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A circular cylindrical segment is a sharp-crested weir with a circular downstream curve
profile. Overflow characteristics of circular cylindrical and circular-crested weirs have been
studied extensively over the past century. Meanwhile, the available literature on the circular
cylindrical segment is comparatively limited. Previous studies have often employed the
potential flow theory to predict the mean velocities, pressure, and discharge coefficient,
which may not be able to accurately predict the flow characteristics for a circular cylindrical
segment. The aim of the present study is to experimentally investigate turbulent flows over
circular cylindrical segments and to provide equations that can predict the mean velocities
along the weir. Three upstream face angles α = 90◦, 45◦, and 30◦, and three water depths
over the crest Dc/h = 0.7, 0.4, and 0.2, were tested to simultaneously characterize the
effects of both the upstream face angle and water depth. The instantaneous velocities were
measured using a planar particle image velocimetry system in an open recirculating water
channel. The results showed the presence of a recirculation bubble at the crest of the weir
for all test conditions. The size of this recirculation zone decreases as the water depth or
the upstream face angle decreases. At a far enough distance from the recirculation zone,
the mean angular momentum varied linearly in the circumferential direction. Meanwhile,
a rigid-body rotation region was detected near the free surface, which grows thicker in the
circumferential direction.

DOI: 10.1103/PhysRevFluids.8.074605

I. INTRODUCTION

A. Background

A weir is a small-scale dam built across a stream to regulate the flow of water or feed a
diversion channel. Stream flows are allowed to pass over the top of a weir. However, for large-scale
dams, overtopping may lead to potential failure, and consequently, the excess stream flows are
released into the downstream riverbed through hydraulic structures known as spillways [1]. Weirs
are categorized into four groups based on the crest shape, namely, long-crested, broad-crested,
short-crested, and sharp-crested [2]. A weir with a thin width edge is termed sharp-crested, whereas
one with appreciable width is called broad-crested [3].

Circular weirs are among the most common hydraulic structures that are used for discharge
measurements, flow diversion, and regulating water levels [4–6]. These weirs are very convenient
for designers due to their ability to efficiently pass floating debris, design simplicity compared to
ogee-crested weirs, and relatively lower costs [7]. Geometrical differences investigated in previous
studies are shown in Fig. 1.
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FIG. 1. Schematics of the previously studied circular geometries: (a) circular cylinder, (b) circular-crested
weir, and (c) semicircular cylinder.

The simplest form of circular weirs is a circular cylinder set perpendicular to the oncoming
flow. A circular-crested weir is an overflow structure with a circular crest positioned tangentially
to an upstream and a downstream face of angle α and β, respectively. Semicircular cylindrical
weirs consist of half of a circular cylinder positioned perpendicular to the flow direction and were
developed in the 1990s [8].

The first experimental study on circular weirs is attributed to Koch and Carstanjen [9]. Ever
since, the effects of a wide range of flow parameters, such as surface tension, viscosity, and
streamline curvature, on the hydraulic characteristics of circular weirs have been studied extensively
[4,10–14], where it was shown that the discharge coefficient is a function of upstream head to
crest radius ratio. Chanson and Montes [15] conducted experiments on the effects of geometrical
parameters, such as circular cylinder radius and weir height, as well as upstream conditions on
the overflow characteristics of circular weirs. Their results revealed that the upstream hydraulic
conditions significantly affect the overflow properties. Ramamurthy and Vo [13] experimentally
investigated the effects of both upstream and downstream face angle on the discharge coefficient
of circular-crested weirs, where it was shown that changing the upstream face slope did not alter
the discharge coefficient; however, increasing the downstream face slope apparently increased the
discharge coefficient.

The flow around circular weirs is often considered to be inviscid and irrotational, and con-
sequently, the potential flow theory is employed to characterize the flow [16–19]. For instance,
Ramamurthy and Vo [17] used the expression of Dressler [16] for the velocity profile of a shallow
irrotational flow over a curved bed to predict the velocity distribution over circular weirs. Previous
studies show that the results obtained from the potential flow theory often agree well with the
reported experimental values [17,18,20]. It should be noted that the motion of the free surface can
only be modeled by the potential flow theory when the free surface undergoes a small deformation,
and for a highly deformed free surface with turbulence, the inviscid model is no longer valid [8].

B. Objectives

Despite the geometrical similarities between the circular-crested weirs and the circular cylin-
drical segment, circular-crested weirs are classified as narrow-crested [21] or short-crested weirs
[22], whereas the circular cylindrical segment is considered sharp-crested. From the discussion in
Sec. I A, it is clear that a considerable number of analytical, experimental, and numerical studies
have already been conducted on circular cylindrical and circular-crested weirs. In comparison, the
available literature on the overflow characteristics of a circular cylindrical segment is very limited.
Therefore, the objectives of this paper are as follows:

(i) Investigate the effects of both the upstream face angle α and water depth at the crest Dc on the
flow properties over circular cylindrical segments.

(ii) Propose physical models to characterize the mean velocities along the weir.
The remainder of the paper is organized as follows. A description of the flow and the adopted

nomenclature is presented in Sec. II. The experimental setup, methodology, and post-processing
procedure are described in Sec. III. The main results and discussion are presented in Sec. IV and the
major findings and conclusions are summarized in Sec. V.
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II. DESCRIPTION OF THE FLOW

Consider the flow over a circular cylindrical segment, as sketched in Fig. 2. Geometrical and
flow parameters upstream and at the leading edge (crest) are denoted by subscripts ‘o’ and ‘c’,
respectively. All angles are in radians unless when explicitly specified in degrees (◦).

Polar-cylindrical (r, θ, z), curvilinear (n, s), and Cartesian (x, y) coordinate systems are adopted,
where the polar-cylindrical and curvilinear coordinate systems are related through Eqs. (1a) and
(1b):

n = r − rc, (1a)

s = rc(θ − θc). (1b)

The circular cylindrical segment has a height of h, with the leading edge being at θ = θc, and
an upstream face angle of α. The velocities in the Cartesian coordinate system are denoted by u
and v in the x and y coordinate directions, respectively. The velocity components in the polar-
cylindrical coordinate system are denoted by uθ , vr , and wz in the r, θ , and z coordinate directions,
respectively. Velocities in the curvilinear coordinate system in the n and s coordinate directions are
the same as the velocities in the r and θ coordinate directions in the polar-cylindrical coordinate
system. Following Reynolds [23], the fluctuating velocities are designated by the prime symbol,
while statistical moments of fluctuating quantities are denoted using an overline. All of the mean
quantities are represented using a capital letter.

x
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α

θ

r

s n

o

h y

Uo Uθ

(b)

(a)

FIG. 2. A schematic showing (a) a circular cylindrical segment with an upstream face angle of α and (b) the
adopted nomenclature.
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Water flows steadily through a rectangular open channel and produces a velocity profile with
a free-stream velocity of Uo. The presence of the weir causes the velocity profile to deform
significantly at the crest, which is schematically shown by Uθ in Fig. 2. As the flow passes over
the weir, the free surface remains smooth and nonaerated, and the streamlines strongly adhere to the
weir surface, a phenomenon referred to as the Coanda effect [7]. At the leading edge, flow separation
occurs due to the sharp crest geometry and the inclined surface of the weir. The flow eventually
reattaches to the weir surface, forming a recirculation bubble near the leading edge before leaving
the circular cylindrical segment.

III. EXPERIMENTAL PROCEDURE

A. Test section and test cases

The experiments were conducted at the Turbulence and Hydraulic Engineering Laboratory
(THEL), University of Manitoba, in an open recirculating water channel with a working sec-
tion 6.00 m long, 0.45 m high, and 0.60 m wide. The bottom and sidewalls of the test section were
fabricated from 31.8 mm thick transparent Abrasion-Resistant® acrylic plates to facilitate optical
access from all sides. The flow in the channel was driven by a 30 kW variable-speed drive motor
capable of producing a maximum discharge of 0.566 m3/s. The speed of the pump was controlled
using a variable frequency drive assembly that could vary the oncoming velocity from 0.03 m/s
to 2.00 m/s. A flow conditioning unit, consisting of a series of perforated plates, hexagonal
honeycombs, mesh screens, and a 4.88:1 converging section, was installed upstream of the test
section to minimize the turbulence and homogenize the oncoming flow entering the test section.
The water exiting the test section was redirected to the return pipe through a turning vane system
for flow recirculation.

A circular cylindrical segment of height h = 0.15 m, upstream face angle α = 90◦, crest angle
θc = 20.6◦, and span-wise width of 0.60 m was installed on the channel floor, 2.50 m downstream
of the entrance to the test section. Two additional upstream face angles α = 45◦ and 30◦ were
examined by installing 45◦ and 30◦ wedges immediately upstream of the weir. The wedges were
0.15 m high and spanned the entire width of the channel. All physical models were fabricated from
smooth acrylic plates in the Machine Shop at Price Faculty of Engineering, University of Manitoba.
A sketch showing the examined geometries is presented in Fig. 3.

Three water depths over the crest, including Dc/h = 0.7, 0.4, and 0.2, were investigated for each
upstream face angle. The water depth over the crest was set to the desired level by keeping the
oncoming velocity constant, monitoring the free surface, and draining the surplus water from the
channel. The room temperature was regulated at 20 ◦C, leading to a kinematic viscosity of ν = 1.0 ×
10−6 m2/s for water. Table I provides a summary of the pertinent test parameters and dimensionless
numbers. The examined Reynolds numbers are large enough to establish turbulent flow conditions.

(b) (c)(a)

FIG. 3. A schematic showing the tested weirs: (a) α = 90◦, (b) α = 45◦, and (c) α = 30◦.
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TABLE I. Summary of the flow parameters.

α Do/h Dc/h Uo ( m/s) Uc ( m/s)a Reh = Uoh/ν Fro = Uo/
√

gDo
b Frc = Uc/

√
gDc

b

90◦ 1.63 0.70 0.308 1.476 46200 0.199 1.453
1.40 0.45 0.162 1.175 24300 0.113 1.444
1.20 0.25 0.069 0.755 10350 0.052 1.225

45◦ 1.68 0.71 0.308 1.488 46200 0.196 1.456
1.42 0.42 0.162 1.179 24300 0.112 1.500
1.21 0.20 0.069 0.761 10350 0.052 1.403

30◦ 1.68 0.67 0.308 1.457 46200 0.196 1.467
1.46 0.43 0.162 1.239 24300 0.111 1.558
1.22 0.21 0.069 0.756 10350 0.051 1.360

aMaximum velocity is reported at the crest.
bg = 9.81 m/s2 was used to evaluate the Froude numbers.

Furthermore, Fro < 1 and Frc > 1 for all test cases, indicating the transitions of the flow from
subcritical to supercritical regime.

B. Particle image velocimetry (PIV) system

A two-component particle image velocimetry (PIV) system was employed to measure the veloc-
ity fields at the span-wise centerline. Here, parameters associated with the particles and the working
fluid are designated by subscripts ‘p’ and ‘f’, respectively. The flow was seeded with silver coated
hollow glass spheres, which had a diameter of dp = 10 µm and a specific gravity of 1.4. The flow
field was illuminated by a diode-pumped dual-cavity high-speed Neodymium-doped yttrium lithium
fluoride (Nd:YLF) laser (DM30-527DH, Photonics Industries International, Inc.). Each cavity was
capable of emitting green light up to a maximum pulse energy of 30 mJ/pulse at a wavelength
of 527 nm and an operation frequency of 1000 Hz. The thickness of the laser light sheet was
approximately 1.5 mm. Two high-speed 12-bit complementary metal oxide semiconductor cameras
(CMOS), positioned side-by-side and fitted with Nikon 60 mm lenses, were operated at a resolution
of 2560 pixels × 1600 pixels to simultaneously capture the light scattered by the illuminated seeding
particles within the fields of view. Both fields of view were 195.8 mm long and 313.7 mm high, and
overlapped by 10.0 mm in the stream-wise direction. A schematic showing the test section and the
PIV arrangements is provided in Fig. 4.

In the operation of the PIV, the ability of the particles to faithfully follow the fluid motions must
be critically evaluated. Following Raffel et al. [24], the slip velocity of particles was estimated from

High-speed
cameras

Laser source

Light sheetFlow

FIG. 4. A schematic representing the test section, PIV arrangements, and the fields of view.
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Eq. (2):

us = d2
p (ρp − ρ f )g

18ρ f ν
. (2)

In Eq. (2), ρ and g denote the density and the gravitational acceleration, respectively. The calculated
slip velocity was 2.18 × 10−5 m/s, which was four orders of magnitude lower than the free-stream
velocity. The relaxation time τp = us/g was estimated to evaluate the response time of the seeding
particles to sudden motions in flow velocity. The PIV system was operated in time-resolved mode
at a sampling frequency of 800 Hz to evaluate the Taylor microtime scale τ f , which is the smallest
temporal scale that could be measured in the present study. The Stokes number Sk = τp/τ f , which
is a measure of the particle response time relative to the characteristic time scale of the small eddies,
was 4.53 × 10−5 for α = 90◦ and Dc/h = 0.7 test case, which is orders of magnitude smaller than
the threshold value of 0.05 proposed by Samimy and Lele [25]. As such, the seeding particles
followed the fluid motions well, and their instantaneous velocities were an accurate representation
of the instantaneous local fluid velocities.

The PIV system was operated in the double-frame mode at a sampling frequency of 3 Hz to
obtain statistically independent samples. For each test case, a total number of 12 000 images were
recorded, resulting in a total sampling time of 2000 seconds. Data acquisition, image processing,
and vector calculations were controlled using commercial software DaVis® (version 10.0.5, supplied
by LaVision Inc.). The velocity vectors were calculated using a GPU-accelerated multipass cross-
correlation algorithm, using an initial interrogation area of 64 pixels × 64 pixels with 50 % overlap,
and an interrogation area of 16 pixels × 16 pixels with 75 % overlap during the four final passes.
The resulting vector spacing was 0.48 mm, which corresponds to 0.0032 h.

C. Post-processing and uncertainty quantification

Commercial software Matlab® was used for data post-processing and calculating the time-
averaged velocities and higher statistical moments. For each camera, velocity measurements were
performed with respect to a local Cartesian coordinate system. The two fields of view were
transformed and joined together to form a united domain with a new Cartesian coordinate system, as
was shown in Fig. 2. All of the redundant data point within the geometries and above the free surface
were identified and blanked using the algorithm developed by Hormann and Agathos [26]. A set of
expressions used for obtaining the mean velocities and Reynolds stresses in the polar-cylindrical
coordinate system is provided in Appendix. Measurement uncertainty in the mean velocities and
Reynolds stresses were evaluated within 95 % confidence level following Sciacchitano and Wieneke
[27] and Bendat and Piersol [28]. For α = 90◦ and Dc/h = 0.7 test case at a selected location above
the crest (x, y) = (0, h + Dc/2) the uncertainty values for the mean velocities and Reynolds stresses
were 0.06 % and 2.92 %, respectively.

Data analysis and visualization were accomplished using commercial software Tecplot 360 EX®

and Origin®. All plots presented henceforth are normalized using the oncoming velocity Uo and the
height of the weir model h.

IV. RESULTS AND DISCUSSION

In this section, contour plots as well as both radial and circumferential one-dimensional profiles
are presented to provide detailed measurements of flow characteristics. Radial one-dimensional
profiles of various parameters, including the mean span-wise vorticity, the mean angular momentum,
and correlation coefficient, were evaluated at eleven successive locations, starting at s/h = 0.00 and
ending at s/h = 0.50 with an increment of 0.05 h, while the range of the normal axis was limited
to 0 � n/h � Dc/h. The circumferential profiles were plotted at several radial locations, depending
on the water depth. For each water depth, a color palette is presented on the right-hand side of the
plots.
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A. Mean span-wise vorticity

The mean span-wise vorticity is evaluated to investigate the rotation of fluid elements. For a
steady incompressible flow, the Reynolds averaged continuity equation and the mean span-wise
vorticity in polar cylindrical coordinate system are given by Eqs. (3a) and (3b):

∂Uθ

r∂θ
+ ∂rVr

r∂r
+ ∂Wz

∂z
= 0, (3a)

Ωz = 1

r

(
∂rUθ

∂r
− ∂Vr

∂θ

)
. (3b)

To minimize computational errors, however, ∂Wz/∂z and Ωz were directly calculated from the mean
velocities in the Cartesian coordinate system using Eqs. (4a) and (4b), respectively,

∂Wz

∂z
= ∂U

∂x
+ ∂V

∂y
, (4a)

Ωz = ∂U

∂y
− ∂V

∂x
. (4b)

FIG. 5. Circumferential evolution of the radial profiles of the normalized mean span-wise vorticity and
stream-wise Reynolds stress for α = 30◦ at Dc/h = 0.4.
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Figure 5 shows the circumferential evolution of the radial profiles of the normalized mean span-
wise vorticity and the stream-wise Reynolds stress for α = 30◦ at Dc/h = 0.4. An essential feature
of turbulent flows is that they are rotational. Elevated regions of the mean span-wise vorticity are
observed along the weir and the free surface, where the flow was highly turbulent. The normalized
Reynolds stresses in these two regions were at most an order of 10. Two additional regions are also
identified on Fig. 5:

(i) A region close to the free surface where the mean span-wise vorticity is invariant in the radial
direction. Upon further investigations, it was observed that ∂Wz/∂z is nearly zero in this region, and
consequently, the flow may be considered to be in rigid-body rotation. The normalized stream-wise
Reynolds stress in this region was at most an order of 10−2.

(ii) An irrotational region extending between the edge of the turbulent region along the weir and
the rigid-body rotation region. In this region, ∂Wz/∂z was negligible and the normalized stream-wise
Reynolds stress was an order of 10−3.

A clear observation from Fig. 5(a) is that, in the rigid-body rotation region, the mean span-wise
vorticity greatly varies in the circumferential direction. To further evaluate the flow characteristics
upstream of the weir, contour plots of the normalized mean span-wise vorticity and stream-wise
Reynolds stress for α = 30◦ and α = 90◦ at Dc/h = 0.4 are presented in Fig. 6. Both Figs. 5(a) and

FIG. 6. Contour plots of (a) normalized mean span-wise vorticity and (b) normalized stream-wise Reynolds
stress for α = 30◦ and α = 90◦ at Dc/h = 0.4 test cases.

074605-8



EXPERIMENTAL INVESTIGATION OF TURBULENT FLOW …

TABLE II. Summary of the entrance parameters.

α Dc/h θe
a se/hb

90◦ 0.4 47.1◦ 0.50
90◦ 0.2 35.7◦ 0.28
45◦ 0.2 42.8◦ 0.42
30◦ 0.2 43.9◦ 0.44

aThe entrance angle for the test cases not reported here was either out of the field of view or nonexistent.
bThe entrance length was obtained from Eq. (1b).

6(a) clearly indicate that the thickness of the rigid-body rotation region grows as the flow develops
in the circumferential direction. An interesting observation from Fig. 6(a) is that the onset of the
rigid-body motion extends to θ = 0. In fact, for several test cases, even at θ = 0, the mean span-wise
vorticity is still nonzero.

Figure 6(b) shows high levels of stream-wise Reynolds stress upstream of the weir, which is
a consequence of the upstream flow separation due to the adverse pressure gradient specific to the
α = 90◦ test cases. From Fig. 6(b) it can be seen that, over the weir, the turbulent regions are initially
confined to thin layers near the weir and free surface. However, when the flow develops sufficiently
in the circumferential direction, the turbulent regions eventually fill the entire cross-sectional area.
Consequently, a developing region may be defined in a similar manner to other types of weirs and
spillways. For example, for a chute spillway, the developing flow region consists of a turbulent
boundary layer next to the above ideal-fluid flow region [29].

For this particular weir, the developing region consists of the irrotational region next to the above
rigid-body rotation region in the middle, surrounded by the outer turbulent regions along the weir
and the free surface. Table II compares the entrance parameters for several test cases.

The entrance parameters are denoted by subscript ‘e’. The entrance angle θe and the entrance
length se strongly depend on the water depth; nonetheless, they are not significantly affected by
the upstream face angle. Overall, the entrance length decreases as the water depth decreases and
increases as the upstream face angle decreases.

Circumferential profiles of the normalized mean span-wise vorticity in the rigid-body rotation
region for all test cases are presented in Fig. 7. Note that a polar line may span multiple flow regions
and that the data points in other regions are not shown. A common feature of the profiles shown in
Fig. 7 is that the mean span-wise vorticity increases to its maximum at θ = θa before decreasing.
Evidently, the value of θa decreases as the water depth decreases. Figure 7 clearly indicates that the
circumferential profiles are strongly dependent on the water depth. Variations in the upstream face
angle, on the other hand, do not alter the profiles significantly.

B. Mean angular momentum

The mean angular momentum is defined by Eq. (5) as

L = rUθ . (5)

Based on the discussion in Sec. IV A, the flow is irrotational and ∂Wz/∂z = 0. Rearranging Eqs. (3a)
and (3b), we obtain

∂Wz

∂z
= 0 ⇒ 1

r2

∂2rUθ

∂θ2
= − ∂2rVr

r∂θ∂r
, (6a)

Ωz = 0 ⇒ 1

r

∂

∂r

(
r
∂rUθ

∂r

)
= ∂2rVr

r∂r∂θ
. (6b)
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FIG. 7. Circumferential profiles of the normalized mean span-wise vorticity in the rigid-body rotation
region: (a) α = 90◦ and Dc/h = 0.7, (b) α = 45◦ and Dc/h = 0.7, (c) α = 30◦ and Dc/h = 0.7, (d) α = 90◦

and Dc/h = 0.4, (e) α = 45◦ and Dc/h = 0.4, (f) α = 30◦ and Dc/h = 0.4, (g) α = 90◦ and Dc/h = 0.2,
(h) α = 45◦ and Dc/h = 0.2, and (i) α = 30◦ and Dc/h = 0.2.

Now applying Clairaut’s theorem (Symmetry of second partial derivatives) to Eqs. (6a) and (6b),
we eliminate the mean radial velocity to arrive at the governing relations for the mean angular
momentum

∇2rUθ = 0, (7a)

r
∂

∂r

(
r
∂rUθ

∂r

)
= −∂2rUθ

∂θ2
. (7b)

When the mean angular momentum is specified, the mean radial velocity may easily be obtained by
integrating and simultaneously solving Eqs. (8a) and (8b) as follows:

∂Vr

∂θ
= ∂rUθ

∂r
, (8a)

r
∂rVr

∂r
= −∂rUθ

∂θ
. (8b)

The circumferential evolution of the radial profiles of the normalized mean angular momentum
for α = 30◦ at Dc/h = 0.4 is presented in Fig. 8. Negative values of the mean angular momentum,
marked by red in Fig. 8, are observed near the leading edge due to the presence of the recirculation
bubble. Furthermore, the angular momentum continuously increases in the circumferential direction
within the developing region.
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FIG. 8. Circumferential evolution of the radial profiles of the normalized mean angular momentum for
α = 30◦ at Dc/h = 0.4.

It is well known that the mean angular momentum is invariant in the radial direction for flow
around a rotating circular cylinder due to axial symmetry. The present study shows that, even in
the absence of axial symmetry, the radial invariance of the mean angular momentum may hold
under certain conditions. As observed from Fig. 8, for α = 30◦ at Dc/h = 0.4 test case, the mean
angular momentum is almost invariant in the radial direction within the irrotational region after the
reattachment of the flow (corresponding to profiles at s/h � 0.30 on Fig. 8), that is

rUθ = L1(θ ). (9)

Substituting Eq. (9) in Eq. (7b) gives rise to

d2L1

dθ2
= 0 ⇒ L1(θ ) = A1θ + B1. (10)

The mean circumferential velocity immediately follows from Eq. (9) while the mean radial velocity
may easily be obtained by substituting Eq. (10) in Eqs. (8a) and (8b):

Uθ = L1(θ )

r
= A1θ + B1

r
, (11a)

Vr = −A1 ln(r) + C1

r
. (11b)

We can confirm Eq. (10) by examining whether the mean angular momentum varies linearly in
the circumferential direction. Equation (10) was fitted to the experimental data of α = 30◦ at Dc/h =
0.4 within 38.5◦ < θ < 55.0◦, where a coefficient of determination of 0.997 was reached, indicating
good agreement between the measured and predicted values. The obtained fitting parameters are
summarized as

L̂1

h · Uo
= Â1θ + B̂1, Â1 = 0.1388, B̂1 = 3.6893. (12)

Figure 9 shows the plot of Eq. (10) fitted values superimposed on the measured data at n/h = 0.10,
0.12, 0.14, 0.16, and 0.18.

Circumferential profiles of the normalized mean angular momentum in the irrotational region for
all test cases are shown in Fig. 10. As expected, the mean angular momentum is nonlinear above
the recirculation bubble. Still, the profiles almost collapse on the same curve and vary linearly
after the reattachment of the flow for several test cases. Note that for all Dc/h = 0.7 test cases, the
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FIG. 9. Plot of the predicted and measured L/(h · Uo) for α = 30◦ at Dc/h = 0.4.

recirculation bubble is very large and spans the entire field of view. For several test cases, the linear
profiles are followed by a sudden drop in the mean angular momentum, where a section of the polar
line lies in the turbulent regions. This sudden drop in the mean angular momentum could be used to
determine the entrance angle.

FIG. 10. Circumferential profiles of the normalized mean angular momentum in the irrotational region:
(a) α = 90◦ and Dc/h = 0.7, (b) α = 45◦ and Dc/h = 0.7, (c) α = 30◦ and Dc/h = 0.7, (d) α = 90◦ and
Dc/h = 0.4, (e) α = 45◦ and Dc/h = 0.4, (f) α = 30◦ and Dc/h = 0.4, (g) α = 90◦ and Dc/h = 0.2, (h) α =
45◦ and Dc/h = 0.2, and (i) α = 30◦ and Dc/h = 0.2.
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FIG. 11. Circumferential profiles of the normalized mean radial velocity in the irrotational region for
α = 30◦ at Dc/h = 0.4.

As a final remark on Eqs. (11a) and (11b), we emphasize that, even after the reattachment of the
flow, ∂rUθ /∂r or equivalently ∂Vr/∂θ , may not be exactly equal to zero. Circumferential profiles of
the normalized mean radial velocity are better suited to evaluate ∂Vr/∂θ . A set of such profiles for
α = 30◦ at Dc/h = 0.4 are provided in Fig. 11.

From Fig. 11, it is evident that ∂rVr/∂θ is apparently invariant in the circumferential direction
within the linear range of the angular momentum. To further improve the predictions of the mean
velocities, one may consider a linear model for the mean angular momentum

∂L2

∂θ
= f (r). (13)

Equation (13) asserts that the angular momentum profiles, although still varying linearly, do not
necessarily collapse on the same line. Unlike Eq. (9), Eq. (13) is only a mathematical model based
on experimental observations. Now solving Eqs. (13) and (7b) simultaneously, we obtain

r
∂

∂r

(
r
∂L2

∂r

)
= 0 ⇒ L2 = g(θ ) ln(r) + h(θ ), (14a)

∂L2

∂θ
= f (r) ⇒ dg

dθ
ln(r) + dh

dθ
= f (r). (14b)

The left-hand side of Eq. (14b) cannot depend on θ , and consequently, g(θ ) and h(θ ) must be linear
functions

g(θ ) = D2θ + E2, (15a)

h(θ ) = A2θ + B2. (15b)

Now, substituting Eqs. (15a) and (15b) in Eq. (14a), it follows that

L2 = A2θ + B2 + ln r(D2θ + E2). (16)

Finally, Eqs. (5), (8a), and (8b) together with Eq. (16) give the distribution of the mean velocities

Uθ = A2θ + B2

r
+ ln r

r
(D2θ + E2), (17a)

Vr = −A2 ln r + C2

r
+ D2

2

(
θ2 − ln2r

r

)
+ E2

θ

r
. (17b)

Compared to Eq. (10), Eq. (16) allows for more flexibility for data fitting due to the extra logarithmic
term. It should be noted that D2 must be zero for the mean radial velocity to vary linearly in the
circumferential direction. In such a case, the value of E2 may be determined by calculating the
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slopes of the circumferential profiles shown in Fig. 11. If E2 is also set to zero, then Eqs. (17a) and
(17b) simply reduce to Eqs. (11a) and (11b), respectively.

We now switch attention to the variations of the mean angular momentum above the recirculation
bubble. The size of the recirculation bubble depends on several parameters, including the water
depth, upstream face angle, and the wall inclination at the crest (θc). In the present study, the wall
inclination at the crest was kept constant; nonetheless, the effects of varying wall inclination on the
size of the recirculation bubble may be found in the previous studies [30]. The findings of the present
study revealed that the size of the recirculation bubble decreases as the water depth decreases.
The trajectory of the streamlines at the leading-edge significantly depends on the upstream face
angle, and consequently, the size of the recirculation bubble decreases as the upstream face angle
decreases.

From Fig. 10, it is evident that the mean angular momentum is a constant at the crest irrespective
of the water depth and upstream face angle. Furthermore, for all test cases, the profiles diverge as
the flow evolves over the recirculation bubble before eventually intersecting at a second location,
denoted by θb. Henceforth, all parameters at this point are denoted by ‘b’ subscript. The value of
θb decreases as the water depth decreases. The upstream face angle, on the other hand, does not
significantly affect the value of θb. These experimental observations imply that the mean angular
momentum is characterized by the characteristic angle 
 = θb − θc above the recirculation bubble,
even though this is not evident from the geometrical constraints.

The line connecting the angular momentum intersection points (θc, Lc) and (θb, Lb), as shown
for all test cases in Fig. 10, is given by Eq. (18)

Λ(θ ) = Aθ + B, A = Lb − Lc

θb − θc
, B = θbLc − θcLb

θb − θc
. (18)

An important observation from Fig. 10 is that the difference between the mean angular momentum
circumferential profiles and Λ(θ )/(h · Uo) decreases as the normal distance from the wall increases.
In fact, for large enough values of n/h, the circumferential profiles almost collapse on the connecting
line. To exclude the effects of recirculation bubble on the mean angular momentum, the angular
momentum residual is defined by Eq. (19)

Γ (r, θ ) = L(r, θ ) − Λ(θ ). (19)

The presence of a characteristic angle and the background linear angular momentum allow us to
solve Eq. (7b) using the separation of variables technique. Another classical flow problem where
such analysis are applied is the transient Couette flow [31]. Substituting Eq. (19) in Eq. (7b), we
have

r
∂

∂r

(
r
∂Γ

∂r

)
= −∂2Γ

∂θ2
. (20)

Applying separation of variables to Eq. (20) yields

Γ (r, θ ) =
∑

n

Rn(r)n(θ ), (21a)

r
d

dr

(
r dRn

dr

)
Rn

= −
d2n
dθ2

n
= λ2

n. (21b)

Therefore, n(θ ) must satisfy the second order linear differential equation described by Eq. (22a)
and is a sine function as shown in Eq. (22b):

d2n

dθ2
+ λ2

nn = 0, (22a)

n(θ ) = sin (λn(θ − θc)), (22b)
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FIG. 12. Circumferential profiles of (a) angular momentum residual and (b) Γ/Γmax for α = 90◦ at
Dc/h = 0.7.

where λn = nπ



by the boundary condition. Rn(r) must satisfy the Cauchy-Euler differential equa-
tion described by Eq. (23a) and is of the form shown in Eq. (23b):

r2 d2Rn

dr2
+ r

dRn

dr
− λ2

nRn(r) = 0, (23a)

Rn(r) = 1√
r

(
anr

√
1
4 +λ2

n + bnr−
√

1
4 +λ2

n
)
. (23b)

In Eq. (23b), an must be zero since Rn(r) goes to zero for large enough values of r. Now by Eqs. (19),
(22b), and (23b), we have

L(r, θ ) = Aθ + B +
∞∑

n=1

bn
r−

√
1
4 +( nπ


 )2

√
r

sin

(
nπ



(θ − θc)

)
. (24a)

FIG. 13. Plot of the predicted and measured Γ/Γmax for α = 90◦ at Dc/h = 0.7.
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Equation (24a) characterizes the mean angular momentum above the recirculation zone. For
completeness, we also present the distribution of the mean velocities below, which may be obtained
by solving Eq. (24a) together with Eqs. (5), (8a), and (8b) similarly to the previous cases:

Uθ = Aθ + B

r
+

∞∑
n=1

bn
r−

√
1
4 +( nπ


 )2

r
√

r
sin

(nπ



(θ − θc)

)
, (25a)

Vr = −A ln r + C

r
+

∞∑
n=1

bn

1
2 +

√
1
4 + (

nπ



)2

nπ



r−
√

1
4 +( nπ


 )2

r
√

r
cos

(nπ



(θ − θc)

)
. (25b)

In Eqs. (25a) and (25b), A and B are constants given by Eq. (18). The coefficient bn is unknown
and must be determined by the boundary condition. Unfortunately, there is no exact lower boundary
condition in the radial direction due to the presence of the recirculation bubble. Still, if the recircu-
lation bubble is large enough, we may assume that bn is negligible for n �= 1, and consequently, the
angular momentum residual may be approximated by Eq. (26):

Γ (r, θ ) = R1(r) sin
( π



(θ − θc)

)
⇒ Γ̂ = Γ (r, θ )

Γmax(r)
= sin

(
π

θ − θc




)
. (26)

Hence, for Dc/h = 0.7 test cases where the recirculation bubble is significantly large, we may fit
Eq. (26) to Γ/Γmax profiles instead of solving for bn coefficients. An example of such analysis is
shown in Figs. 12 and 13 for α = 90◦ at Dc/h = 0.7. Note that n = 1 term is no longer dominant
for Dc/h = 0.4 and 0.2 test cases, and consequently, additional terms must be evaluated according
to Eq. (24a).

Levenberg-Marquardt iteration algorithm was used to fit Eq. (27) below to the experimental data,
where a coefficient of determination of 0.985 was achieved, indicating a good agreement between
the fitted and experimental values. The plot of the Eq. (27) fitted values and the measured data is
shown in Fig. 13. The obtained fitting parameters are summarized below. As expected, Γ̂max ≈ 1,
θ0 ≈ θc, and 
̂ ≈ θb − θc.

Γ̂ = Γ̂max sin

(
π

θ − θ0


̂

)
, Γ̂max = 0.950, θ0 = 20.301◦, 
̂ = 26.366◦. (27)

C. Correlation coefficient

The correlation coefficient is defined by Eq. (28) as

ϕu′
θ v′

r = u′
θv′

r√
u′

θu′
θ

√
v′

rv′
r

. (28)

The circumferential evolution of the radial profiles of the correlation coefficient for α = 45◦ at
Dc/h = 0.7 is presented in Fig. 14. Within the irrotational region, the correlation coefficient is
invariant in the radial direction at a far enough distance from the wall before suddenly decreasing
near the edge of the rigid-body rotation region. Note that the correlation coefficient is negative
within the rigid-body rotation region. As was observed in Fig. 8, the mean velocity and angular
momentum profiles, from the wall to the edge of the rigid-body rotation region, are similar to
those of a wall jet over a convex surface. A constant correlation coefficient characterizes a local
equilibrium state of turbulent structures [32,33]. Alcaraz et al. [32] and Dakos et al. [34] reported
a correlation coefficient of 0.45 and 0.48 for wall jets over circular cylinders, respectively[33].
Rew and Park [33] reported a correlation coefficient of 0.5 for a circular cylinder of radius of
0.20 m. They attributed the increase in the correlation coefficient to the circular cylinder radius,
which was an order of magnitude smaller compared to the previously investigated values. In the
present study, for α = 45◦ at Dc/h = 0.7, the correlation coefficient varied between 0.57 to 0.62 in
the circumferential direction.
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FIG. 14. Circumferential evolution of the radial profiles of the correlation coefficient for α = 45◦ at
Dc/h = 0.7.

V. SUMMARY AND CONCLUSIONS

Turbulent flows over circular cylindrical segments with different upstream face angles, namely
α = 90◦, 45◦, and 30◦, were investigated for three water depths, Dc/h = 0.7, 0.4, and 0.2, using a
double-frame particle image velocimetry system. The height, span-wise extent, and the crest angle
of the weir were fixed at 0.15 m, 0.60 m, and 20.6◦, respectively. Radial and circumferential profiles
of the time-averaged quantities, including the mean span-wise vorticity, mean angular momentum,
and correlation coefficient, were investigated to characterize the flow.

Radial profiles of the mean span-wise vorticity revealed several regions that may not be consid-
ered irrotational. Two highly turbulent regions were identified along the weir and the free surface. A
rigid-body rotation and an irrotational region extended between the two turbulent regions, with the
rigid-body rotation region being closer to the free surface. The two highly turbulent regions spread
in the circumferential direction and filled the entire flow cross-sectional area for all Dc/h = 0.2 test
cases and for α = 90◦ at Dc/h = 0.4. The entrance length significantly decreased as the water depth
decreased. The rigid-body rotation region extended upstream of the weir crest to θ = 0 for all test
cases. Circumferential profiles of the mean span-wise vorticity showed that the vorticity increases
in the circumferential direction and then decreases for all test cases within the rigid-body rotation
region.

Radial profiles of the mean angular momentum were examined for α = 30◦ at Dc/h = 0.4, where
it was observed that the mean angular momentum is invariant in the radial direction within the
irrotational region after the reattachment of the flow. It was analytically showed that the mean an-
gular momentum must vary linearly in the circumferential direction if the mean angular momentum
is to be invariant in the radial direction. These deductions were confirmed by the circumferential
profiles of the mean angular momentum, where it was revealed that the profiles vary linearly and
almost collapse on the same line after the reattachment of the flow. It was observed that the mean
angular momentum is a constant at the crest for all test cases. Above the recirculation bubble, the
profiles diverged before converging to a second intersection point. The line connecting the two
intersection points was subtracted from the mean angular momentum profiles and the residual was
solved analytically using separation of variables. It was concluded that the residual profiles divided
by their maximum collapse on the same curve for Dc/h = 0.7 test cases.

Radial profiles of the correlation coefficient were evaluated for α = 45◦ at Dc/h = 0.7. The
correlation coefficient was invariant in the radial direction at a far enough distance from the wall
within the irrotational region. The measured correlation coefficient was higher than the reported
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values in the previous studies on curved wall-jet flows and ranged between 0.57 and 0.62 in the
circumferential direction.

The data that support the findings of this study are available from the corresponding author upon
reasonable request.
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APPENDIX: TRANSFORMATION OF THE MEAN VELOCITIES AND REYNOLDS STRESSES

The mean velocities in the polar-cylindrical coordinate system were obtained by transforming
the Cartesian velocities through Eqs. (A1a) and (A1b):

Uθ = U cos(θ ) − V sin(θ ), (A1a)

Vr = U sin(θ ) + V cos(θ ). (A1b)

The transformation of the Reynolds stresses was achieved using Eqs. (A2a), (A2b), and (A2c) as

u′
θu′

θ = u′u′cos2(θ ) + v′v′sin2(θ ) − u′v′ sin(2θ ), (A2a)

v′
rv

′
r = u′u′sin2(θ ) + v′v′cos2(θ ) + u′v′ sin(2θ ), (A2b)

u′
θv

′
r = u′v′ cos(2θ ) +

(
u′u′ − v′v′

2

)
sin(2θ ). (A2c)
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