy-viscosity estimators have normalized error
of approximately 0.75, 0.8, 1, 0.8, and 1.05, respectively, whereas the correlations are approximately
0.75, 0.7, 0.65, 0.7, and 0.65, respectively. Moving further from the wall, the estimates are not as
accurate, especially for the two coarser LES (L4 and L5) estimators, although most of the large-scale
structures present in the DNS snapshots are still recognizable in all but the L4 and L5 estimators, as
well as the white-noise and eddy-viscosity estimators, in agreement with recent literature [5,29,42].
As one moves further from the wall, only the largest turbulent structures are estimated. For
instance, as addressed in Sec. III B, the normalized error and coherence at y+ ≈ 200 for the D1,
L1, and L2 estimators and streamwise velocity fluctuation component are of approximately 0.9
and 0.4, respectively, whereas the correlations tend to zero and the errors are higher than that for
coarser LES.

An interesting observation is that the well-resolved LESs L1 and L2 lead to estimators with
similar accuracy to the optimal one, built using the DNS statistics taken from the D2 database.
This indicates that LES is a viable approach to obtain forcing statistics to build estimators of
wall turbulence, without significant performance degradation if standard grid requirements for
wall-resolved LES are used. This may be understood by considering that large-eddy simulations
are able to accurately resolve larger turbulent structures, which are the ones that may be estimated
from the wall, as seen in earlier studies [7,25,43]. Regarding the radial and azimuthal velocity
components, not shown here, similar results to those of the streamwise velocity component were
observed.

The small-scale structures can be estimated from the pipe wall even for the coarser LES, white-
noise, and eddy-viscosity cases, whereas large-scale structures can be observed up to y+ ≈ 50 only
for the finer mesh cases. Note that [25] could observe structures up to y+ ≈ 100 using the same
resolvent-based estimator and only wall-shear stress measurements, but that work built an optimal
estimator using the forcing statistics extracted from the reference DNS.
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FIG. 7. Flow state comparison metrics for the streamwise velocity fluctuation component. The thick
light-gray dotted line in the right frame denotes DNS (D1) variance (〈q′q′〉+) results. Frames, from left to
right: correlation, normalized rms, and variance. The DNS variance refers solely to wave numbers retained for
estimation.

B. Estimate accuracy

Figure 7 displays normalized correlations (Corr, left frame), rms errors (Err, middle frame), and
variance (〈q′q′〉+, right frame) for the streamwise velocity component. Correlation and error metrics
are defined, as a function of wall-normal distance y, as

Corr(y) =
∫

qD1(y, t )qest(y, t )dt√∫
qD1(y, t )2dt

√∫
qest(y, t )2dt

, (16a)

Err(y) =
√∫

[qest(y, t ) − qD1(y, t )]2dt√∫
qD1(y, t )2dt

, (16b)

where qD1 denotes a flow state component, e.g., streamwise velocity fluctuation, extracted from
the baseline DNS database, and qest denotes an estimated component, from one of the estimators
considered here.

Accurate estimates correspond to low normalized error Err, close to 0, and high correlation Corr,
close to 1. A sample probe at a given y position was used to evaluate the correlation and error
metrics, scanning the complete time series of the baseline (D1) and estimates (D2, L1–L5, white-
noise, and eddy-viscosity). The first and last Nf f t/2 instants of the time series were discarded. Such
snapshots cannot be estimated due to end effects when computing the convolution using finite time
series.

All estimators are accurate up to y+ ≈ 10, showing correlation and rms errors of approximately
0.95 and 0.35, respectively, and they were able to correctly identify the streaky structures of the
reference DNS. This correlation level very close to the wall is slightly lower than that obtained
for Reτ ≈ 550 turbulent channel flow estimates [25]. However, the channel estimation made use of
pressure and wall shear stress from both walls, and forcing terms were directly extracted from the
reference DNS, i.e., the same DNS employed for the observations of wall shear-stress and pressure.

Moving farther from the wall, only estimators D2, L1, and L2 maintain the same accuracy,
especially regarding the correlation and rms metrics; correlation is higher than 0.5 up to y+ ≈ 100.
It is interesting that estimator L2, which has a grid with less than 10% of the points used for
the DNS-based estimator, could attain such accuracy. This indicates that the large scales are well
calculated in the LES, as expected, and their statistics may be used to build an accurate estimator at
a fraction of the computational cost of the DNS-based estimator considered in Amaral et al. [25].

Figures 8 and 9 show the estimated performance metrics for the radial and azimuthal velocity
components, respectively. The plots follow the same trends of the streamwise velocity component
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FIG. 8. Flow state comparison metrics for the radial velocity fluctuation component. See comments in the
caption of Fig. 7.

metrics, although the effects of loss of coherence, higher error, and mismatch in variance for the
two coarser LES grids are more dramatic for the radial and azimuthal velocity components. The
estimators built with the finer large-eddy simulations maintain an accuracy similar to that of
the DNS estimator based on D2.

To establish a lower-bound case of what is possible to achieve in terms of estimator performance
considering cheaper forcing terms modeling, we included a case in which noise forcing statistics are
modeled as spatially white (dashed lines in Figs. 7–9) and the linear operator containing an eddy-
viscosity model (dash-dotted lines in Figs. 7–9). It is interesting to note that in the near-wall region,
up to y+ ≈ 20, white noise slightly outperforms the L5 estimator, and the use of the L4 estimator is
only justifiable above y+ � 20. On the other hand, the eddy-viscosity estimator outperforms even
the L4 estimator for y+ � 55, corroborating previous studies [25] that showed the eddy-viscosity
model is a good option to model the nonlinear terms of the Navier-Stokes system for distances far
from the wall. Overall, the quantitative metrics in Figs. 7–9 confirm the qualitative results shown in
Figs. 4–6, although for the azimuthal and radial velocity components the eddy-viscosity model can
even outperform the L4 estimator, but not the better resolved LES estimators.

Normalized rms error as a function of the wave-number pair (α, m) and wall-distance y is shown
in Fig. 10 for wall distances of y+ ≈ 15 and 100. The error metric is defined as

Err(α, y, m) =
√∫ ∑3

i=1

∣∣qi
est(α, y, m, t ) − qi

D1(α, y, m, t )
∣∣2

dt√∫ ∑3
i=1

∣∣qi
D1(α, y, m, t )

∣∣2
dt

, (17)

FIG. 9. Flow state comparison metrics for the azimuthal velocity fluctuation component. See comments in
the caption of Fig. 7.
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FIG. 10. Normalized rms error as a function of (α, m) state comparison metrics for D2, L1, L2, L3, L4,
L5, white-noise, and eddy-viscosity estimators. Normalized errors higher than 1 are saturated.

with superscript i in qi, for i = 1, 2, and 3, denoting streamwise (ux
′), wall-normal/radial (ur

′),
and azimuthal (uθ

′) velocity fluctuation components, respectively. In this figure, the normalized rms
errors are shown in the 0–1 range, and errors higher than 1 are saturated.

Note that for cases L4 and L5 (rows 5 and 6 of Fig. 10), the region delimited by the dashed
lines is the region on which the streamwise and azimuthal wave numbers are contained within the
LES databases. For the streamwise and azimuthal wave numbers outside that region, the white noise
estimator is considered in the calculations, as can be observed on row 8 of Fig. 10.

The large structures, which are characterized by small α and m, are accurately estimated for
the D2, L1, and L2 cases, with virtually zero rms error at both planes. The estimates for smaller
structures (large α and m), on the other hand, display higher rms error, especially for the y+ ≈ 100
plane. For the coarser L4 and L5 estimators, even for the y+ ≈ 15 plane, the accuracy of smaller
structure estimates is quite low. This indicates that such very coarse LESs are not suitable to build
estimators; notice that the grid spacing of L5, of about 100 wall units in the azimuthal direction,
is close to the typical streak spacing; hence, near-wall structures cannot be captured by the coarser
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LES, which compromises their potential to build resolvent-based estimators. However, the finer
LESs allow an accuracy close to that from the optimal D2 estimator, showing that LES is a viable
approach to obtain forcing statistics required for resolvent-based estimation. This is far superior to
the estimates built from white-noise assumption, also shown in Fig. 10, which have a large error
as one moves away from the wall. Inclusion of an eddy viscosity in the operator, also shown in
Fig. 10, and consideration of white-noise forcing also leads to inaccurate estimates. This finding is
in agreement with recent literature [36] that showed the use of eddy-viscosity models may lead to
errors regarding the modeling of turbulent structures.

Regarding the LES requirements to obtain reasonable accurate results, it is observed that sim-
ulations with mesh discretization of approximately �x+ � 20 and �z+ � 12 provided the best
estimates, which agrees with the standards for wall-resolved simulations [7,44]. In other words, we
verify here that it is necessary to have a well-resolved LES near the walls to obtain good estimates
from measurements obtained at the walls. Our estimates up to the L2 case have error magnitudes
that are overall lower than the results presented by Illingworth et al. [5] and Oehler et al. [12],
which employed an eddy-viscosity model and a Kalman filter to estimate turbulent channel flows
at Reτ = 1000 and 2000, respectively, from streamwise and spanwise velocity measurements; this
highlights that the use of forcing statistics from wall-resolved LES is a viable approach to build
more accurate estimators. The present results are in agreement with our earlier channel results [25],
with the caveat that we are dealing with turbulent pipe flow instead of the channels studied in the
cited works.

C. Structures observable from the pipe wall

Smits et al. [45] and Jiménez [46], among other authors, have shown that, for wall-bounded
flows, many structures leave their footprint on the walls, even the ones present in the outer layer.
To explore which flow structures leave a footprint on the walls, in Amaral et al. [25] we introduced
a metric that consists of a distance from the wall, the maximum observed height, yobs = (1 − robs),
from which the estimate normalized error is Err(α, yobs, m) � 0.5. We select an error value of 0.5,
considering that an estimator that attains 50% accuracy or more is good enough, but this value can
be calibrated with a more restrictive criterion if desired. As observed in the previous results, the
estimators used in this study based on wall measurements of shear stress lose accuracy far from the
wall, and only the largest scales may be estimated from wall measurements.

Figure 11 shows the maximum observed height in plus units (yobs
+) as a function of streamwise

and pseudospanwise wavelengths (λx
+, λz

+), with λz = rλθ . Contour levels of y+ = 5, 10, 15, 30,
and 50 are displayed in the maps. For all estimators, the smaller structures (of small-wavelength
pairs) can only be well-estimated very close to the wall, whereas far from the wall only large
structures (of large-wavelength pairs) can attain some level of accuracy. Estimators D2, L1, L2,
and L3 display similar behavior, keeping accuracy for large structures up to y+ ≈ 50.

The worse performance of estimators L4 and L5 is mostly associated with smaller structures,
which cannot be accurately resolved by the coarser grids. It is interesting to notice that for larger
structures, (λx

+, λz
+) ≈ (4000, 1000), even the coarse-LES estimator L4 maintains some accuracy

of estimates, which is in line with the idea that even coarse LESs are able to resolve the largest
turbulent structures [47]. However, if the grid is too coarse, there is a worsening of estimates at all
scales, as observed from the L5 results, which show a performance lower than the white-noise and
eddy-viscosity estimators.

IV. CONCLUSIONS

In this paper, we employed a (linear) resolvent-based estimator methodology [23] to obtain
the space-time flow field of a Reτ ≈ 550 turbulent pipe flow from wall-shear stress low-rank
measurements. A DNS database was used to extract the wall-shear stress measurements, whereas
other DNS and LES databases were employed for the modeling of the statistics of nonlinear
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FIG. 11. Observed height in wall/inner units (yobs
+ = Reτ − robs

+) for D2, L1, L2, L3, L4, L5, white-
noise, and eddy-viscosity estimators.

terms (which constitute a forcing in resolvent analysis) necessary for state estimation. Hence, an
optimal estimator, built from DNS statistics, is compared to sub-optimal resolvent-based estimators
informed by LES.

We compared the accuracy of the estimators in terms of snapshot reconstruction, correlation,
normalized error, and variance. Satisfactory results were obtained with the forcing statistics from
LES, especially up to the buffer layer. The accuracy progressively deteriorates for distances far from
the wall and for coarser LES meshes, although for cases D2, L1, and L2 the large-scale structures
can still be recognizable up to y+ ≈ 200. The LES-based estimators using typical grids for wall
turbulence maintain an accuracy similar to the optimal estimation built from DNS statistics (D2).
The present results are in agreement with recent literature on estimation of wall-bounded flows from
wall measurements. For instance, Encinar and Jiménez [7] estimated turbulent structures of channel
flows for 932 � Reτ � 5300 regimes using a linear stochastic estimator. The authors attained a good
level of accuracy near the walls, i.e., at y/H ≈ 0.2, where H is the channel height. Guastoni et al.
[9], on the other hand, employed two different convolutional-network algorithms to estimate the in-
stantaneous velocity components of channel flows at Reτ = 180 and 550, obtaining good agreement
with the reference result up to y+ = 50. The question that remains is, at what computational cost
can the two above-mentioned strategies attain the same accuracy as the resolvent-based estimator
employed together with forcing statistics provided by LES?

The accuracy level of a LES estimator containing approximately 10% of the grid points of the
DNS database, case L3 (see Tables I and II), is very close to what is obtained with the DNS estima-
tor, case D2. It would be desirable to be able to estimate flow fluctuations from wall measurements
with a simple model for forcing statistics, but the consideration of white-noise forcing leads to
inaccurate estimates; hence, a linear estimation requires information on the statistics of nonlinear
terms. The present results show that such statistics of nonlinearity do not need unrealistic levels of
accuracy, and moderately coarse large-eddy simulation may provide the required information on
dominant nonlinear effects. LES-informed resolvent-based estimation is thus a viable approach for
accurate estimates of turbulent flow at high Reynolds numbers, and it can also be seen as a more
accurate alternative, with moderate additional cost, to the use of eddy-viscosity models that have
been recently explored in the literature for wall-bounded flows [18,27,48,49].

074606-15



AMARAL AND CAVALIERI

ACKNOWLEDGMENTS

The authors acknowledge Prof. A. P. Willis for his support with the OPENPIPEFLOW code,
especially the LES module. The authors are also indebted to S. Mello, T. F. Kelly, and W. E.
Steinberg. F.R.A. received funding from São Paulo Research Foundation (FAPESP/Brazil), Grant
No. 2019/02203-2. A.V.G.C. was supported by the National Council for Scientific and Techno-
logical Development (CNPq/Brazil), Grant No. 313225/2020-6. The authors were also funded by
FAPESP/Brazil, Grant No. 2019/27655-3.

The authors report no conflict of interest.

APPENDIX A: EDDY VISCOSITY MODEL

If an eddy-viscosity model is considered, the LNS equations can be written as

∂t u + ur∂rŪex + Ū∂xu = ∇p + 1

Re
∇ · [νT (r)(∇u + ∇uT )] + f , (A1a)

∇ · u = 0, (A1b)

where νT is the eddy viscosity, which can be modeled as [26]

νT (y)

ν
= 1

2

{
1 + κ2R̂e

2
B̂

9
(2y − y2)2(3 − 4y + 2y2)2[1 − e( −yR̂e

√
B̂

A+ )]2

}1/2

+ 1

2
, (A2)

where y = 1 − r,the constants κ and A+ are given as 0.42 and 27, respectively [50], R̂e = Re/2,
and B̂ = −2∂x p.

Following Willis et al. [51], the linear operator accounting for the eddy-viscosity model is given
by

A =

⎡
⎢⎢⎢⎢⎣

−iαŪ + 1
Re [νT (� + r−2) + E] −DŪ + 1

Re iανT
′ Z −iαI

Z −iαŪ + 1
Re (νT � + 2E ) − 1

Re F −D

Z 1
Re (F + iβνT

′r−1) −iαŪ + 1
Re (νT � + G) −iβr−1

iαI D + r−1 iβr−1 Z

⎤
⎥⎥⎥⎥⎦,

(A3)

where

� = ∇2 − r−2 = −α2I − (β2 + 1)r−2 + r−1D + D2, (A4a)

νT
′ = DνT , (A4b)

E = νT
′D, (A4c)

F = 2iβνT r−2, (A4d)

G = νT
′(D − r−1). (A4e)

APPENDIX B: BLOCK SIZE CONVERGENCE TESTS

Figure 12 displays a convergence test for various block sizes (128 � Nf f t � 2048) while keeping
the block overlap fixed in 75%. The metrics depicted in the figure are the correlation, the normalized
error, and the variance of the streamwise velocity fluctuation component. To obtain these results, the
forcing terms were extracted from case D2. It is observed that the statistics are well converged
in the 256 � Nf f t � 1024 range. This shows the typical compromise in the application of the
Welch method to obtain frequency-domain statistics: blocks that are too short have a low-frequency
resolution, while long blocks may lead to worse statistical convergence. It is nonetheless reassuring
that various signal-processing choices lead to similar estimation properties. We have taken the
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FIG. 12. Flow state comparison metrics for the streamwise velocity fluctuation component and different
block sizes using D2 forcing statistics. Dashed curves in the left frame denote DNS (D1) results. Frames,
from left to right: correlation, normalized rms, and variance. The DNS variance refers solely to wave numbers
retained for estimation.

intermediate value Nf f t = 512 to obtain the forcing statistics used to build the estimators. Similar
results, not shown here, were obtained for the radial and azimuthal velocity fluctuation components.
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