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The effects of density and viscosity fluctuations on the total stress balance are identified
and used to create a mean velocity transformation for compressible boundary layers. This
work is enabled by an extensive database of direct numerical simulations that incorporate
wall-cooling, semilocal Reynolds numbers ranging from 800 to 34 000, and Mach numbers
up to 12. The role, significance, and physical mechanisms connecting density and viscosity
fluctuations to the momentum balance and to the viscous, turbulent, and total stresses are
presented, allowing the creation of generalized formulations. We identify the significant
properties that thus far have been neglected in the derivation of velocity transformations:
(1) the Mach invariance of the near-wall momentum balance for the generalized total stress
and (2) the Mach invariance of the relative contributions from the generalized viscous and
Reynolds stresses to the total stress. The proposed velocity transformation integrates both
properties into a single transformation equation and successfully demonstrates a collapsing
of all currently considered compressible cases onto the incompressible law of the wall,
within the bounds of reported slope and intercept for incompressible data. Based on the
physics embedded in the two scaling properties, the success of the proposed transformation
is attributed to considering the effects of the viscous stress and turbulent stresses as well as
mean and fluctuating density viscosity in a single transformation form.
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I. INTRODUCTION

Hypersonic flow is an area of interest that has received much attention by the fluid mechanics
community in recent years as we move towards space travel and hypersonic civilian transport
vehicles. In particular, a mean velocity transformation (MVT) for turbulent boundary layer (CTBL)
flow that accounts for variations in thermodynamic variables and compressiblity has been sought.
The main driver behind such efforts was the suggestion by Morkovin in 1962 “that for moderate
Mach numbers, the essential dynamics of these shear flows will follow the incompressible pattern”
[1]. Based on this hypothesis, it has been hoped that a correct accounting for variation of thermo-
dynamic properties will restore the incompressible law of the wall for wall-bounded compressible
flow.

Over the past few decades, various forms of MVTs for CTBLs have been proposed [2–7],
from the pioneering work of Van Driest [2], to the recently proposed viscous stress based trans-
formation by Trettel et al. [3] (TL), and each have had their own limitations. The Van Driest
(VD) transformation has shown success in scaling adiabatic CTBLs [8–11] with reported weakness
in scaling of isothermal cases leading to increases in the log-law intercept with increasing heat
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transfer [3,7,12–14]. The most successful MVT that accounts for the near-wall viscosity gradient
was independently developed by Trettel et al. [3] and Patel et al. [7]. However, despite their
initial success in isothermal CTBL cases [15,16] with low semilocal Reynolds, Re∗, the scaling
remains unsuccessful for cases with increasing Re∗ where multiple studies [14,17] report a large
scatter in the log-layer intercept and the slope for such cases. In this paper the semilocal friction
Reynolds number is defined as Re∗ = Reτ

√
ρe/ρw/(μe/μw ), where uτ = √

τw/ρw is the friction
velocity, δ is the boundary layer thickness, and τw = μ∂u/∂z|w is the wall shear stress. The fluid
density and viscosity are denoted by ρ and μ. The variables u, v,w denote velocities in the
streamwise, spanwise and wall-normal directions, x, y, z, respectively. The conventional friction
Reynolds number based on wall conditions is defined Reτ = ρwuτ δ/μw. The overbar denotes
time averaging. A single prime will be used to denote a fluctuation from the Reynolds-averaged
mean velocity, and the subscripts “w” and “e” will denote wall or boundary layer edge quantities,
respectively.

Recently, Griffin et al. [17] (GFM) developed a total stress-based MVT that employs a
combination of the viscous stress transformation of Trettel et al. [3] and the quasiequilibrium
assumption-based transformation of Zhang et al. [4]. They employ a total stress-based functional
form to combine these two transformations, such that each is applied in their region of applicability:
Trettel et al. [3] in the viscous layer and Zhang et al. [4] further from the wall. In their transfor-
mation, the quasiequilibrium model is extended to employ the semilocal wall-normal coordinate,
z∗ = zuτ

√
ρw/ρ/(μ/ρ ), which was proposed by Huang et al. [18] and has been shown to be effec-

tive in collapsing turbulence statistics in CTBLs within the near-wall region [3,7,9,12,14,17,19,20].
Initial explorations of the mean velocity profiles transformed by the GFM approach have shown
promising collapse and improvement over earlier MVTs. However there are questions about the
breadth of applicability of the quasiequilibrium hypothesis on which the GFM transformation is
partially based. A follow-up paper by Bai et al. [21] extended this exploration for a broad range
of cases, including high-enthalpy turbulent boundary layers, flows at supercritical pressure, and
boundary layers with pressure gradients, with mixed results, suggesting additional physics must be
incorporated under these conditions. The intercept and the slope of GMF transformation as well
as the quasiequilibrium assumption are further examined in the present paper for a broader set of
semilocal Reynolds numbers.

A few studies have derived MVTs from the momentum equation perspective, and this approach
deserves further attention. The transformation by Zhang et al. [4] is derived from the turbulent
kinetic energy equation, and Wu et al. [6] examined the total stress from the momentum equa-
tion perspective to derive their MVT, for example. The latter study, however, relies on Prandtl’s
mixing length hypothesis [22] for the prediction of the Reynolds stress and requires a priori
information of the onset locations for the buffer and log layers. Such requirements make the use
of their transformation difficult to apply in practice. While relying on the Mach invariance of the
total stress in the momentum equation may be more practical, data show Mach dependence and
the breakdown of the near-wall momentum balance for CTBLs, as classically described; namely,
for high Re∗ number and high Mach number, the turbulent stress is greater than the wall shear
stress under Reynolds averaging, albeit slightly [9,10,14,19]. While density fluctuations can be
accounted for by employing Favre averaging, this result suggests viscosity fluctuations might need
to be considered to appropriately achieve Mach invariance of the total stress and to derive MVT
from the momentum equation perspective.

The current paper makes use of the CRoCCo CTBL database, which includes a wide range of
Re∗, approximately spanning from 800 to 34 000, and is used in the present study to scrutinize
the effects of Mach and Reynolds numbers on CTBL flows. In the present study, these effects
are examined in the context of the thin shear layer (TSL) momentum approximation, which we
modify from its classical form to represent the data across the parameter space. After the relative
importance of density and viscosity fluctuation effects is analyzed, we integrate the findings into
a mean velocity transformation that enables the collapse of data across a wide range of CTBL
conditions.
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TABLE I. Boundary layer edge and wall parameters of DNS database.

Viscosity ue T e uτ ρw ρe Line and

Case law Me (m/s) (K) T w/T r −Bq Reθ Reδ2 Reτ Re∗ (m s−1) (kg m−3) (kg m−3) Symbol

M3T5 Power 3.0 882.5 220 1.0 0.0 3480 1760 530 1650 44.5 0.0366 0.0917

M5T5 Power 4.9 1472 225 1.0 0.0 7450 1980 470 3870 81.5 0.0182 0.0968

M7T5-L Power 6.9 2069 224 1.0 0.0 15 600 2830 550 9450 115.9 0.00969 0.0926

M12T5-L Power 11.7 3612 236 1.0 0.0 46 800 3880 550 33 990 213.1 0.0038 0.1015

M5T3 Power 4.9 1477 222 0.5 0.05 4650 2054 610 2350 68.0 0.0324 0.0950

M5T1 Power 5.0 1498 223 0.2 0.17 1620 1650 830 800 48.4 0.0973 0.0951

M10T3 Keyes (N2) 9.1 1410 58.6 0.5 0.11 7565 1745 491 4827 63.0 0.0079 0.0403

II. SIMULATION DETAILS AND CTBL DATABASE

A. Flow conditions

The direct numerical simulation database used for this study is summarized in Table I. All
simulations employ low-enthalpy, nonreacting conditions typical of ground test facilities. The
working fluid is callorically perfect air for all cases except for M10T3, which utilizes callorically
perfect nitrogen (N2). The boundary layer edge Mach number, Me ranges from 3 to 12 to highlight
the Mach number effects. The semilocal friction Reynolds number, Re∗, ranges from 800 to
34 000, approximately, to highlight Reynolds number effects in compressible turbulent boundary
layer flow. While a number of cases are adiabatic, the T w/T r ratio, as well as the wall heat
transfer rate, Bq = qw/(ρwCpuτ T w ), range from 0.2 to 1.0 and from 0 to −0.17, respectively,
where q is the surface heat flux, Cp is the heat capacity at constant pressure, and T is the mean
temperature. The wall temperature T w is given as a fraction of the adiabatic recovery temperature
T r = T e[1 + 0.9M2

e (γ − 1)/2], where γ is the ratio of specific heats. Several Reynolds numbers
are provided, including Reθ ≡ ρeueθ/μe, where θ is the compressible momentum thickness and
ρe, ue, and μe are the boundary layer edge density, velocity, and dynamic viscosity, respectively. A
second momentum thickness Reynolds number, Reδ2, is defined as ρeueθ/μw, following convention.
The friction Reynolds number at wall conditions, Reτ varies between 475 and 825. All values of
Reynolds number listed in Table I are measured at the outlet plane of the computational domain. The
locations of the data collection outlet plane xo/δ are provided in Table II, where δ is the thickness
of the boundary layer at 99% of the freestream velocity measured at the outlet plane.

TABLE II. Computational domain size and grid resolution for the DNS data. Datasets with case name
ending in “-L” are long-box runs with the domain length extended utilizing starred (*) auxiliary simulations at
their inlet. All other cases use the rescaling method of Xu and Martin [24] for inflow assignment. The dagger
(†) indicates the cumulative sampling distance once auxiliary simulation distances are taken into account.

δ

Case Nx Ny Nz (mm) Lx/δ Ly/δ Lz/δ �x+ �y+ z+
2 χ tue/δ xo/δ

M3T5 1820 880 110 9.3 28.7 5.7 7.5 8.3 3.4 0.32 1.063 143 26.8
M5T5 1820 880 110 16.6 27.2 5.4 8.1 7.1 2.9 0.26 1.061 134 26.1
M7T5* 1780 1160 110 39.8 21.1 5.6 6.12 6.6 2.7 0.26 1.061 134 20.2
M7T5-L 1580 1080 116 39.8 21.0 5.6 7.6 7.4 2.9 0.28 1.061 110 40.2 †
M12T5* 1640 1300 110 125.8 20.4 5.4 5.8 6.8 2.4 0.28 1.060 110 19.0
M12T5-L 1640 1240 116 125.8 20.4 5.4 7.2 6.8 2.4 0.29 1.060 142 38.7 †
M5T3 2032 1080 106 9.0 25.4 5.1 8.4 7.6 2.9 0.32 1.069 199 24.0
M5T1 2080 1648 110 2.5 19.5 5.8 7.3 7.7 2.9 0.29 1.069 190 18.5
M10T3 1920 1680 112 17.8 30.3 10.2 10.7 7.8 2.9 0.31 1.065 93 29.0
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TABLE III. Incompressible channel flow DNS database.

Case Reτ Line Symbol Reference

LM5200 5186 —— � Lee and Moser [28]
LM2000 1994 - - - · � Lee and Moser [28]
LM1000 1000 ·· ·· ·· � Lee and Moser [28]
BOP4100 4079 − · − · − • Bernardini and Pirozzoli [29]

B. Computational domain and simulation setup

The governing equations, numerical methods, boundary conditions, and initialization procedures
used to create the high-fidelity CRoCCo Lab database for this study are documented and have been
verified in previous studies [23–26].

The computational domain size, grid resolution, and simulation duration of the datasets are
provided in Table II. The outer dimensions of the computational boxes are given in units of δ

measured at the outlet plane. All runs use spanwise periodicity. The domain width varies among the
runs but ranges between 5 and 10δ. All cases use the recycle/rescale method of Xu and Martin [24]
to assign the inflow boundary conditions. Large-scale structures are artificially introduced at the inlet
due to the recycle/rescaling method, requiring domains that are long enough for the flow to become
decorrelated from the inflow. For most cases, the domain was approximately 20 to 30 times the outlet
boundary layer thickness. For M7T5-L and M12T5-L an extended domain length of approximately
40δ was employed in two stages, first from x = 0 to approximately 20δ in M7T5* and M12T5*
(which we refer to as auxiliary cases), and then from about roughly 20δ to 40δ in M7T5-L and
M12T5-L. To assess the adequacy of the domain size, a two-point correlation coefficient of the
streamwise, spanwise, and normal velocity components, as well as the temperature and density at
z/δ = 0.2, is plotted for both M5T1 and M12T5, which are the cases with the lowest and the highest
Re∗, respectively. The streamwise and spanwise correlation coefficients in Fig. 1 drop to near 0 at
locations with a large enough separation, suggesting that the domains are sufficiently long. Similar
results were observed for other cases.

Grid resolutions are listed in Table II relative to the wall-referenced inner viscous length scale
zτ = μw/ρwuτ as indicated by the “+” superscript. The computational grids are made with constant
spacing in the streamwise and spanwise directions (�x+ and �y+). Geometric stretching is used in
the wall-normal direction, where z+

k = z+
2 (χ k−1 − 1)/(χ − 1) and k indicates the wall-normal grid

index so that the finest resolution is at the wall surface. The first grid point away from the wall is
z+

2 , and the factor χ determines the rate of stretching. The grid resolution of the DNS runs has been
shown to be sufficient for the current DNS computational method and at the given flow conditions
in previous publications. In particular see Martin et al. [23] and Duan et al. [9,19,26,27].

For the statistical analysis, time-domain signals of primitive flow variables are collected from
the outlet plane, xo/δ, of each run. The total sample time in outer time units t (ue/δ) is provided in
Table II. No statistics are presented from the auxiliary boundary layer runs (M7T5* and M12T5*).
The incompressible channel flow DNS database of Lee and Moser [28] and Bernardini and Pirozzoli
[29] with Reτ ranging approximately from 1000 to 5200 is listed in Table III to be used as reference
IBTL cases.

C. Averaging and notation

In this paper both Reynolds- and Favre-averaged quantities are employed. As noted previously,
Reynolds-averaged quantities are denoted by an overbar, f , with a single prime denoting a fluc-
tuation relative to this average, f ′. Similarly, Favre-averaged quantities are denoted by tilde, f̃ ,
and fluctuations from this average are f ′′. The variable f represents a flowfield variable such as
the streamwise, spanwise, or wall-normal velocities, which we denote as u, v, and w, respectively.
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(a) (b)

(c) (d)

FIG. 1. Two-point correlation coefficient, Rφ′φ′ , for streamwise, spanwise, and wall-normal velocity as well
as temperature and density components at z/δ = 0.2: (a) streamwise M5T1, (b) spanwise M5T1, (c) streamwise
M12T5, (d) spanwise M12T5.

While dataset conditions and the initial thermodynamic fluctuation analysis will be predominantly
described in terms of Reynolds-averaged quantities, the majority of flowfield statistics and the
following derivation of an MVT for compressible flows will be conducted in density-weighted
Favre-averaged variables. The following work can be conducted fully with Reynolds or Favre
averaging without impacting our conclusions.

III. DENSITY AND VISCOSITY FLUCTUATIONS IN COMPRESSIBLE BOUNDARY LAYERS

A. Breakdown of the classical momentum balance

To probe influences of compressibility on thermodynamic property fluctuations within com-
pressible turbulent boundary layers, we begin by examining the Reynolds-averaged, thin shear
layer streamwise momentum equation. While it is customary to use Favre-averaged equations in
compressible flow, the use of the Reynolds-averaged equation provides insights into the influence
of fluid property variations in compressible turbulence that are rarely remarked upon. We begin by
employing the classical assumptions that the streamwise derivatives are negligible, the fluctuations
of thermodynamic variables are small, the pressure gradient across the boundary layer is small,
and the magnitude of convection terms is negligible near the wall. Under these conditions, the
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(a) (b)

(c)

FIG. 2. Nondimensionalized (a) viscous stress, τ+
V −R, (b) turbulent stress, τ+

T −R, and (c) total stress, τ+
i,R, are

plotted against the semilocal wall normal coordinate, z∗. Corresponding stresses from ITBL flow references
are included for comparison. References for line colors and styles as well as references for the database are
included in Tables I and III.

momentum equation reduces to

1 � μ

τw

∂u

∂z
− ρu′w′

τw

= τ+
V −R + τ+

T −R, (1)

where the superscript “+” denotes the nondimensionalization by wall quantities, and τ+
V −R and

τ+
T −R are the nondimensional Reynolds-averaged viscous and turbulent stresses, respectively. The

classical momentum balance described by Eq. (1) is expected to hold near the wall for zero pressure
gradient boundary layers if Morkovin’s hypothesis is valid; that is, the density and viscosity fluctu-
ations are negligible and the consideration of only mean density and mean viscosity is sufficient to
restore the classical near-wall momentum balance observed in ITBLs.

The stress balance and the magnitude of its classic viscous and turbulent contributions are
considered in Fig. 2, where τ+

i,R = τ+
V −R + τ+

T −R denotes the nondimensionalized total stress. The
subscript “R” is used to denote the use of Reynolds averaging. As expected for the incompressible
cases, the classical momentum balance holds in the near-wall region, where the incompressible
total stress in Fig. 2(c) is seen to be very close to one. In contrast, the balance is not observed for
many CTBL datasets, which is most clearly demonstrated by the turbulent shear stress achieving
magnitudes of up to 1.2 times the wall shear stress [see Fig. 2(b)]. This overshoot in the wall shear
stress has been observed in a number of previous compressible wall-bounded studies [9,10,14,19],
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(a) (b)

(c)

FIG. 3. Comparison of (a) wρ ′u′/τw and (b) uρ ′w′/τw for M5T1 and M12T5. (c) Comparison of the
magnitudes of the TKE terms corresponding to wρ ′u′ and uρ ′w′. All TKE terms are normalized by ρu∗3

τ /z∗
τ

where u∗
τ = uτ

√
ρw/ρ and z∗

τ = μ/ρuτ

√
ρw/ρ. References for line colors and symbols are included in Table I.

suggesting a violation of the underlying assumptions inherent in the classical near-wall momentum
balance described by Eq. (1).

Extending the TSL Reynolds-averaged momentum equation to include terms involving density
and viscosity fluctuations, we can arrive at

1 = τ+
V −R + τ+

T −R +
(−uρ ′w′ − wρ ′u′ − ρ ′u′w′

τw

)
+

(
μ′ ∂u′

∂z

τw

)
, (2)

which involves three additional nondimentionalized density fluctuation terms and one more viscos-
ity fluctuation term. In particular, wρ ′u′ and uρ ′w′ are of special interest. The magnitude of the
two terms is compared in Fig. 3 relative to the wall shear stress for the M5T1 and M12T5 cases.
These cases have been selected as they are representative of the range of these terms in this dataset.
The uρ ′w′ term is seen to be much larger than wρ ′u′ and can even be as large as three times the
wall shear stress at z∗ = 100. However, we also observe in Fig. 3(a) that wρ ′u′ accounts for 2% to
10% of wall shear stress for M5T1 and M12T5 case, respectively, and cannot be neglected as has
traditionally been assumed (see Spina et al. [30]).

The large magnitude of uρ ′w′ shown in Fig. 3(b) is challenging, however, because it is so large
in some parts of the layer that its inclusion as a term in the near-wall stress balance of Eq. (2)
would cause the right-hand side of Eq. (2) to increase significantly above the value of the wall shear
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(a) (b)

FIG. 4. (a) Left-hand side of Eq. (3), d
dz∗ [ρuw + uρ ′w′]/τw . (b) Difference between ρũw̃ and ρ u w +

uρ ′w′ normalized by τw , where �C = ρũw̃/τw − (ρ u w + uρ ′w′)/τw . References for line colors are included
in Table I.

stress outside of the near-wall region, significantly different behavior and trends than observed in
Fig. 2. However, Fig. 3(c) reveals that uρ ′w′dw/dx, a corresponding TKE term to uρ ′w′, is orders
of magnitude smaller than wρ ′u′du/dz, a corresponding TKE term to wρ ′u′, suggesting that despite
the large magnitude of uρ ′w′ in Eq. (2), its role in the transport of turbulent kinetic energy is limited,
and thus, its role in the transport of turbulent momentum is limited as well. The above TKE transport
argument closely follows that of Spina et al. [30]. In support of the uρ ′w′ term’s limited role in the
transport of turbulent momentum, Spina et al. [30] observed that terms important to the production
of turbulent kinetic energy are two orders of magnitude greater than the TKE production term due
to uρ ′w′. In addition, they interpreted uρ ′w′ as the “mean rate of transfer of turbulent mass flux”
across a plane normal to the z direction and asserted that this fictitious stress term does not involve
the transport of turbulent momentum across the same plane. Based on these discussions, the role of
uρ ′w′ in the turbulent momentum transport is determined to be minimal despite its large magnitude.

Another approach to examine the treatment of uρ ′w′ explores the near-wall momentum equa-
tion prior to neglecting convective terms, as seen in the following equation [essentially a precursor
to Eq. (2)]:

d

dz∗

[
ρ u w + uρ ′w′

τw

]
︸ ︷︷ ︸

�0

= d

dz∗

{[
μ

du

dz
− ρu′w′ + (−wρ ′u′ − ρ ′u′w′) +

(
μ′ ∂u′

∂z

)]/
τw

}
. (3)

The left-hand side of Eq. (3) is plotted in Fig. 4(a). It can be observed that, for both M5T1 and
M12T5 cases, which are representative of the range of this term in this dataset, the left-hand side
of Eq. (3) remains close to zero through much of the layer. Moreover, it can be shown that the
difference between ρ u w + uρ ′w′ and ρũw̃ is shown to be minimal [Fig. 4(b)], suggesting that
ρ u w + uρ ′w′ is similar to the Favre-averaged convection term, which is neglected in the near-wall
TSL form of the Favre momentum equation. Following Morkovin, Spina et al. [30] also suggested
that it is possible to refactor uρ ′w′ and ρ u w as a product of the average instantaneous mass flux and
a strain, and separate the terms important to the turbulent momentum transport. Our analysis mimics
this approach. We note that uρ ′w′ would not have appeared in Eq. (2) if the refactoring operation
of Spina et al. was performed prior to applying near-wall assumptions. However, we have chosen
to discuss the mathematical treatment of uρ ′w′ and ρ u w to examine the effect of compressiblity
arising from the density fluctuation when employing Reynolds averaging.
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(a) (b)

(c) (d)

FIG. 5. (a) Sum of density fluctuating term, ζ+
ρ−R, (b) Sum of viscosity fluctuating terms, ζ+

μ−R, (c) Sum
of the density and viscosity fluctuation terms, ζ+

R , vs semilocal wall normal coordinate, z∗. (d) Density and
viscosity fluctuation corrected Reynolds-averaged total stress, τ+

R . References for line colors and styles as well
as references for the database are included in Table I.

In contrast, we choose to retain wρ ′u′. Spina et al. [30] neglected this term by arguing that
its magnitude within the momentum equation was small in many cases. We have demonstrated in
Fig. 3(a) that wρ ′u′ is nonnegligible for our dataset, which includes high Mach and Re* cases and
thus choose to retain the term going forward.

The result is the following equation, which now involves two nondimentionalized density
fluctuation terms and one viscosity fluctuation term that we group as ζ+

ρ−R and ζ+
μ−R, respectively:

1 = τ+
V −R + τ+

T −R +

⎛⎜⎜⎜⎜⎝−wρ ′u′ − ρ ′u′w′

τw︸ ︷︷ ︸
ζ+
ρ−R

⎞⎟⎟⎟⎟⎠ +

⎛⎜⎜⎜⎜⎝μ′ ∂u′
∂z

τw︸ ︷︷ ︸
ζ+
μ−R

⎞⎟⎟⎟⎟⎠. (4)

Terms included in ζ+
R = ζ+

ρ−R + ζ+
μ−R represent the influence of fluctuating thermodynamic prop-

erties on the total streamwise stress balance in the Reynolds-averaged momentum equation. These
terms are explored in Fig. 5. Interestingly, the magnitude of ζ+

R exceeds 4% for all cases considered
in this study, including those at Mach 3, suggesting that thermodynamic property fluctuations should
be considered in the analysis of the near-wall momentum balance of most CTBLs. Noticeably,
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the magnitude of the first peak in Fig. 5(a), which is located at the lower edge of the log layer,
indicates that ζ+

R ranges from 4% to 22% of the wall shear stress for this dataset. The magnitude
of ζ+

μ−R in Fig. 5(b) is a nonnegligible proportion of this, with ζ+
μ−R ranging from −1.5% to 2.5%

in the viscous layer. Note that the magnitude of the density and viscosity fluctuation effect will
depend on the averaging method used and, as we will see in a subsequent section, the viscosity
fluctuation proportion of the total stress is larger under Favre averaging. Not surprisingly, when the
total stress with the thermodynamic property fluctuations, τ+

R = τ+
V −R + τ+

V −R + ζ+
R , is plotted as

shown in Fig. 5(d), the near-wall momentum balance expected from the incompressible theory is
restored, supporting an inclusion of wρ ′u′ while not including uρ ′w′.

We thus conclude that density and viscosity fluctuations must be considered for an accurate
statement of momentum balance. This influence is reduced for hypersonic datasets at low Reynolds
numbers or with significant heat transfer. At low Reynolds numbers the viscous stress is a greater
contribution of the total stress in the near-wall region, leading to peak turbulent stresses, τ+

T −R,
that are less likely to exceed the wall shear stress, masking the fluctuating density and viscosity
influences. We shall see below that employing Favre averaging effectively accounts for density
fluctuations but not those of viscosity. Another consequence is that ρu′w′ and μ∂u/∂z are not equal
to ρu′w′ and μ∂u/∂z, respectively, as is often assumed, because fluctuations in the thermodynamic
properties are not negligible.

B. The role and mechanism of density and viscosity fluctuations

The role of ζ+
ρ−R is evaluated by first considering the turbulent shear stress, τ+

T −R. It is well
known that τ+

T −R results in mixing. When the wall-normal velocity fluctuation, w′, is positive, lower
momentum from closer to the wall is brought into a higher-momentum region further from the wall.
This often causes a negative streamwise velocity fluctuation, resulting in a negative u′w′, on average.
The opposite occurs for the case of negative w′, and thus the resulting τ+

T −R is also negative. On the
other hand, the role of the density fluctuation term, ζ+

ρ−R, is the opposite, on average. Plotted in

Fig. 5(a), negative ζ+
ρ−R suggests that the net effect of wρ ′u′ + ρ ′u′w′ is positive in the bulk of the

buffer layer and the log layer, and thus ζ+
ρ−R counteracts the influence of the turbulent mixing. The

suggested interpretation is therefore that the fluid inertia opposes the turbulent mixing.
While the role of density fluctuations is consistent for all CTBL cases, we find that the role of

the viscosity fluctuation terms is different for adiabatic and nonadiabatic cases. For adiabatic cases,
Fig. 5(b) demonstrates that ζ+

μ−R is negative, and that the main effect of the viscosity fluctuations is
to oppose the turbulent mixing. For the cold wall cases, ζ+

μ−R is positive for z∗ < 5, which indicates
that ζ+

μ−R enhances viscous deceleration, thus counteracting the effect of density fluctuations before
dropping to zero in the log layer.

Before continuing our analysis, we note that the compressibility influences of pressure fluctu-
ations as well as dilatational velocity fluctuations on hypersonic boundary layer dynamics have
also been examined and become a source of great interest in recent years [31,32]. The study of
Duan et al. [31] focuses on the role of the pressure fluctuation in an interaction with a freestream
acoustic field, for example, and the study of Yu et al. [32] examines the effect of dilatational velocity
fluctuations on the wall shear stress. Our data suggest that pressure fluctuation magnitudes vary
significantly across the current datasets. Although linkages undoubtedly exist between pressure,
density, and viscosity fluctuations, we choose to restrict the current exploration to the influences of
thermodynamic variable fluctuations on the near-wall stress balance, leaving additional interesting
avenues of study involving pressure for future study.

C. Generalized Favre-averaged momentum balance equation

The growing influence of density fluctuations with higher Mach numbers is known but not
usually discussed in this context. It is also one reason that Favre averaging has been preferred
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for compressible flows. It involves scaling a quantity of interest by the instantaneous density (i.e.,
f̃ = ρ f /ρ). As a result, the Favre-averaged implementation accounts for fluctuations in density
since

ρ ˜u′′w′′ = ρu′′w′′ = (ρ + ρ ′)u′′w′′. (5)

We can therefore write the the near-wall Favre-averaged momentum equation, employing thin shear
layer assumptions and including all fluctuations in thermodynamic properties as

1 =
(
μ∂ ũ

∂z − ρ ˜u′′w′′
)

τw

+

⎛⎜⎜⎜⎜⎝
μ∂u′′
∂z + μ′ ∂u′′

∂z

τw︸ ︷︷ ︸
ζ+
μ

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎝τ+
V + ζ+

μ︸ ︷︷ ︸
τ+

VG

⎞⎟⎟⎠ + τ+
T . (6)

In this equation, μ∂ ũ
∂z /τw is the conventional form of the Favre-averaged viscous stress, τ+

V ,

ρ ˜u′′w′′/τw is the conventional form of the Favre-averaged turbulent stress, τ+
T , and ζ+

μ is the
influence arising from viscosity fluctuations. Note that we have employed Reynolds averaging
decomposition for the viscosity, as is most common. However, using Favre-averaged decomposition
of viscosity, following Spina et al. [30], does not change our conclusions as long as all terms,
including terms arising from the viscosity fluctuations, are accounted for. In the following analysis,
we define τ+

VG to be equal to τ+
V + ζ+

V where the subscript G is used to denote its generality. While
viscosity fluctuations are not normally considered in the conventional Favre-averaged momentum
equation due to the use of the Strong Reynolds Analogy [1], we demonstrate that viscosity fluctua-
tions have a nonnegligible influence on the near-wall momentum balance in Fig. 6 (a) and are larger
than the corresponding viscous fluctuation term within the Reynolds-averaged equation.

The conventional Favre-averaged stress terms, including thermodynamic fluctuations, are plotted
in Fig. 6. For all cases, the Favre-averaged total stress, defined as τ+ = τ+

VG + τ+
T in Fig. 6(d),

remains equal to the wall shear stress (i.e., a value of 1 when nondimensionalized) in the inner
layer, deviating at higher z∗ for higher Re∗, as is the case for ITBLs. Critically, for all CTBL cases
considered, we observe a level of Mach invariance in the total stress, τ+, that is enforced by the
near-wall momentum balance. This result suggests the possible use of the generalized total stress
balance for the derivation of a generalized MVT. The comparison of Favre- and Reynolds-averaged
turbulent shear stresses [τ+

T in Fig. 6(d) and τ+
T −R in Fig. 2(b)] reveals significant improvements

due to the consideration of density fluctuations inherent in the use of Favre averaging. The resulting
turbulent shear stresses are seen to behave quite similarly to the incompressible profiles of [15]. Best
comparisons are seen to occur when the compressible Re∗ is matched to the incompressible Reτ (i.e.,
M5T1 is compared to LM1000, M3T5, M3Ad, and M5T3; M5T5 is compared to LM2000, M10T3,
and M7T5-L; and M12T5-L is compared to LM5200). For all cases, the turbulent stress remains
below, but close to, a value of one, consistent with the incompressible theory.

The magnitude of ζ+
μ in Fig. 6(a) indicates that τ+

VG in Fig. 6(b) would deviate significantly from
the wall shear stress and the ITBL trend for z∗ < 5 if viscosity fluctuations were not taken into
account. Moreover, the role of viscosity fluctuations remains unchanged, as discussed in Sec. III B
in relation to ζ+

μ−R. The increased magnitude of ζ+
μ , however, suggests that ζ+

μ is even more critical
to the overall stress balance under the Favre-averaging definition. Interestingly, for both ζ+

μ and
ζ+
μ−R, the effect of viscosity fluctuations can remain relevant up to z∗ = 30 (especially for adiabatic

cases) before dropping to smaller values outside of the buffer layer. Given the discussion above, it
is perhaps not surprising that accounting for density and viscosity fluctuations restores the expected
characteristics of the total stress, which exhibits good collapse across the ITBL and CTBL data as
shown in Fig. 6(d).

The stress characteristics discussed above will be used to formulate a MVT for CTBLs, and a
few observations important to the following derivation must be reiterated. When all thermodynamic
properties important to zero pressure gradient CTBLs are accounted for, namely, the mean property
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(a) (b)

(c) (d)

FIG. 6. Nondimensional, Favre-averaged (a) viscosity fluctuation terms, ζ+
μ , (b) viscous stress, τ+

VG = τ+
V +

ζ+
μ , (c) turbulent stress, τ+

T , and (d) total stress, τ+, are plotted against the semilocal wall normal coordinate,
z∗. Corresponding stresses from ITBL flow references are plotted for comparison. References for line colors
and styles as well as references for the database are included in Tables I and III.

gradients as well as density and viscosity fluctuations, the Mach invariance of the total stress, τ+, is
enforced by the near-wall momentum balance. Moreover, for CTBLs, the degree of Mach invariance
for the viscous and turbulent stresses is significantly improved with the formulations, indicating that
the relative contributions from the viscous and turbulent stresses to the total stress remain relatively
Mach-invariant in the inner layer. These important observations suggest that there are two types of
Mach invariance embedded within τ+, namely, (1) the Mach invariance of the generalized near-
wall total stress formulation and (2) the Mach invariance of the relative contributions from the
generalized viscous and turbulent stresses to the total stress formulation.

IV. TOTAL STRESS-BASED VELOCITY TRANSFORMATION

Recently a MVT based on total stress has been proposed by Griffin et al. [17]. Mean ve-
locity profiles based on their transformation are shown in Fig. 7(a), exhibiting a good collapse
to the incompressible law of the wall. Success of this transformation is attributed to the use of
a total-stress-based balance to combine the viscous stress-based transformation by Trettel and
Larsson [3] and the quasiequilibrium-based transformation of Zhang et al. [4] at locations where
the assumptions underlying each transformation are valid. The mathematical form of the total-
stress-based transformation can be derived from the total stress representation of the mean shear,
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(a)

(b) (c)

FIG. 7. (a) GFM velocity transformation vs semilocal wall normal coordinate, z∗. (b) Intercept and (c) von
Kármán constant, κ , of GFM profiles as a function of semilocal Reynolds number, Re∗. Classical incompress-
ible law of the wall velocity profiles, intercepts, and κ of the log layer calculated from the incompressible
channel flow database are included for comparison. References for colors and styles of lines and symbols as
well as references for the CTBL and ITBL database are included in Tables I and III unless otherwise noted.
The vertical dashed lines in (a) indicate the wall normal coordinate at which the intercept and κ were calculated
(colors match the corresponding CTBL cases with reference to the colors in Table I). The horizontal dashed
lines in (b) and (c) indicate variability in the intercept and κ , respectively, reported in [33] (dashed cyan line,
superpipe; dashed red line, boundary layer; dashed green line, channel).

resulting in

τ+ = S+
t

(
τ+

V

S+
TL

+ τ+
T

S+
eq

)
, (7)

where S+
TL = μ+∂ ũ+/∂z+ denotes nondimensinalized mean shear transformed according to Trettel

and Larsson [3] and S+
eq = (1/μ+)∂ ũ+/∂z∗ denotes the nondimensionalized mean shear of Zhang

et al. [4] generalized by Griffin et al. [17] to semilocal wall units, z∗. This result can then be
rearranged to obtain

S+
t = τ+

T S+
eq

τ+ + S+
eq − S+

TL

. (8)
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Once calculated, the resulting transformed, nondimensional shear stress, S+
t = ∂U +

GFM/∂z∗, can the
be integrated to obtain the transformed velocity velocity profile, U +

GFM. Note that they employ Favre-
averaged variables, accounting for density but not viscous fluctuations.

In the study of Griffin et al. [17], they utilize a CTBL database with Re∗ approximately ranging
from 200 to 4900 and Mach number ranging from 2 to 14. They present the integrated error of the
transformed mean velocity profile relative to the conventional incompressible log law. The database
of the current paper allows us to test the GFM transformation over a wider range of Re∗, including a
range of diabatic conditions (see Table I). Following Griffin et al. [17], comparisons are made with
the incompressible cases of Lee and Moser (2015) [28] and Bernardini and Pirozzoli (2014) [29]
(see Table III). The LM5200 ITBL was used by Griffin et al. [17] for their incompressible law of
the wall baseline.

In contrast to Griffin et al. [17] we choose to examine the influence of the transformation on
the variation in slope and intercept of the log layer. These parameters are determined using the
premultiplied mean shear as suggested by Lee and Moser [28], given by β = z∗dU +

t /dz∗, where
U +

t is a transformed mean velocity of interest. If there is a logarithmic layer, the premultiplied mean
shear will have a plateau or constant-valued region. To determine the location of the plateau (or best
approximation to a plateau should a plateau not fully exist) dβ/dz∗ is calculated from z∗ = 30 to
z/δ = 0.2, where δ is the wall normal coordinate at the location where mean velocity is 99% of the
freestream value. The z∗ location at the minimum value of dβ/dz∗ is used as the “characteristic
location” for the log layer and the location at which a slope and intercept are calculated. This
location is thus not dependent on the chosen bounds of the search.

The log-layer intercept and slope for the current CTBL database under the GFM transformation
are shown in Fig. 7(b) and Fig. 7(c), where C is the intercept and κ is 1/slope or the Kármán
constant. The calculated “characteristic locations” of the logarithmic portion of each profile are also
shown in Fig. 7(a), as are reference ITBL log-law characteristics and the variability of ITBL slope
and intercept reported in the literature by Nagib and Chauhan [33]. The slope and intercept derived
from the GFM transformation of the current compressible datasets lie outside the range of values
commonly reported for ITBLs for higher Reynolds numbers. Both κ and the intercept are seen to
be larger under this transformation. The slope and intercept are also larger than the low Reynolds
number incompressible cases of cases of Lee and Moser [28]. In an attempt to improve the GFM
transformation results, we have tested a version of the transformation where τ+

VG was used to replace
τ+

V , in an effort to account for the influence of viscosity fluctuations on the near-wall stress balance.
This test did not show an appreciable improvement to slope or intercept values, and thus viscous
fluctuations are not the source of the observed disparity between the incompressible log-law and
GFM transformed results. A further examination of the premultiplied mean shear, which is plotted
in Fig. 8, suggests that the collapse for the GFM mean velocity profile in Fig. 7(a) is observed
because Mach invariance of the premultiplied mean shear is somewhat satisfactory up to z∗ = 20
in the middle of the buffer layer. However, the Mach invariance of βGFM quickly deteriorates in the
region at z∗ > 20 where the quasiequilibrium model starts to represent the turbulent stress. This
incomplete Mach invariance extends to the plateau region, where it is expected to show the most
logarithmic behavior, resulting in incorrect intercepts and slopes within the log-layer region. This
observation, which points to the log layer as the source of the error, is perhaps an explanation as to
why the use of τ+

VG showed negligible improvement. While higher Re∗ cases show larger regions of
logarithmic behavior, it is unclear if the correspondence of slope and intercept with incompressible
data will improve significantly for the CTBLs at some combination of high Re∗ or Reτ . Despite
this, we should note that the GFM transformation does provide a better collapse of the compressible
profiles than most previously proposed MVTs.

We further examine the reasons for the above variability of slope and intercept by exploring the
validity of the assumptions undertaken in the derivation of the transformation by Zhang et al. [4],
namely, the Mach invariance of (1) the Favre-averaged enstrophy, (2) the near-wall turbulent stress
profile, and (3) of the ratio of the Favre-averaged turbulent kinetic energy (TKE) production and
viscous dissipation terms. For brevity in this section, Einstein notation is used to express the terms
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FIG. 8. Premultiplied mean shear, βGFM, based on GFM transformation vs semilocal wall normal coordi-
nate. Premultiplied mean shear of LM5200 and BOP4100 is calculated from the classical incompressible law
of the wall velocity profile and plotted as incompressible reference for comparison. The references for line
colors and styles as well as the references for the database are included in Tables I and III unless otherwise
noted. The vertical dashed lines indicate the wall normal coordinate at which the log-layer parameters were
calculated (colors match the corresponding CTBL cases with reference to the colors in Table I). The dashed
gray lines are publicly available in the CTBL database of Zhang et al. [14].

pertaining to the TKE equation, where the definition of v is the velocity in the direction determined
by the indices, i, j, and k.

While not shown here, it is confirmed that the Mach invariance of the Favre-averaged enstrophy
suggested by Lagha et al. [10] holds for the current CTBL cases. Recall also that the turbulent stress
in Fig. 6(c) is Mach-invariant in the log layer when employing Favre averaging. Finally, we explore
the ratio of the Favre-averaged TKE production (P) and the Favre-averaged viscous dissipation (ε),
mathematically given by

P = ρṽ′′
i v′′

j

∂ ṽi

∂x j
, (9)

ε = μ

(
∂ (ṽ + v′′)i

∂x j
+ ∂ (ṽ + v′′) j

∂xi
− 2

3
δi j

∂ (ṽ + v′′)k

∂xk

)
∂v′′

i

∂x j
. (10)

Similar to the Favre-averaged turbulent stress, the Favre-averaged TKE production term accounts
for density fluctuations by Favre-averaging definition, and the TKE dissipation is defined to include
viscosity fluctuations by explicitly using the instantaneous viscosity. The ratio of the TKE produc-
tion (P) and viscous dissipation (ε) terms is plotted in Fig. 9. The Mach invariance deteriorates in
the viscous and buffer layers where it is not expected hold [4], while the Mach invariance improves
in the log layer where collapse is more expected. Despite this, an observation of the P/ε ratio from
our CTBL datasets as well as the CTBL data from Zhang et al. [14] suggests that it remains unclear
whether the quasiequilibrium assumption exhibits sufficient Mach invariance to form the basis for a
velocity transformation in the log-layer region.

V. PROPOSED NEW TOTAL STRESS-BASED TRANSFORMATION

In an effort to develop a generalized MVT for CTBL, we revisit the total stress representation
in Eq. (7) by Griffin et al. [17]. They represent the total stress in terms of mean shear quantities,
S+

t , S+
TL, and S+

eq. By construction, S+
t will exhibit the characteristics of either S+

TL in the near-wall
limit, or of S+

eq in the log layer. More importantly, Eq. (7) preserves the magnitude of the total stress
prescribed by the viscous and the turbulent stresses. Therefore, we propose several modifications to
Eq. (7) to utilize the scaling properties of τ+ identified earlier: (1) the near-wall Mach invariance
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FIG. 9. The ratio of the TKE production (P) and the viscous dissipation (ε) vs semilocal wall normal
coordinate, z∗. The vertical dashed lines indicate the wall-normal coordinate at which the log-layer parameters
were calculated. Gray dashed lines are CTBL data from Zhang et al. [14]. References for line colors and styles
as well as references for the database are included in Table I unless otherwise noted.

of the τ+ magnitude dictated by the momentum balance and (2) the Mach invariance of the relative
contributions from the generalized viscous and turbulent stresses to τ+.

The validity of the first property was demonstrated by Fig. 6(d). Therefore, both viscous stress
and turbulent stress in Eq. (7) are replaced with τ+

VG and τ+
T , respectively, as shown in Eq. (11).

Also, note that the mean shear form of viscous stress, S+
V , is the same as the viscous stress such that

S+
V = τ+

VG and we make use of this simplification in a similar manner to the GFM transformation.
The second scaling property of τ+ is enforced by replacing S+

eq by S+
P , the details of which will

be discussed subsequently. The resulting equation is shown in the following equation where the
generalized mean shear, S+

G , can be integrated with respect to the semilocal wall unit, z∗, from the
wall to the freestream to obtain the transformed velocity, U +

G = ∫
S+

G dz∗:

τ+ = S+
G

(
τ+

VG

S+
V

+ τ+
T

S+
P

)
= S+

G

(
1 + τ+

T

S+
P

)
. (11)

Before solving for S+
G , an expression must be found for for S+

P which includes the Mach invariance of
the relative contributions from the generalized viscous and turbulent stresses. We begin by defining
RV and RT to be the ratio of the viscous and turbulent stresses to the total stress, respectively:

RV = τ+
VG/τ+,

RT = τ+
T /τ+. (12)

The Mach invariance in the relative contributions of τ+
VG and τ+

T to τ+ is first ensured by multiplying
RV and RT by the viscous and turbulent stress terms:

τ+
V,P = RV τ+

VG,

τ+
T,P = RT τ+

T ,
(13)

where τ+
V,P and τ+

T,P provide an accurate proportional representation of each stress to the total stress
at any wall-normal coordinate location. This mathematical treatment decouples the viscous friction,
τ+

VG, and turbulent mixing, τ+
T , effects. Also, note in Fig. 10 that τ+

P , defined as τ+
P = τ+

V,P + τ+
T,P, is

seen to remain close to Mach-invariant in the near-wall region, as designed. The proportional total
stress, τ+

P is seen to vary with Mach number in the outer layer region, as its value is reduced after
its second peak. Also plotted here is the generalized form of the total stress, τ+, for comparison.
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FIG. 10. Solid line indicates proportionally accurate generalized total stress,τ+
P , and dashed line indicates

generalized total stress, τ+, plotted for comparison. References for line colors as well as references for the
database are included in Table I.

Provided with an accurate proportional representation of each stress from Eq. (13), we can now
define a proportional mean shear, S+

P . We start by assuming that law of the wall for compressible
turbulent boundary layer exists, i.e., dU +

G /dz∗ = τ+
VG in the viscous layer and dU +

G /dz∗ =
√

τ+
T /kz∗

in the turbulent layer. It might be assumed that the sum of the viscous and log-layer shear forms
would describe the mean shear at a given wall-normal location. However, to ingrain the stress-
proportionality property into the mean shear form, the viscous and turbulent stresses are replaced
by τ+

V,P and τ+
T,P:

S+
P = RV τ+

VG +
√

RT (τ+
T )

κz∗ . (14)

Note that in the respective layer where each stress dominates, the value of the each stress term
approaches one, thus restoring a similar incompressible law of the wall form, du+/dz+ = 1 or
μwdu/dz = τw in the viscous layer and du+/dz+ = 1/kz+ or du/dz = √

τw/ρw/kz in the turbulent
layer.

While the mathematical treatment of the second term in Eq. (14) is the same as that of the
mixing length hypothesis in that the turbulent stress also uses a square root and is divided by the
mixing length, κz∗, the present paper does not endorse the mixing length hypothesis. Rather, this
mathematical treatment was derived based on the assumption that the law of the wall exists for
compressible turbulent boundary layer. For the velocity transformation and for all cases in this
paper, we use the value of 0.381 for κ from LM5200 in Table III, as reported in Lee and Moser [28].

Finally, with S+
P derived, which provides the information regarding the proportional contribution

of the stresses to the total stress, Eq. (11) can now be rearranged to solve for the mean shear, S+
G ,

enforcing the correct magnitude of the total stress such that

S+
G = τ+

1 + τ+
T /S+

P

. (15)

Thus, the mean shear, S+
G , in Eq. (15) provides a proposed transformation that preserves the two

scaling properties of τ+ as described in the beginning of the section. Moreover, by the definition of
each constituting term and by construction, this transformation includes the effects of mean density
and viscosity variation, density and viscosity fluctuations, and viscous and turbulent stress balances.

074604-17



LEE, HELM, MARTÍN, AND WILLIAMS

(a) (b)

(c)

FIG. 11. (a) The presently proposed velocity transformation vs semilocal wall normal coordinate, z∗.
(b) Intercept and (c) von Kármán constant, κ , of the log layer plotted against semilocal Reynolds number.
The ITBL flow data listed in Table III are transformed using a conventional law of the wall and are plotted
for comparison in (a), (b), and (c). References for line colors and styles and symbols as well as references
for the database are included in Tables I and III unless noted otherwise. Dashed cyan lines in (a) denote
the velocity profiles of the ITBL flow data transformed by the proposed MVT. Horizontal lines in (b) and
(c) denote variability in the intercept and κ , respectively, reported in Nagib and Chauhan [33] (dashed cyan
line, superpipe), (dashed red line, boundary layer), and (dashed green line, channel).

VI. DISCUSSION OF RESULTS

The transformed mean velocity profiles for CTBL according to Eq. (15) are shown in Fig. 11(a) .
Also included here is ITBL data that follow the classical law of the wall. The proposed transforma-
tion is seen to collapse all of the CBTL velocity profiles (supersonic and hypersonic, adiabatic and
nonadiabatic) to the classical incompressible result. In addition to the qualitative examination of the
mean velocity profile, both the log-law intercept and slope for all CTBL and ITBL data are extracted
in a similar manner to the earlier analysis of the GFM transformation. The characteristic location
of the log layer was found using the first-order derivative of the premultiplied mean shear profile
(βG = z∗dU +

G /dz∗; see Fig. 12). Note that slope and the intercept of the ITBL data in Fig. 11(b)
and Fig. 11(c) are calculated from the classical law of the wall profiles. With an exception of
low Reτ incompressible cases, which exhibit an expected Reynolds number dependency, the slope
and the intercept for CTBL cases in Fig. 11(b) and Fig. 11(c) show a very small variability when
compared to highest Reynolds number ITBL cases (LM5200 [28] and BOP4200 [29]). The slope
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FIG. 12. Premultiplied mean shear, βG, based on the present mean velocity transformation vs semilocal
wall normal coordinate, z∗. The premultiplied mean shear is calculated for ITBL cases (see Table III) using the
conventional law of the wall for comparison. References for line colors and styles as well as references for the
database are included in Tables I and III unless noted otherwise. Dashed cyan lines indicate the premultiplied
mean shear of the ITBL cases transformed by the proposed MVT.

and intercept of the CTBL datasets all lie within the bounds of high Reynolds number values seen
for incompressible flow [33]. The proposed transformation accounts for the relative contributions
of viscous and turbulent stresses directly; thus it also accounts for one of the main sources of
low-Reynolds number dependence on the classical law of the wall.

To quantitatively compare the scatter in the log-law intercept and slope for the proposed and
GFM transformations, we use the coefficient of variation (CoV), which is defined as the standard
deviation divided by the mean of the data of interest. Higher CoV values indicate larger scatter.
The intercept and κ value for LM5200 [28] and BOP 4100 [29] are also considered to measure the
scatter with a reference to ITBL cases. Incompressible cases with lower Reynolds numbers, namely,
LM1000 [28] and LM2000 [28], are excluded as they deviate from the other cases, likely due to their
low Reynolds number and insufficient separation of scales. The log-law intercept CoV values for the
proposed transformation in Fig. 11(b) and for the GFM transformation in Fig. 7(b) are calculated
to be 0.0381 and 0.0549, respectively, representing an approximately 50% reduction in scatter. The
κ-based CoV values for the proposed and GFM transformations are calculated to be 0.0117 and
0.0559, respectively. It should be noted that, in addition to the reduction in scatter observed for the
proposed transformation, the intercept and κ values overlap the incompressible range considerably
better.

The premultiplied mean shear is computed from the MVT, βG, and plotted in Fig. 12. As noted
earlier, the slope and intercept were calculated where dβG/dz∗ is minimum in the log region. This
is used as a method to find a region that best approximates a plateau in β that is not dependent
on assumed bounds of such a region. Lee and Moser [28] report that the plateau spans from z+
of 350 to z/δ = 0.16, and the average value of ∂β/∂z+ is 6.46 × 10−5 for the LM5200 case. To
compare the plateau region across CTBL cases, averages of ∂βG/∂z∗ from z∗ = 60 z/δ = 0.15 are
calculated. With an exception of M5T1, which does not exhibit a plateau region, potentially due
to low Reynolds number, the average of ∂βG/∂z∗ for all CTBL cases ranges from 1.16 × 10−3 to
5.87 × 10−4. Thus the average values of ∂βG/∂z∗ are comparable to the value calculated from the
plateau observed in LM5200.

The proposed MVT can also be applied to transform the ITBL cases by setting thermodynamic
fluctuation quantities to zero and setting the mean thermodynamic properties to the wall value. The
proposed MVT results in mean velocity profiles that collapse the high Reynolds number ITBL cases
(LM5200 and BOP4100) with a logarithmic layer starting around z∗ of 60 as shown in Fig. 11(a).
This logarithmic layer can also be confirmed by the existence of the plateau region in βG for LM5200

074604-19



LEE, HELM, MARTÍN, AND WILLIAMS

and BOP4100, as shown in Fig. 12, where the average values of ∂βG/∂z+ from z+ = 60 to z/δ =
0.15 are 2.46 × 10−4 and 2.22 × 10−4, respectively. Despite this success, differences are observed
between the incompressible classical log law and the ITBL cases transformed according to the
proposed MVT. While the slope of the semilog region of the MVT-transformed ITBL profiles is
very similar to the classical result, differences can be observed in the log-layer intercept values [see
Fig. 11(a)]. The reasons for the differences between the proposed MVT and the classical log law
for incompressible cases is not immediately apparent; however, we partially attribute it to observed
differences in the value of τ+

VG in the viscous sublayer for CBTL and IBTL cases, as shown in
Fig. 6(b). Provided that an even more successful scaling of the CTBL and ITBL viscous stress is
possible in the viscous sublayer, the proposed MVT might be expected to produce a scaled mean
velocity profile for both CTBL and ITBL with the same intercept.

VII. DISCUSSION AND CONCLUSION

In this paper a generalized total stress-based velocity transformation that takes density and
viscosity fluctuations into account has been derived by identifying important characteristics of
wall-bounded flows at high Mach and Reynolds numbers. It is demonstrated that the influence of
density and viscosity fluctuations are important and must be considered when scaling the turbulent
shear stresses of all CTBL cases considered in this paper. When employing Reynolds averaging,
fluctuating viscosity or density-related terms exceeded 5% of the wall shear stress for all cases. In
some cases these terms exceeded 20% of the wall shear stress. Employing the full Favre-averaged
momentum equation effectively accounts for the influence of density fluctuations on the near-wall
stress balance, but viscosity fluctuation terms were seen to be as large as 12% of the wall shear
stress in the buffer region.

When the influences of the density and viscosity fluctuations on the viscous and turbulent stresses
are fully accounted for by including all relevant terms in the near-wall momentum equation, two
scaling properties have been identified, namely, (1) the Mach invariance of the near-wall momentum
balance for the generalized total stress and (2) the Mach invariance of the contributions from
the generalized viscous and turbulent stresses to the total stress. A generalized mean velocity
transformation, which considers the effects of mean density gradient, both viscous and turbulent
stresses, and the effect of density and viscosity fluctuations, has been derived by accounting for
these two scaling properties.

The proposed velocity transformation is seen to provide an accurate representation of the loga-
rithmic layer. For a wide range of Mach numbers, Reynolds numbers, and heat transfer, the scatter
in the intercept and slope of the transformation are within the bounds found for incompressible
flows. The transformation is successful because it accounts for the density and viscosity fluctuation
effects in both the viscous and turbulent stresses as well as the relative contributions of the viscous
and turbulent stresses to the near-wall momentum balance. For this reason, no Reynolds number
dependence was observed in the slope and intercept of transformed velocity profiles under the
transformation. It was successful in collapsing velocity profiles for all compressible cases described
in this study.

Despite this success, it should be noted that the proposed transformation requires knowledge
of the effects of fluctuations in the thermodynamic variables on the viscous and turbulent stresses,
which will limit its use in some situations in the near-term. Additionally, the intercept of incompress-
ible flow data when transformed according to the proposed MVT was found to be shifted relative to
the conventional log-law. This is attributed to a small remaining scatter between the incompressible
and compressible viscous stress profiles, the source of which is still uncertain. This leads to a shift in
the premultiplied shear stress profiles. Further study is needed to explore this effect as both viscous
and density fluctuations have been accounted for in the current formulation.

While the transformation of Griffin et al. [17] has shown promising and improved collapse of the
mean velocity profiles, the use of the quasiequilibrium model [4] to describe the turbulence in the log
layer is not strictly accurate, with moderate scatter in the ratio of production and dissipation in the
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log layer. Examination of the underlying assumptions in the derivation of the GFM transformation
suggest its remaining challenges may be due to insufficient Mach invariance of the turbulent stresses
and the ratio of production and dissipation as traditionally formulated.

The success of the proposed MVT can be attributed to considering the influence of density and
viscosity fluctuations and the mean property gradients in both the viscous and turbulent stresses.
Two scaling properties, namely, the proportionality and the Mach invariance of the generalized total
stress, are identified and integrated into the proposed MVT.
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