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When a fluid in turbulent motion is tagged by a nonuniform concentration of ideal
tracers, the mean velocity of the tracers may not match with the mean velocity of the
fluid flow. This implies that conventional particle tracking velocimetry will not produce
the mean flow of a turbulent flow unless the particle seeding is homogeneous. In this
work, we consider the problem of mean flow estimation from a set of particle tracks
obtained in a situation of nonhomogeneous seeding. To compensate the bias caused by
the nonhomogeneous particle seeding, we propose a modified particle tracking velocimetry
method. This method is called a time-delayed velocity and considers the velocity trajectory
of a given particle shifted in time with respect to its position. We first introduce our
method for an ideal advection–diffusion model and then we implement it for a turbulent
channel and a turbulent jet. For both situations, we find that the velocity bias caused by the
nonhomogeneous tracer concentration is reduced with a time delay introduced between
position and velocity of the tracer trajectories. For the turbulent channel, the error on the
mean flow estimation monotonically decreases for increasing time delays. For the turbulent
jet, the error on the mean flow estimation also reduces with positive time delays but the time
delay should not be too large. We interpret this limitation as a consequence of the spatial
dependence of the mean flow. For the turbulent channel, this limitation does not appear
because the velocity for the mean flow streamlines is constant. For both flows, the optimal
time delay for the velocity bias compensation is consistent with the Lagrangian timescales
of the flow. This method gives promising elements to take into account inhomogeneous
seedings in velocity fields measurements for all kinds of turbulent flows and interesting
perspectives to understand how Lagrangian trajectories from various sources build an
Eulerian mean field.

DOI: 10.1103/PhysRevFluids.8.074603

I. INTRODUCTION

Among the strategies to measure the velocity of a flowing fluid, particle image velocimetry (PIV)
[1–3] and particle tracking velocimetry (PTV) [4–8] are two techniques that rely on the dispersion
of a large number of particles in the fluid. To behave as nonintrusive tracers that correctly map the
flow, the particles should be sufficiently small [9,10] and neutrally buoyant [11]. In addition to the
physical properties of the tracing particles, the homogeneity of the particle concentration [12–14] is
also important to produce reliable flow measurements. With a nonhomogeneous seeding, the particle
concentration may be too low in some regions of the fluid, which renders the measurement spatially
incomplete.
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The homogeneity of the tracing particles has a direct impact on the estimation of the mean
velocity of a flow. With the example of turbulent jets with particles injected from the nozzle, there
is a significant mismatch between the measured radial velocities from the particle tracking analysis
and the expected radial velocities [14]. In recent a work [15], it was shown that this radial velocity
mismatch is consistent with the particle dispersion by the turbulent jet which can be formulated as
a compressible expansion flow for the tracers resulting in an enhanced radial flow.

For laminar flows without velocity fluctuations, homogeneous and nonhomogeneous seedings
provide the same mean flow velocity. This is because without velocity fluctuations, the particles
consistently follow the time-independent streamlines of the flow. The absence of velocity fluctua-
tions is however not ideal for flow visualization since there is no particle dispersion perpendicularly
to the stationary streamlines. This problem notably occurs with microfluidics [16,17] in which the
dispersion of tracers, i.e., mixing, is notoriously inefficient.

To address how turbulence and inhomogeneous seeding can induce mean flow bias by particle
tracking, a first example is that of molecular diffusion which is a well-known situation in which
particle inhomogeneity can affect mean flow perception. For a fluid at rest with diffusing particles,
there is a mismatch between the zero mean velocity of the fluid and the particles velocity everywhere
nonzero concentration gradients exist. The velocity of Brownian particles is however difficult to
measure and the diffusion current is rather inferred from the concentration time evolution of the
diffusing particles. In a turbulent flow, fluctuations induce an effective diffusion process [18] that is
much more efficient than molecular diffusion. For comparison, the molecular diffusion coefficient
in a fluid is Kmol ∝ vth� in which vth is the thermal velocity and � the molecular mean free path. The
typical order of magnitude for Kmol for fluids such as water is 10−9 m2s−1 for ambient pressure and
room temperature. In turbulent flows, an effective diffusion coefficient Kturb ∝ σvL arises from the
velocity fluctuation magnitude σv and the typical size L of the largest eddies of the considered flow.
For laboratory-scale experiments such as turbulent channels [19,20], the diffusion coefficients can
be of the order of 10−4 m2s−1. In atmospheric turbulence [21–24], the turbulent diffusion coefficient
can easily reach 1 m2s−1. In this work, we consider more specifically the configurations of turbulent
channels and turbulent jets and we will illustrate how turbulent fluctuations combined with non
homogeneous particle seeding can lead to significant mean velocity biases in particle tracking
velocimetry.

In principle, it is always possible to reduce the impact of turbulent fluctuations on mean flow
measurements by approaching a homogeneous concentration of tracers. However, it is not always
possible or convenient to perform a homogeneous seeding. This is the case for experiments in open
environment like oceanic or atmospheric studies [25–27] in which uniform seeding can be difficult
to control, even for a finite volume of interest. For laboratory experiments in fluid tanks, for example,
partial seeding is sometimes preferred to avoid too many particles in the field of view. This is notably
the case for the realization of unconfined turbulent jets for which the tank has to be much larger than
the jet size. In some situations, the particles can have a finite life-time, like soap bubbles [28,29] or
droplets [30,31], and seeding concentration is very difficult to control. With bubbly flows [32–34],
the bubbles can be used as nonideal tracers but their concentration is difficult to maintain constant
because the bubble formation, recombination, shape and disappearance is self-imposed by the flow
itself. Finally, nonhomogeneous particle concentration can occur because of clustering induced by
the flow. This particularly happens with particles in sedimentation [35] as well as inertial particles
in turbulent flows [36–39].

The goal of this work is first to illustrate how tracer inhomogeneity affects the determination of
mean velocity fields and second to present a simple analysis technique to obtain unbiased velocity
fields in the case of tracking experiments with nonhomogeneous seeding.

II. DISCRETE ADVECTION-DIFFUSION MODEL

A. Lagrangian and Eulerian perspectives

This work deals with the velocity estimation of flows (Eulerian perspective) based on the obser-
vation of a set of tracers moving in a fluid (Lagrangian perspective). In the Eulerian framework, the
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instantaneous velocity vi(x, y, z, t ) is a three-component function with i = x, y or z that represents all
the velocity information of a flow at any position (x, y, z) and time t . The mean velocity identified by
uppercase Vi(x, y, z) is the time-average of the fluid velocity vi(x, y, z, t ) at a given location in space
(Eulerian perspective). Because we will address the problem of partial seeding, we should stress on
the fact that the computation of the mean velocity Vi(x, y, z) rigorously requires that all the fluid
particles that pass at the vicinity of the location (x, y, z) are taken into account in the time-averaging
operation.

With tracing particles, only a small portion of the flow is tagged in terms of volume fraction. We
note φ(x, y, z) the time-averaged tracer concentration of injected particles. For each location (x, y, z)
in the flow domain, we define the tracer mean velocity Vi(x, y, z) (Lagrangian perspective) which
is the time-averaged velocity of all the tracers passing at (x, y, z) during the acquisition time. For
a homogeneous tracer concentration with φ(x, y, z) = φ0 independent of space, the tracer mean
velocity is also the mean flow velocity Vi(x, y, z) = Vi(x, y, z) and there is no need to make a
distinction between fluid mean velocity and tracer mean velocity. For a nonhomogeneous tracer
concentration, Vi(x, y, z) and Vi(x, y, z) are a priori different. The origin of the difference between
Vi(x, y, z) and Vi(x, y, z) is illustrated and discussed in more detail in the following section. We
should specify that Vi(x, y, z) and Vi(x, y, z) could also differ because of nonideal tracers. With
finite-size tracers or nonperfect density matching, the velocity of the tracers may not correspond to
the velocity of the surrounding fluid. However, we will consider in this work that the bias caused by
possibly nonideal tracers is negligible and the bias caused by nonhomogeneous seeding dominates.

The main point of this work is to discuss a method to retrieve the mean velocity of the
flow Vi(x, y, z) from the analysis of tracer trajectories when Vi(x, y, z) �= Vi(x, y, z) because of
nonhomogeneous particle concentration. To do so, we will introduce in the next section a so-called
time-delayed velocity Vi(x, y, z|�τ ) in which �τ is an adjustable parameter corresponding to the
time delay.

B. Toy model

Before considering realistic turbulent flows with injected tracers, a simple toy model of
advection-diffusion is presented. The point of this toy model is first to illustrate how nonhomoge-
neous seeding impacts the estimation of mean flows and second to present the method we propose
to compensate the seeding bias. In this two-dimensional model, the mean flow is Vx(x, z) = 0 and
Vz(x, z) = v0.

We consider the dynamics of pointlike particles in a two-dimensional space with a uniform mean
advection in the axial direction and submitted to transverse diffusion. The particles are initially at
the origin of the frame x = 0 and z = 0 and move by steps. The motion in the axial direction z
accounts for a pure advection and the particles move by constant unit step +1 for each time step.
For the transverse direction x, no advection is imposed and the average velocity of the background
flow is zero. However, the individual particles do diffuse according to the simple process where at
each time step, each particle has an equal probability to jump either left (–1/2) or right (+1/2). With
a homogeneous seeding, this process with equal probability of motion to the left and to the right
does not impose any mean transverse flow. Figure 1(a) represents all the possible trajectories for
eight particles after three time steps. While the actual advecting velocity is a uniform upward flow,
we illustrate the bias introduced by the nonhomogeneous seeding by considering the flow tagged
by the particles seeded at the origin in the square box represented with a dashed line in Fig. 1(a).
For the three particles in the binning box, two particles come from the left and one particle comes
from the right. After multiple iterations of the random process for a set of particles, one should
expect a net positive horizontal velocity for the particles reaching the considered box.

To test the large trajectory number limit, we numerically generate the trajectories for a large
number of particles. Figure 1(b) shows the Eulerian velocity field obtained from a set of trajectories
generated randomly according to the discrete process described above and represented in Fig. 1(a).
A total number of 2 × 105 trajectories were simulated to explore a significant portion of horizontal
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FIG. 1. (a) Representation of a step-by-step process with 8 particles moving vertically with a horizontal
fluctuating motion left and right for each time step. (b) Eulerian contour obtained after multiple iterations of
the step-by-step process with random jumps and an averaging of the trajectories in a binning grid (2 × 105

trajectories in total). The color scale indicates the mean horizontal velocity Vx of the simulated trajectories.
A subset of trajectories passing by both bins {0, 0} and {x = 10, z = 40} are represented by solid lines. A
thick green line represents the average trajectory from this subset. Another trajectory exploring x < 0 is also
represented. The inserted contour is the model for the horizontal velocity presented in Eq. (8).

space. The black solid line represents a random sample trajectory exploring the x < 0 region. The
average velocity retrieved from the seeded tracers strictly matches the average velocity of the fluid
for the injection line x = 0. Elsewhere, the horizontal velocity is however positively (for x > 0) or
negatively (for x < 0) biased. For the large |x|, there are very few trajectories and thus a lack of
statistical convergence. This velocity bias is a direct consequence of the local seeding. For uniform
seeding, i.e., a constant concentration of particles on the line z = 0, the horizontal velocity vanishes
within statistical convergence.

The origin of the velocity bias can be better visualized by considering a subset of trajectories
that pass by the bin {x = 10, z = 40} represented by a small box with a dashed line in Fig. 1(b). For
a total of 2 × 105 simulated trajectories, there is typically a number of 500 trajectories that reach
the bin considered [Fig. 1(b) only represents 30 of those trajectories for clarity]. In the figure, a
green solid line is used to represent the mean path for all the trajectories passing by the binning
box {x = 10, z = 40}. If a reference time is taken when the particles reach the box, then there is an
asymmetry between past and future. Before the particles enter the bin, there is a positive velocity
bias. This is because the most probable path for the particles coming from x = 0, z = 0 to reach the
binning box is with an excess of positive jumps in x. After the particles have passed the bin {x = 10,
z = 40}, there is no bias on the trajectories subset and the particle motion is mostly vertical as shown
by the mean trajectory for z > 40.

The concentration φ and the horizontal component of the velocity Vx for the particles in this toy
model can be analytically solved using the properties of Pascal’s triangle. The process described
in Fig. 1(a) leads to a continuity equation for the particles concentration φ(i, n) = [φ(i, n − 1) +
φ(i − 1, n − 1)]/2 in which n is the index for z and i is the index for the x direction with 0 � i � n.
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FIG. 2. Concentration profile φ(x, y) (expressed as a fraction) of the toy model in the limit of statistical
convergence. i and n are positive integers (i � n), with x(i, n) = i − n/2 and z(i, n) = n. The particles start
from i = 0, n = 0 and for each iteration, the particles move up with an equal probability 1/2 to jump left or
right. The colorbar indicates the value for the horizontal incoming velocity Vx|in [Eq. (2)]. The two arrows
illustrate the origin of the biased velocity Vx|in at n = 4, i = 3 with a ratio 3:1 for the incoming particles from
cells i = 2, n = 3 (φ = 3/8, contributing to a positive horizontal velocity represented with a red arrow) and
i = 3, n = 3 (φ = 1/8, contributing to a negative horizontal velocity represented with a blue arrow).

This relation is equivalent to the definition of the binomial coefficient Ci
n with φ(i, n) = Ci

n/2n. The
first steps of the iteration is presented in Fig. 2. The iteration for n = 4, i = 3 is represented by a set
of boxes with φ(i = 3, n = 4) = 4/16 as the sum from the contribution 1/2 × (3/8 + 1/8) of the
previous iteration.

For the transverse velocity, it is important to make a distinction between the incoming velocity
Vx(i, n)|in and the outgoing velocity Vx(i, n)|out relatively to a given position. Vx(i, n)|in is the
velocity at step n using the position n and n − 1. Vx(i, n)|out is the velocity at step n using the
position n and n + 1. For a large number of realizations, the transverse outgoing velocity statistically
converges to Vx(i, n)|out = Vx(i, n) = 0 because the particles equally moves left and right relatively
to a given position. For the incoming velocity Vx(i, n)|in, the net transverse velocity is the weighted
concentration contribution from the previous steps,

Vx(i, n)|in =
v0
2 × φ(i − 1, n − 1) − v0

2 × φ(i, n − 1)

φ(i − 1, n − 1) + φ(i, n − 1)
= v0

2

φ(i − 1, n − 1) − φ(i, n − 1)

φ(i − 1, n − 1) + φ(i, n − 1)
, (1)

in which φ(i − 1, n − 1) counts the number of particles per unit time coming from the left with
velocity +v0/2 and φ(i, n − 1) from the right with velocity −v0/2 (the values for φ with n = 4 and
i = 3 are 3/8 and 1/8 in the example of Fig. 2).

Equation (1) can be written as

Vx(i, n)|in = v0

2

Ci−1
n−1 − Ci

n−1

Ci
n

= v0
i − n

2

n
. (2)
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For a symmetric representation of Pascal’s triangle in (xz), we use the variable x(i, n) = i − n/2
and z(i, n) = n. The incoming transverse velocity becomes

Vx(x, z)|in = x

z
v0. (3)

From Eq. (3), we can infer the expression for the mean trajectory X |x,z, Z|x,z for the subset of
all particles injected at {0, 0} at t = 0 and passing in the bin {x, z} at time t = z/v0. An example of
a mean trajectory X |x,z, Z|x,z is represented by a green solid line in Fig. 1(b) for the bin {x = 10,
z = 40}. For t < z/v0, the particles move in average at a constant velocity from 0 to x as

X |x,z(t ) = x

z
v0t (t < z/v0). (4)

At t = z/v0, the particles are in the bin {x, z}. For t � z/v0, the average position for the particle
passing by {x, z} is

X |x,z(t ) = x (t � z/v0). (5)

We can mention that the mean trajectory for {x = 10, z = 40} represented by the thick green line
in Fig. 1 is consistent with the expression for X |x,z(t ) in Eqs. (4) and (5).

We show here that the local seeding at {0,0} leads to a biased mean trajectory for t < z/v0

[Eq. (4)] and not for t > z/v0 [Eq. (5)]. To compensate this bias, we introduce the time-delayed
velocity for the horizontal component of the velocity,

Vx(x, z|�τ ) = X |x,z(t + �τ + δt ) − X |x,z(t + �τ − δt )

2δt
, (6)

in which t = z/v0 is the time for which the particle is at z, �τ the time delay and δt the time
increment from steps n to n + 1. Equation (6) with �τ = 0 is the usual two-point velocity estimation
corresponding to Vx(i, n|0) = (Vx(i, n)|in + Vx(i, n)|out)/2. From the mean trajectory in Eqs. (4) and
(5), the time-delayed velocity in Eq. (6) gives

Vx(x, z|�τ < 0) = x

z
v0, (7)

Vx(x, z|�τ = 0) = 1

2

x

z
v0, (8)

Vx(x, z|�τ > 0) = 0. (9)

Equation (7) is for a negative time delay which means that the velocity is computed with the track
positions before the bin {x, z}. This velocity is the incoming velocity in Eq. (3). Vx(x, z|�τ < 0) is
biased because the particles are injected at {0, 0} and to reach the bin {x, z}, there is a sampling bias
in favor of the particles with a mean horizontal velocity v0x/z.

Equation (9) contains the key idea of this work which is to retrieve the fluid mean velocity of a
given flow from a set of trajectories with biased velocities because of tracer concentration gradients.
With positive delay �τ > 0, there is no velocity bias and the tracer mean velocity Vx(x, z|�τ > 0)
is the mean flow velocity, which is Vx(x, z) = 0 in this simple toy model.

Without time delay, there is a factor 1/2 in the horizontal velocity because the velocity estimation
involves the position immediately before and immediately after the bin. Equation (8) is simply the
average of Eqs. (7) and (9). The solution (8) is used for the model in Fig. 1(b) and it shows a good
agreement with the velocity computed from the simulated trajectories without time-delay (�τ = 0).

The method we propose consists in using Eq. (6) to compute Eulerian mapping from a set of
particles trajectories. It is referred as a time-delay method because the flow reconstruction uses the
information of the position at time t and the velocity at a delayed time t + �τ . Figure 3 represents
the implementation of this method for a positive time delay with a trajectory component x(t ). In
practice for a sample signal with the position and velocity over time, the implementation of the time
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FIG. 3. Representation of the time-delay method on a time signal at a sample rate δt−1. The minus (−) is
the two-point velocity operator at location i: (xi+1 − xi−1)/2δt . In this example, the velocity is time delayed
with �τ = + 5 δt which means that the velocity v5 is associated to the position x0. We use the short notation
xi = x(t0 + i δt ) and vi = v(t0 + i δt ) in which t0 is the reference time for x0.

delay method consist in removing a the n first velocity points and removing the n last position points
(n = 5 in the example of Fig. 3). n defines the time delay via the acquisition sampling rate.

III. TIME-DELAYED VELOCITY WITH TURBULENT FLOWS

The point of this paper is to show how time-delayed velocity (6) can be used to suppress the bias
caused by nonhomogeneous seeding in a particle tracking experiment. In the toy model previously
discussed, any strictly positive delay �τ > 0 gives the correct mean flow Vx(x, z) = 0. In the
following, we will investigate how the time-delay method applies for a turbulent channel (numerical
simulation) and a turbulent jet (experimental results). We will notably investigate the impact of the
value �τ on the determination of the mean flow characteristics.

A. Channel flow

The time-delay analysis is first tested for a simulated particle tracking experiment in a channel
flow. To do so, we use the Turbulent Channel Flow data set from the Johns Hopkins Turbulence
Databases [40–42].

The channel has a rectangular cross section with rigid walls at y = −1 and y = 1 and periodic
boundary conditions for x and z. The flow is forced in the z direction by an imposed pressure gradient
such that the mean velocity equals one. The kinematic viscosity is 5 × 10−5 and the simulation
time step is 0.0013. The flow is in the turbulent regime with a Taylor-microscale Reynolds number
Reλ ≈ 344. Figure 4(a) shows a snapshot of the axial velocity in the range 0 < z < 10 with x = 0.
The time-averaged velocity Vz(x, y, z) is represented on top of the contour. For the mean transverse
velocities, there is no mean flow Vx(x, y, z) = 0 and Vy(x, y, z) = 0 because of the confining walls.
The mean velocity Vz(x, y, z) is almost independent of the position y in the center of the channel
−0.6 < y < 0.6. We use the Lagrangian tracking GetPosition function [43] that computes the
motion of fluid particles from the direct numerical simulation of the channel flow. The obtained
trajectories correspond to the motion of ideal tracers virtually injected in the simulated flow. The
initial position of 14 000 tracers is set in the middle of the channel. The initial positions for the
virtual tracks are set near the line y = 0, z = 0 for different values of x and the simulation runs for a
duration of 13 time units. We assume that the flow is statistically invariant in x and the initial position
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FIG. 4. (a) Instantaneous velocity vz(y, z, t ) for the channel flow simulation (x = 0). The rigid walls are at
y = ±1. 15 fluid particle tracks injected at y = 0, z = 0 are represented by solid lines. (b) Transverse velocity
component Vy(y, z|�τ = 0) based on tracer tracks with a point source seeding in a turbulent channel flow.
Panels (c) and (d) are the transverse velocity maps for two positive values of �τ . �τ is a time lag introduced
between velocity and position in the trajectory analysis.

X (0) of each track is removed to have an effective source-point injection at x = 0, y = 0, and z = 0.
We find Eulerian averages (spatial mean statistics) of the Lagrangian based flow field by binning
the trajectories in x, y, and z and averaging over the time of the simulation. For the Eulerian contour
in Figs. 4(b), 4(c) and 4(d), we use a bin size of δx = 0.02, δy = 0.02, and δz = 0.1. The parameter
�τ is the time delay introduced in the computation of the time-delayed velocity in Eq. (6).

Figure 4(b) shows the mean transverse velocity Vy(y, z|�τ = 0) obtained from the analysis of
the trajectories computed in the channel flow. The colorbar represents the magnitude of the mean
velocity in the transverse direction. The magnitude of the horizontal velocity is of the order of
0.1 × Vz(y = 0) on the side of the cone identified by the dashed line y/z = 0.1. The horizontal
velocity is twice the velocity bias predicted by the discrete modeling Eq. (8) or equivalently the
horizontal velocity matches with the incoming velocity in Eq. (7). This denotes a difference with
the toy model presented in section II that we attribute to the existence of a finite correlation timescale
for the particle trajectories. For the toy model, there is no correlation time in the trajectory and the
velocity without time delay is an average of the position before (with seeding bias) and the position
after (without seeding bias) a given point. This average leads to the factor 1/2 in the velocity without
time delay [Eq. (8)]. For the channel flow, the trajectories are smooth at small timescales and the
velocity can not be discontinuous. By continuity, the velocity without time delay matches with the
incoming velocity immediately before a given position.

Figures 4(c) and 4(d) shows the transverse velocity maps for implementation of time delays
�τ = 1.3 and �τ = 2.6, respectively. The transverse velocity decreases with the increase of the
time delay. To quantitatively analyze the effect of �τ on the transverse velocities estimation, the
RMS differences of the transverse velocities Vx(y, z|�τ ) and Vy(y, z|�τ ) based on the Eulerian flow
are represented as a function of the time delay in Fig. 5(a). A value of zero means that the mean flow
for the tracers matches with the fluid mean flow [Vx(x, y, z) = 0 and Vy(x, y, z) = 0 for the channel].
The velocity difference as a function of the time delay approximately follows an exponential decay
with a time constant τc = 2.9. This means that the time delay between position and velocity in
the trajectory analysis has to be typically larger than 2.9 to remove the bias from the point source
seeding.

074603-8



COMPENSATION OF SEEDING BIAS FOR PARTICLE …

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

FIG. 5. Magnitude EVi of the transverse velocities Vi(x, y, z|�τ ) with i = x and y as a function of the
time delay �τ in the turbulent channel simulation. EVi = 〈Vi(y, z|�τ )〉y,z/〈Vi(y, z|0)〉y,z with 〈.〉y,z the RMS
average over space. EVi is a strictly positive quantity that represents the normalized error between the transverse
velocities computed from the tracers trajectories Vi(y, z|�τ ) and the fluid mean velocity Vx (y, z) = 0 and
Vy(y, z) = 0. An exponential fit with a time constant τc = 2.9 is represented. The vertical dashed lines indicates
the values �τ = 1.3 and 2.6 used in Figs. 4(c) and 4(d).

The timescale τc can be interpreted as a memory time of the fluctuating component of the
frame of the fluid particles motion. To test this interpretation, we compute the cross correlation
signal χvv (�t ) = ∫

v(z = ct, t + �t )v(z = ct, t )dt from the transverse velocity component in the
frame of the moving fluid. In the center of the channel |y| < 0.6 where the particles are injected,
the longitudinal velocity is c = 1.089, which is slightly larger than the mean velocity. We find a
timescale τχ = 2.0. This timescale is of the same order of magnitude than τc. This is consistent
with the idea that the time delay between position and velocity has to be larger than the memory
time of the flow in the frame of the trajectories to remove the bias of the nonhomogeneous seeding.

B. Turbulent jet with nozzle injection

The second implementation of the time delay method is for experimental data with a turbulent jet.
A monophasic turbulent round jet is obtained by the injection of water through a nozzle of diameter
4 mm and at a flow rate of the order of 10−4 m3s−1 into a water tank. The tagging particles are
nearly neutrally buoyant polystyrene spheres of typical diameter 0.25 mm and density 1060 kgm−3.
The particles are mostly injected from the nozzle so that only the fluid particles coming from the
nozzle are tagged. In practice, some polystyrene particles from previous experiments are present
in the water tank. The concentration of such pre-existing particles is well below the concentration
of the injected particles. An ensemble of trajectories is recorded using a stereoscopic visualization
technique at frame rate of 6 kHz with three high-speed cameras. More details about the experimental
configuration and the particle tracking method can be found in previous works using the same
configuration [15,44].

Figure 6(a) shows a subset of particles trajectories recorded in the turbulent jet. The full
set of trajectories is used to construct a Eulerian representation of the mean flow. Figure 6(b)
shows the mean axial velocity Vz(r, z|0) of the jet computed from the trajectory of the particles
without time delay (standard particle tracking velocimetry). Vz(r, z|0) is represented for different z
positions identified by dashed lines in Fig. 6(a). The inserted plot is the normalized axial velocity
Vz = Vz(r, z|0)/Vz(0, z|0) represented as a function of r/z. Here, we approximate the normalized
axial velocity Vz = Vz(r, z)/Vz(0, z) by a Gaussian [45] function

Vz(r, z)

Vz(0, z)
= exp

(
−A

r2

z2

)
, (10)
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FIG. 6. (a) Particle tracks in a turbulent jet with nozzle injection. The dashed lines mark different distances
z to the nozzle chosen to represent the flow profiles. (b) Axial velocity Vz obtained from the tracks analysis
without time delay (standard PTV) as a function of the radial distance r for the 11 positions in z between 95 mm
and 145 mm. The velocity at r = 0 decreases with increasing z. The inserted plot is the velocity normalized by
the velocity at r = 0 as a function of the variable r/z. The 11 curves collapse on a master curve corresponding
to the Gaussian solution (10) represented by a thick gray line. Panels (c), (d), and (e) are the normalized
radial profiles Vr = Vr (r, z|�τ )/Vz(0, z|�τ ) for different values of the time delay �τ = −1.3, 0, and 8.3 ms,
respectively. The dashed line is the solution Vr = Vr (r, z)/Vz(0, z) for the radial velocity without seeding bias
[Eq. (11)]. The solid line is the solution VN ,r = VN ,r (r, z)/VN ,z(0, z) for the tracer mean flow for a nozzle
seeding [Eq. (12)]. The dash-dotted line is a model VN+U ,r (r, z) combining nozzle seeding and the contribution
of tracers initially in the water tank [Eq. (14)].

in which A = 67 is a free dimensionless parameter that relates to the opening angle of the jet. The
axial flow tagged by the tracers Vz is in good agreement with the Gaussian model (10). Equation (10)
is a usual approximation for the mean axial velocity Vz = Vz(r, z)/Vz(0, z) for a turbulent jet. As
already discussed in a previous work [15], there is no apparent bias from nonhomogeneous seeding
for the axial velocity component in a turbulent jet and then Vz = Vz.

Figure 6 also represents the normalized radial velocity obtained with three different time-delays
with (c) �τ = −1.2 ms, (d) �τ = 0 ms, and (e) �τ = 8.3 ms. The velocities are normalized by the
centerline velocities Vz(0, z|�τ ) and represented as a function of the self-similar coordinate r/z.

Figure 6(e) is the main result of this paper: with a positive time delay �τ > 0, we recover
the mean radial flow of the jet Vr (r, z|�τ )/Vz(0, z|�τ ) = Vr (r, z)/Vz(0, z) even if the seeding is
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nonhomogeneous. For a turbulent jet, this solution is obtained from the axial solution (10) and the
volume continuity equation for an incompressible flow:

Vr (r, z)

Vz(0, z)
= r

z
exp

(
−A

r2

z2

)
− z

r

1 − exp
( − A r2

z2

)
2A

. (11)

This radial solution is represented by dashed lines in Figs. 6(c), 6(d) and 6(e), and it corresponds to
the mean radial velocity obtained with homogeneous seeding, meaning the unbiased mean velocity
of a turbulent jet.

The radial velocity profile in Fig. 6(d) is without time delay (conventional PTV, �τ = 0). It is
clear that the mean radial velocity obtained by the particles trajectories is not the expected solution
(11) for the fluid mean velocity or Vr (r, z|0)/Vz(0, z|0) �= Vr (r, z)/Vz(0, z). This is due to the fact
that the trajectories recorded at position (r, z) are a subset of the possible fluid trajectories with the
condition that the trajectory must come from the nozzle (0,0).

In Figs. 6(c), 6(d) and 6(e), a black solid line is used to represent another solution for the tracer
mean radial velocity:

VN ,r (r, z)

VN ,z(0, z)
= r

z
exp

(
−A

r2

z2

)
. (12)

This solution was obtained in a previous work [15] and aims at describing the mean radial velocity
of the tracers if the tracers are injected by the nozzle (the subscript N is for nozzle). If the tracers
are injected by the nozzle, then the tracer concentration verifies the same self-similar properties than
the axial velocity itself [46], which allows us to compute the solution (12). We can mention that the
solution (12) for the radial velocity has a interesting geometrical property:

VN ,r (r, z)

VN ,z(r, z)
= r

z
. (13)

The relation (13) means that the particles trajectories are, in average, a set of straight lines with their
origin at the nozzle: for any point (r, z), the velocity vector VN ,r �ur + VN ,z �uz is aligned with the
position vector r �ur + z �uz. As a consequence, the radial flow VN ,r for the tracers coming from the
nozzle is always positive for any r/z.

In the turbulent jet with nozzle injected tracers, we can mention a simple experimental evidence
that shows that the mean path of the tracers is not the mean velocity of the fluid. As shown in Fig. 6,
the solution (11) for the fluid radial velocity Vr (r, z)/Vz(0, z) is negative for large r/z (r/z > 0.14).
A negative Vr (r, z) for large r/z means that the outer fluid is entrained by the core of the jet and
the mean flow is radially convergent for r/z > 0.14. If the tracers were following the mean radial
flow Vr , then there would be no possibility for the tracers in region r/z < 0.14 to reach the region
r/z > 0.14. This is not what is experimentally observed. To allow the tracers to be spread by the jet
and reach r/z > 0.14, the tracers flow VN ,r (r, z) is consistently positive for any r/z and Vr (r, z) >

Vr (r, z) is a signature of a positive radial dispersion of the tracers from the nozzle because of the
turbulent diffusion.

In Fig. 6(d), the mean radial velocity Vr (r, z|0) is consistently larger than Vr (r, z). However, the
radial flow Vr (r, z|0) does not strictly match with the expected solution (12) predicted for tracers
injected by the nozzle. We propose that the difference between the model VN ,r (r, z) and the data
Vr (r, z|0) for small r/z comes from the finite size of the filtering kernels used to obtain the velocity
from the trajectories. To obtain the velocity at a given time step t0, we use a two-point derivative
estimation combined with a Gaussian filtering. The Gaussian kernel has a window size of 12 time
points which means that a few points before and after t0 are involved in the computation of the
velocity. At a frame rate of 6 kHz, six time points for the half window corresponds to 1 ms.
Consistently, the agreement between the solution (12) is further improved, at least for small to
moderate r/z values, if the velocity Vr (r, z|�τ ) has a negative delay of �τ = −1.3 ms as shown in
Fig. 6(c). This can be interpreted as an optimal realization of the nozzle seeding condition.
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In Fig. 6(c), the experimental data deviates from the solid line VN ,r , typically for r/z > 0.25.
We interpret that this deviation comes from the few unwanted particles that might have remained
in the tank from a previous experiment. We should insist on the fact that for r/z typically larger
than 0.25, the concentration of particles coming from the nozzle is very low. As mentioned before,
the particle concentration is proportional to the axial velocity. It can be verified in Fig. 6 that the
axial velocity, and thus the particle concentration that comes from the nozzle, is indeed very small
[∝ exp(−Ar2/z2)] when r/z is sufficiently large. Consequently, a very small quantity of pre-existing
particles can significantly bias the velocity profile with nozzle conditioning, at least far from the
axis. A third model VN+U ,r for the radial velocity is proposed in Fig. 6 that sums the weighted
contribution of the tracers coming from the nozzle (N ) and the unwanted tracers (U ) initially in the
water tank

VN+U ,r (r, z) = φ(r, z)VN ,r (r, z) + φiVr (r, z)

φ(r, z) + φi
, (14)

in which φ(r, z) = φ0 exp(−Ar2/z2) accounts for the tracer concentration in the Gaussian approx-
imation with φ0 the concentration magnitude. φi is the initial concentration of tracers. The model
in Figs. 6(c), 6(d) and 6(e) is for φi/φ0 = 8 × 10−3. We assume that the concentration of unwanted
tracers initially in the tank is homogeneous, which means that the contribution from φi is the
unbiased jet velocity Vr (r, z).

One could ask about the different delays used to match the two solutions (11) and (12) (−1.3 ms
and 8.3 ms). To match the trajectory path solution, the trajectory analysis only needs to remove
the position immediately after a given time t . In our track analysis, we use a Gaussian kernel for
filtering with a characteristic length of 1 ms for both the position and the velocity. Therefore, a
delay of −1.3 ms means that only the past of the trajectory is involved in the velocity estimation at a
given time point. To match the normalized velocity Vr of the fluid represented by the dashed line in
Fig. 6, a time-delay of the order of 8 ms is needed. This time should be interpreted as a characteristic
correlation time for the fluid velocity.

To investigate in more details the role of the fluid correlation time, �τ is systematically varied
in the case of the delayed velocity (�τ > 0). In Fig. 7(a), the RMS difference between the
normalized radial velocity Vr (r, z|�τ )/Vz(0, z|�τ ) and the Gaussian model for the radial velocity
Vr (r, z)/Vz(0, z) is computed. In Fig. 7(b), the difference is represented for the normalized axial ve-
locity Vz(r, z|�τ )/Vz(0, z|�τ ). The obtained quantities EVr and EVz quantify the error between the
tracer mean velocity and the real fluid velocity and these errors are represented for different positions
in the jet and for values of �τ between 0 ms and 25 ms. For the radial velocity, the agreement with
the Gaussian model Vr (r, z)/Vz(0, z) is optimal for �τ of the order of 5 to 10 ms. For each bin cell at
a position z, the minimum for 〈Vr (r, z|�τ )/Vz(0, z|�τ ) − Vr (r, z)/Vz(0, z)〉r is indicated by a cross.
The optimal value for �τ to minimize EVr tends to increase with increasing z which means that
larger time delays need to be used for compensated velocity measurements performed far from the
nozzle. To validate this statement, we can mention the dependence of the Lagrangian timescale with
z for turbulent jets. The Lagrangian timescale is given by TLz = ∫ ∞

0 Ruzuz (t )dt/Ruzuz (0) in which
Ruzuz (t ) = 〈Vz(t0 + t )Vz(t0)〉 with Vz is the Lagrangian velocity of the fluid along the z direction and
〈.〉 denotes an average over the particle trajectories. For an exponential decay of the Lagrangian
velocity correlations Ruzuz (t ) ∝ exp(−t/te), TLz is simply the time constant te. The Lagrangian
timescale relates to the turbulent diffusivity [47] with Kturb ∼ σu

2TL, in which σu is the magnitude
of the velocity fluctuations. For turbulent jets, the Lagrangian time TLz increases with the distance z
to the nozzle. The two square data points TLz added in Fig. 7(a) are two Lagrangian times measured
for the same experimental configuration in a previous work [44] using a statistical analysis of the
tracer trajectories. The fact that the time delay needed to retrieve the mean flow is of the same
order than the Lagrangian time is consistent with the results for the turbulent channel presented
in Fig. 5. The black dashed line is a guideline z ∝ √

�τ . This relation is obtained by assuming
that the magnitude of the jet D sets a scaling relation between the space and the timescales. The
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FIG. 7. (a) Error EVr between the normalized radial velocity Vr from the tracers and the jet radial flow in
the Gaussian approximation Vr (11) as function of the distance to the nozzle z and the time delay �τ . The
crosses indicate local minima of EVr for each value of z. The data points TLz are for Lagrangian timescales
computed by statistical analysis of the particles trajectories [44]. (b) Error EVz between the normalized axial
velocity Vz and the prediction in the Gaussian approximation Vz (10). We define EVi = 〈Vi − Vi〉r with Vi =
Vi(r, z|�τ )/Vz(0, z|�τ ), Vi = Vi(r, z)/Vz(0, z). 〈.〉i is the RMS average over the space coordinate i = r or z.

magnitude of the jet is found in expression for the axial velocity of the jet Vz(0, z) = D/z and it has
the dimension of a diffusion coefficient.

For the axial velocity in Fig. 7(b), the agreement with the Gaussian model is not improved with a
strictly positive time delay. Standard PTV (�τ = 0) is therefore valid to estimate the axial velocity
of the jet Vz(r, z).

Both Vr (r, z|�τ )/Vz(0, z|�τ ) and Vz(r, z|�τ )/Vz(0, z|�τ ) deviate from the Gaussian jet pro-
files for �τ typically larger than 20 ms. For the turbulent channel, the mean flow is independent
of the mean flow direction z and there is not such deviation for large �τ as shown in Fig. 5(a).
Because the mean flow of the jet is a function of space and notably of z, too large time-delays mean
that the velocity is taken too far from the position of a given binning cell, in a region where the
mean velocity is different. We can estimate this effect by computing the mean trajectory Z (t ) of a
set of particles moving on the axis of the jet,

Vz(0, Z ) = dZ

dt
= D

Z
, (15)

in which D has the dimension of a diffusion coefficient and relates to the magnitude of the jet. After
integration over a time delay �τ , we have the mean trajectory of the tracers,

Z =
√

Z0
2 + 2D�τ, (16)

and the mean velocity of the tracers is

Vz(0, Z0,�τ ) = D

Z0

1√
1 + 2D�τ

Z0
2

. (17)

This relation means that, even in the absence of seeding bias, using a time delay too large leads to
a systematic error caused by the fact the mean velocity field is a function of space. For the distance
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Z0 = 0.1 m and a mean velocity at Z0 equals to 2ms−1, we have D = 0.2 m2s−1 and we find a
characteristic timescale Z0

2/2D = 25 ms. In Fig. 7(b), the error EVz between the normalized axial
velocity and the model is visible with the time delay approaching 20 ms, which is consistent with the
order of magnitude of the timescale Z0

2/2D = 25 ms. We should however mention that Fig. 7 uses
velocities normalized by the centerline velocity D/z. A more accurate analysis should also take into
account the radial dependence of the mean flow to fully determine the mismatch caused by the mean
flow spatial dependence. However, we assume that, given the geometric properties of turbulent jets,
the timescale Z0

2/2D is also relevant regarding the radial dependence of the velocity profiles.

IV. CONCLUSION

In this work, we present a strategy to suppress the bias caused by nonhomogeneous seeding in
particle tracking that affects the determination of mean flow velocities.

We first discussed a simplified picture of turbulent diffusion in the form of an advection–diffusion
process with a discrete walk of particles. This model was solved analytically for particles injected
from a point source and a purely diffuse transverse mean flow was found. The value of the transverse
flow in a given observation point has a simple geometrical interpretation related to the relative
location of the source point. In this discrete model, the velocity is computed by a position increment.
Because of nonsmooth trajectories, we identified that the choice for the definition of the velocity
has a crucial impact of the velocity at a given position depending if the position immediately before
or immediately after is involved. In the context of this work, the case of interest is the so-called
outcoming velocity with the velocity at a given position computed with the position immediately
after, which eliminates the bias caused by the source-point seeding.

We then addressed the case of realistic flows with the simulation results of a turbulent channel
and the particle dispersion in an experiment with a turbulent round jet. We introduced a time-delayed
velocity that allows us to associate, for a given particle trajectory, the position at time t with
the velocity at time t + �τ . This time-delayed velocity is the generalization of the outcoming
velocity presented in the discrete model that provides unbiased mean flows. Contrary to the discrete
model, we found that the time delay �τ has to be large enough to suppress any velocity bias
due to inhomogeneous seeding. For the channel flow, we found that the time delay has to be of
the order of a characteristic time that corresponds to a decorrelation time of the velocity in the
moving frame of the channel mean flow. For the turbulent jet, the expected radial mean flow is
also found with positive time delays but the time delay that has to be introduced increases with
the distance to the nozzle. Contrary to the channel flow, there is a limited range for the time delay
in the turbulent jet configuration because turbulent jets have a spatial dependence for their mean
flow.

The time-delayed velocity method presented here allows the retrieval of the expected mean flow
with a nonhomogeneous tracers concentration. The method was tested for two flows of simple
geometry and it effectively works with the time delay of the order of a Lagrangian fluid correlation
time. The channel flow is a case study for which the compensation method is valid for time delays
even larger than the Lagrangian correlation time because there is almost no spatial dependence of
the mean flow, notably in the middle part of the channel. Our compensation method also works for
turbulent jets, which are open shear flows that notoriously produce strong velocity gradients. In spite
of this spatial dependence of the mean flow, a range of time delay is accessible to compensate the
bias from inhomogeneous seeding. This suggest that this compensation method with time delays is
robust for any type of flows with a well defined mean flow component Vi(x, y, z). We should mention
that for unsteady flows, i.e., flows with large scales slowly varying in time, new timescales may be
introduce which may limit the applicability of our compensation method.
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