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Non-normal energy amplifications in stratified turbulent channels
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The influence of stable and unstable stratification on the amplification of coherent
structures in turbulent channel flows is investigated by computing the linear response to
stochastic forcing near the turbulent mean flow. The velocity and thermal responses to
momentum and thermal forcing are considered separately. It is found that, consistently with
results of previous direct numerical simulations, the influence of the mean flow stratifica-
tion on stochastic forcing amplifications is non-negligible only for streamwise-elongated
large-scale structures. Unstable stratification is found to enhance the peak variance of
the response, except for the velocity response to thermal forcing, and to increase the
spanwise wavelength of the most amplified structures. Stable stratification induces opposite
effects. The different spanwise wavelengths maximizing the different types of variance
amplifications all converge to approximately six channels half-widths when approaching
the linear instability threshold where large-scale coherent rolls become linearly unstable.
We show that in the presence of even moderately unstable stratification, the profiles of
turbulent buoyancy and momentum fluxes and of root-mean-square vertical velocity of all
types of most amplified stochastic responses are nearly indistinguishable from those of
the critical mode becoming unstable at the critical Richardson number. For all considered
stratification levels, the two most energetic proper orthogonal decomposition modes are
found to contribute to more than 90% of the variance of the response, except for the
thermal response to thermal forcing. We conclude that the same mechanism underlies the
onset of the instability of coherent large-scale rolls at the critical Richardson number and
the amplification of coherent large-scale structures at subcritical Richardson numbers. The
process leading to the onset of the instability of large-scale rolls is therefore gradual, and
the increasing response variance associated to increasingly unstable mean flow stratifica-
tion, as well as the increase of the optimal spanwise wavelength of the most amplified
mechanically forced streaks, can be both interpreted as precursors of the linear instability
of large-scale rolls.

DOI: 10.1103/PhysRevFluids.8.074601

I. INTRODUCTION

We are interested in the influence of mean flow stratification on the amplification of coherent
structures in wall-bounded shear flows. While a clear theoretical understanding has been reached in
the case of laminar flows by means of stability analyses predicting optimal nonmodal amplifications
and the onset of linear modal instabilities, such is not the case for turbulent flows where a clear
theoretical understanding of the genesis and the main characteristics of large-scale coherent motions
is still lacking. Such an understanding would be beneficial to many applications, ranging from
the design of heat exchangers to weather forecasting and climate sensitivity analyses where better
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models of large-scale coherent structures are sought. In this study we choose to focus on the sole
interactions of buoyancy and shear by considering the Poiseuille-Rayleigh-Bénard flow, thus remov-
ing additional effects such as, e.g., ground roughness, Coriolis acceleration, three-dimensionality
of the mean velocity profiles which would be encountered in geophysical applications. In this
configuration, the viscous, thermally conducting fluid is confined in a plane channel between two
horizontal isothermal walls enforcing either a destabilizing stratification (when the ground is hotter
than the top wall) or a stabilizing one (in the opposite case) and is driven by a (streamwise) pressure
gradient.

The modal stability of laminar steady solutions of the Poiseuille-Rayleigh-Bénard flow is well
understood. In the absence of stratification the laminar Poiseuille solution is known to become
linearly unstable to Tollmien-Schlichting waves when the Reynolds number exceeds the criti-
cal value Rec = 5772 [1,2]. This critical Reynolds number does not change when destabilizing
stratifications are enforced [3]. Excessive destabilizing stratifications, however, induce the linear
instability of Rayleigh-Bénard convection rolls with spanwise wavelength λ ≈ 4h (where h is the
channel half-width) when the Rayleigh number exceeds the critical value Rac = 1708 [2,4]. The
value of the critical Rayleigh number, initially determined in the absence of mean flow (no pressure
gradient, Re = 0), remains unchanged for nonzero Reynolds numbers [3] with rolls aligning with
the streamwise direction of the Poiseuille flow.

The determination of the critical Reynolds and Rayleigh numbers and the associated neutral
modes, however, is not sufficient to fully characterize the dynamics of the considered Poiseuille-
Rayleigh-Bénard flow which can become turbulent even for Reynolds numbers significantly lower
than the critical Rec [5]. This subcritical transition has been related to the potential of linearly stable
laminar base flows to sustain very large amplifications of small perturbations exploiting the highly
non-normal nature of the linearized Navier-Stokes operator. This potential has been investigated by
computing the largest energy amplifications of initial conditions and forcing and the corresponding
optimal inputs and outputs. In plane channels, the most amplified perturbations are streamwise
streaks, i.e., streamwise-elongated spanwise-periodic low- and high-speed regions, which are opti-
mally induced by streamwise vortices with most amplified spanwise wavelengths λy ≈ 3h [6–10].
Stabilizing stratifications are found to reduce the optimal energy amplifications [11] while desta-
bilizing stratifications do increase them [12]. In the latter case, streamwise-uniform perturbations
remain the most amplified ones with the most amplified spanwise wavelength gradually drifting
from λ ≈ 3h in the unstratified case to λ ≈ 4h when approaching the critical Rayleigh number
while the amplification of small wavelengths is left substantially unaffected by stratification [12].

When the Reynolds number and/or the Rayleigh number are sufficiently large, the channel flow is
turbulent and is characterized by persistent large-scale coherent structures such as large-scale streaks
[13–15] and convection rolls [16,17] containing a substantial fraction of the turbulent kinetic energy.
The resemblance of these coherent structures to their laminar counterparts has motivated linear
stability analyses of turbulent mean flows. In a first approach, the “quasilaminar” one, nonlinear
fluctuations are considered as a forcing to the Navier-Stokes operator linearized near the turbulent
mean flow whose selective amplification of turbulent fluctuations is then analyzed [8,18–20]. In
the present study we follow a different approach based on the triple decomposition of the flow
fields into temporal mean, coherent part of the fluctuations and residual random fluctuations [21].
In this approach, which has been adopted in a large number of previous linear analyses of turbulent
mean flows [22–31], the amplification of coherent fluctuations is studied based on linear operators
which embed the effects of the turbulent stresses induced by the random part of the fluctuations.
In this context, the turbulent mean flow in plane channels is found to be linearly stable in the
absence of stratification [21,32] and becomes linearly unstable for sufficiently large destabilizing
stratifications, where a critical mode consisting of coherent streamwise-uniform large-scale rolls
of spanwise wavelength λy ≈ 6 h becomes unstable at the critical friction Richardson number
Riτ,c = −0.86 [33]. In the linearly stable regime, however, the turbulent mean flow is still able
to sustain non-normal energy amplifications despite the additional damping associated to turbulent
diffusion. Most previous research has considered unstratified channels where streamwise streaks
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are found to be the most amplified structures emerging in response to an initial condition or to
harmonic or stochastic forcing [23,26,28]. In the unstratified case, optimally amplified logarithmic
layer streaks are found to be almost-self-similar geometrically and their amplification scales with
the spanwise wave number ky as k−γ

y with γ = 2 when considering the optimal response to harmonic
forcing, γ = 1 for the variance of the response to stochastic forcing, and γ = 0 when considering
optimal temporal amplifications of initial conditions [28,29,34]. The amplifications of buffer-layer
and large-scale streaks, however, depart from the logarithmic-layer algebraic scaling with peak
amplifications respectively found near λ+ ≈ 90 (scaling in wall units) and λ ≈ 3.5 − 5h (scaling
in the outer length scale h) [28], consistently with the size of the most energetic turbulent structures.

The influence of stratification on the non-normal amplification of coherent structures in tur-
bulent flows has been addressed only recently. Ahmed et al. [35] have investigated the low-rank
properties of the resolvent operator in Reτ = 180 stably stratified turbulent channels by means
of the quasilaminar formulation. Zasko et al. [36] explored higher Reτ = O(1000) Reynolds
numbers in the turbulent Couette flow by including eddy viscosity and thermal diffusivity in the
linear operator and finding an increase of optimal temporal energy amplifications for stabilizing
stratifications. Madhusudanan et al. [37] and Cossu [33] have considered the effect of destabilizing
temperature gradients including eddy viscosity and thermal diffusivity in the linear operator, the
former computing the response to impulsive forcing, the latter the critical Rayleigh and Richardson
numbers for the onset of the linear instability of large-scale convection rolls.

The effect of an unstable stratification on non-normal energy amplifications, however, has not
been investigated yet in turbulent channels nor in other turbulent canonical flows thus leaving
unanswered a number of significant questions: Do energy amplifications increase with destabilizing
stratification? If yes, to what extent? Which coherent perturbations are the most influenced by strat-
ification? What are the main features of the most amplified coherent perturbations? Are optimally
amplified coherent structures a precursor of the critical mode that is destabilized for sufficiently
large unstable stratification or do they have distinct characteristics?

The goal of this study is to answer the questions raised above by computing the coherent
response to stochastic forcing in stratified turbulent channels and evaluating the mean amplification
of the forcing. The effect of stable stratification will also be investigated because only the Couette
flow was previously considered [36] with a non-quasi-laminar approach. To gain a clear view of
the underlying amplification mechanisms, the amplifications of velocity and temperature coherent
fluctuations will be computed separately in response to momentum and heating stochastic forcing,
departing from the customary use of a compound norm [12,35,36]. The paper is organized as
follows: The mathematical formulation of the problem is introduced in Sec. II, the results are
presented in Sec. III and discussed in Sec. IV where some conclusions are drawn. Additional details
are provided in the Appendices.

II. BACKGROUND

A. Flow configuration and linear model for coherent structures

We consider the pressure-driven flow in a plane channel delimited by two horizontal walls located
at z = ±1 orthogonal to the gravitational field −gez, where we denote by x, y, and z the streamwise,
spanwise, and vertical coordinates made dimensionless with respect to the channel half-width h
and by ez the vertical unit vector. The fluid, whose thermal expansion coefficient is β, is viscous
and thermally conducting with kinematic viscosity ν and thermal diffusivity α. For the considered
turbulent flows it is customary to express the distance from the walls also in wall units as z+ = (h −
|z|)uτ /ν, where uτ = √|τw|/ρ is the characteristic velocity associated to the wall shear stress τw.
A constant temperature difference 	
 = 
(z = 1) − 
(z = −1) is maintained between the two
walls, which are assumed to be isothermal, resulting in a vertical heat flux Q. Note that, following the
usual convention, positive (negative) values of 	
 and Q correspond to stabilizing (destabilizing)
mean temperature gradients.
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We use a linear Newtonian eddy closure to model small-amplitude coherent velocity u =
(u, v,w), pressure p, and temperature θ fluctuations to the time-averaged mean flow U = U (z)ex,
P(z), and 
(z). This model has been used in a number of previous studies [21,26–29,38–41] and
has been extended to include buoyancy effects under the Boussinesq approximation [33,36,37]:

∂t u = −∇u · U − ∇U · u + Riτ θ ez − ∇p + ∇ · [νT (∇u + ∇uT )] + fu, (1)

∂tθ = −∇θ · U − ∇
 · u + ∇ · (αT ∇θ ) + fθ , (2)

where fu and fθ are the momentum and thermal forcing terms and the equations are made di-
mensionless in terms of the channel half-width h, the temperature difference 	
 and the friction
velocity uτ . The system depends explicitly on the friction Richardson number Riτ = hβg	
/uτ

2

(positive in the stably stratified case and negative in the unstably stratified case) and on the friction
Reynolds number Reτ = huτ /ν and the Prandtl number Pr = ν/α via the effective kinematic
viscosity νT , the effective thermal diffusivity αT and the associated mean flow profiles. For the
sake of comparison with previous investigations, results will be discussed also in terms of the
Rayleigh number Ra = (2h)3gβ	
/(αν) and of the bulk Reynolds number Reb = 2hUb/ν based
on the mean bulk velocity Ub.

Fourier transforms in the horizontal coordinates and standard manipulations are used to reduce
the system given by equations (1) and (2) to the following system for the wall-normal velocity,
wall-normal vorticity, and temperature Fourier modes ŵ(z, t ), ζ̂ (z, t ), θ̂ (z, t ) of streamwise and
spanwise wave numbers kx and ky forming the state vector q̂:

∂t q̂ = Aq̂ + B̂f ; A =

⎡⎢⎣	−1LOS 0 Riτ k2	−1

−i kyU ′ LSQ 0

−
′ 0 Lθ

⎤⎥⎦,

B =

⎡⎢⎣−ikx	
−1D −k2	−1 −iky	

−1D 0

iky 0 −ikx 0

0 0 0 1

⎤⎥⎦, (3)

where q̂ = {ŵ, ζ̂ , θ̂}T , f̂ = { f̂u, f̂v, f̂w, f̂θ }T and the generalized Orr-Sommerfeld, Squire, and Lθ

linear operators, including the effects of eddy viscosity and eddy thermal diffusivity, are defined as

LOS = −ikx(U	 − U ′′) + νT 	2 + 2ν ′
T 	D + ν ′′

T (D2 + k2), (4)

LSQ = −ikxU + νT 	 + ν ′
TD, (5)

Lθ = −ikxU + αT 	 + α′
TD (6)

with D and ′ denoting d/dz, k2 = k2
x + k2

y and 	 = D2 − k2. No-slip and isothermal boundary

conditions, are enforced on both walls: ŵ(±1) = 0, Dŵ(±1) = 0, ζ̂ (±1) = 0, θ̂ (±1) = 0. The
mean flow velocity U (z) and temperature 
(z) profiles, a sample of which is shown in Fig. 1, and the
associated νT (z) and αT profiles appearing in equations (3), (4), and (6) are based on the extended
Cess’s model described in Appendix A, which has been widely used in linear analyses of unstratified
channels [23,26,28,32,40,42,43] and has recently been extended to the stratified case [33].

B. Response to stochastic forcing

Coherent perturbations to the turbulent mean flow are linearly stable as long as the friction
Richardson does not exceed the critical value Riτ,c = −0.86 found in Ref. [33] by means of the
modal stability analysis of the linear operator A. In the linearly stable regime it is of interest to
quantify the linear system response to stochastic forcing representing the effect of neglected nonlin-
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FIG. 1. Vertical profiles of the temporally averaged mean streamwise velocity U [expressed in wall units
(a)] and mean temperature 
 [normalized with respect to 	
 (b)] for selected friction Reynolds numbers Reτ .

ear terms. We therefore follow previous investigations [8,27,28,44–46] in considering a zero-mean
(〈̂f〉 = 0) stochastic forcing with 〈̂f (t )̂fH (t ′)〉 = Pδ(t − t ′) where 〈·〉 denotes the ensemble average
and the usual choice P = I is made. This forcing induces a stochastic response with covariance
〈̂qq̂H 〉 = X which, as t → ∞, tends to the solution of the algebraic Lyapunov equation [8]:

AX + XA† + BPB† = 0, (7)

where the superscript † denotes adjoint operators. Because of their different physical significance,
it is important to distinguish the momentum forcing f̂u = { f̂u, f̂v, f̂w, }T from the thermal forcing
f̂θ . To this end, we separately compute the solution XM of the Lyapunov equation when only the
mechanical forcing is active (i.e., f̂θ = 0), having forcing covariance PM , and the solution XT of the
Lyapunov equation where only the thermal forcing is active (i.e., f̂u = 0) with forcing covariance
PT , where PM + PT = I and

PM =

⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤⎥⎥⎥⎦, PT =

⎡⎢⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎤⎥⎥⎥⎦. (8)

As the velocity and temperature can be retrieved from the state vector as û = Cuq̂ and θ̂ = Cθ q̂,
the velocity and temperature covariance are given by 〈̂uûH 〉 = CuXC†

u, 〈̂θ θ̂H 〉 = CθXC†
θ , where X

is either XM or XT and

Cu = 1

k2

⎡⎣iαD −iβ 0
k2 0 0

iβD iα 0

⎤⎦, Cθ = [
0 0 1

]
. (9)

The following four ratios will be used to quantify the respective amplification of the variance of
momentum and thermal forcing into velocity and temperature coherent perturbations variance:

VMu = Tr〈̂uûH 〉
Tr

〈̂
fûfH

u

〉 , VMθ = U 2
e

Tr〈̂θ θ̂H 〉
Tr

〈̂
fûfH

u

〉 , (10)

VT u = 1

U 2
e

Tr〈̂uûH 〉
Tr

〈
f̂θ f̂ H

θ

〉 , VT θ = Tr〈̂θ θ̂H 〉
Tr

〈
f̂θ f̂ H

θ

〉 , (11)

where, e.g., Tr〈̂uûH 〉 = ∫ 1
−1(〈û∗û〉 + 〈v̂∗v̂〉 + 〈ŵ∗ŵ〉) dz is the velocity variance. Note that in

Eqs. (10) and (11) the velocity and momentum forcing variances are normalized with respect to
the square of the centreline mean velocity Ue corresponding to the maximum velocity variation
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 2. Premultiplied variance amplification ratios VMu (a), (e), VMθ (b), (f), VT u (c), (g), and VT θ (d), (h)
reported as a function of the spanwise wavelength λy = 2π/ky for Reτ = 1000 and selected values of Riτ . The
amplifications of streamwise-uniform perturbations (with kx = 0) are reported in the top row (a)–(d) and those
of perturbations with λx = 2λy in the bottom row (e)–(h).

	U of the mean flow to make them comparable to temperature and heating variances which are
normalized by 	
.

To quantify the level of coherence in the response to stochastic forcing and to identify the most
relevant coherent structures we also compute the eigenvalues and eigenfunctions of 〈̂uûH 〉 and
〈̂θ θ̂H 〉. Covariance operators being Hermitian, their eigenvalues σ j are real and correspond to a
set of mutually orthogonal eigenfunctions often referred to as proper orthogonal decomposition
(POD) modes, “empirical orthogonal functions” or Karhunen-Loève modes. As the sum of the σ j

eigenvalues is equal to the total variance of the response V = ∑
j σ j , the ratio σ j/

∑
j σ j represents

the contribution of the jth mode to the response variance; the corresponding eigenfunction provides
the associated coherent structure emerging in the response.

Standard methods are used to numerically compute variance amplifications. The system reported
in Eq. (3) and the Cu, Cθ operators are discretized in the vertical direction by means of a
Chebyshev-collocation method using the discretized differentiation operators of Ref. [47] which
embed the appropriate boundary conditions. The stochastic response is obtained by solving Eq. (7)
with the lyap function in matlab. The codes have been derived from those used and validated in
Refs. [27,28,33]. The results in the present study are obtained by using a number of collocation
points ranging from 129 to 513 depending on the Reynolds number, as in Refs. [26,28,33].

III. RESULTS

A. Effects of stratification on stochastic forcing amplifications at Reτ = 1000

In this section we investigate the influence of stratification on variance amplifications for the
(fixed) friction Reynolds number Reτ = 1000. Responses to stochastic forcing are computed for
Richardson numbers ranging from Riτ = 0.8 (in the stably stratified regime) to Riτ = −0.8 (in
the unstably stratified regime). The Prandtl number is set to Pr = 1 for all the results presented
in this paper. The variance amplification ratios, premultiplied by the spanwise wave number ky,
are reported in Fig. 2 as a function of the spanwise wavelength λy = 2π/ky for selected values
of Riτ . Two types of perturbations are considered: streamwise-uniform (kx = 0) perturbations (top
row of Fig. 2), which are the most amplified ones, and perturbations with λx = 2λy (bottom row
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(a) (b)

FIG. 3. Dependence on the Richardson number Riτ of the most amplified spanwise wavelengths λmax

of streamwise-uniform modes (kx = 0) corresponding to the large-scale peaks (a) and of the corresponding
premultiplied peak amplifications VMu, VMθ , VT u, VT θ (b) reported in the top row [panels (a) to (d)] of Fig. 2.

of Fig. 2) corresponding to wavelengths typical of the self-sustained process [34,48,49]. Additional
results pertaining to intermediate values of the streamwise wavelength are reported in Appendix B.
The premultiplied amplifications kyVMu display the double-peaked structure which has already been
thoroughly investigated in unstratified channels [28]. The primary peak scales in outer units and
corresponds to large-scale streaks with spanwise wavelengths ranging from ≈3 to ≈6 channel
half-widths, depending on Riτ . The secondary (lower) peak scales in wall units and corresponds to
spanwise wavelengths λ+

y ≈ 80 − 90 (λy = λ+
y /Reτ ≈ 0.085 in outer units) typical of buffer-layer

streaks [50]. In between these two peaks is a quasiplateau corresponding to logarithmic-layer
quasi-self-similar structures [23,24,26,28] scaling with the distance from the wall whose (nonpre-
multiplied) variance amplification scales as k−1

y [28]. We find that the mean flow stratification has
non-negligible effects only on the primary (large-scale) peak of kyVMu and only when λx 
 λy (see
Appendix B). Indeed, Fig. 2(a) shows that for streamwise-uniform perturbations an increasingly
destabilizing (stabilizing) stratification, corresponding to increasingly negative (positive) values of
Riτ , induces an increasing (decreasing) height of the primary peak of kyVMu but has no influence
on log-layer or buffer-layer structures which have smaller spanwise wavelengths. For perturbations
with λx = 2λy stratification has no significant effect on VMu even for large-scale structures [see
Fig. 2(e)]. Similar results are found for the premultiplied temperature variance kyVMθ produced by
momentum forcing [see Figs. 2(b) and 2(e)].

The shapes of the amplification curves associated to thermal forcing differ from those associated
to momentum forcing. The premultiplied amplification curves kyVT θ , indeed, do not generally
display a double-peaked shape and large-scale (large λy) structures are generally weakly amplified.
For streamwise-uniform perturbations, however, unstable stratification induces the emergence of a
large-scale peak while stable stratification has the opposite effect [see Fig. 2(d)] and no significant
effect is found for perturbations with λx = 2λy [see Fig. 2(g)] Amplifications kyVT u are small with
a single peak corresponding to large-scale structures [see Figs. 2(c) and 2(g)] and tend to zero
Riτ → 0, as expected.

In Fig. 3, the most amplified spanwise wavelengths λmax and the corresponding peak of the
premultiplied variance amplifications are reported as a function of Riτ . The figure shows that
the spanwise wavelength maximizing kyVMu increases from λy ≈ 3 (three channel half-widths) for
the stably stratified case with Riτ = 0.8, to λy ≈ 3.5 in the unstratified case (already examined in
Ref. [28]) to then rapidly increase in the unstably stratified case up to λy ≈ 6 for Riτ = −0.8,
near the onset of the modal instability at Riτ,c = −0.86 [see Fig. 3(a)]. Spanwise wavelengths
maximizing VMθ are larger, ranging from λy ≈ 5 for Riτ = 0.8 to λy ≈ 6 for Riτ = −0.8. Despite
this difference in the most amplified spanwise wavelengths, the peak variance of both responses to
momentum forcing is very similar [see Fig. 3(b)] being not very sensitive to Riτ , except near the
instability threshold for sufficiently negative Riτ . Thermal forcing is generally less amplified than
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(a) (b) (c) (d) (e)

FIG. 4. Vertical profiles of the: (a) turbulent buoyancy flux 〈̂θŵ〉, (b) turbulent momentum flux 〈̂uŵ〉,
(c) rms vertical velocity fluctuations 〈ŵŵ〉1/2, (d) rms temperature fluctuations 〈̂θ θ̂〉1/2, (e) rms streamwise
velocity fluctuations 〈̂ûu〉1/2. The different profiles have been computed at Reτ = 1000 and Riτ = −0.4 in
correspondence to the four different spanwise wavelengths corresponding to the four types of large-scale peaks
of the premultiplied variances of streamwise-uniform perturbations documented in Figs. 2(a)–2(d). The profiles
of the critical mode (incipient linear instability) computed in Ref. [33] at Reτ = 1000 and Riτ = −0.86 (dashed
black lines) are also reported for comparison. All profiles are normalized to unitary maximum amplitude.

momentum forcing, particularly so for VT u [see Fig. 3(b)]. The most amplified wavelengths of VT u
and VMθ are very similar while those pertaining to VT θ are, when the primary peak has emerged,
larger than all other wavelengths (λy ≈ 6.5). The four types of variance amplification all increase
when approaching the linear instability threshold Riτ = −0.86, where they diverge with the most
amplified wavelengths of all forced responses converging to the wavelength of the critical mode.

B. Structure of the most amplified stochastic responses

As discussed in Sec. III A, the spanwise wavelengths maximizing the variance amplifications all
converge to the spanwise wavelength of the critical mode for Richardson numbers approaching the
critical value Riτ,c = −0.86. In this limit, it is expected that the structure of the stochastic responses
embed a strong signature of the critical mode. It is, however, unclear how strong this signature is
for intermediate levels of unstable stratification where important differences appear in the values
of the different most amplified spanwise wavelengths [see Fig. 3(a)], suggesting that significant
differences might exist in the mechanisms underlying the different amplifications. We clarify this
issue by examining the structure of the most amplified stochastic responses.

In Fig. 4 are reported the vertical profiles of root-mean-square (rms) response components as
well of the associated turbulent heat and momentum fluxes computed from the solutions of the
Lyapunov equation, as explained in Sec. II B, for streamwise-uniform (kx = 0) structures having
optimal spanwise wavelengths [the ones corresponding to the peak values in Figs. 2(a)–2(d)] at
Reτ = 1000 and Riτ = −0.4. These profiles, that would otherwise have different amplitudes, are
normalized to the same (unitary) maximum amplitude to compare their shapes. These profiles are
also compared to those of the critical mode computed at Riτ,c = −0.86 in Ref. [33]. Figures 4(a)
and 4(b) show that the 〈̂θŵ〉 and 〈̂uŵ〉 profiles associated to the different large-scale peak responses
are extremely similar and are also extremely similar to those of the critical mode despite their very
different spanwise wavelengths [see Fig. 3(a)] and the different Riτ for the critical mode. This
similarity reveals that, almost unexpectedly, a common vertical buoyancy and momentum transport
mechanism underlies the onset of the linear instability and the amplification of stochastic forcing
even for relatively weak levels of unstable stratification. This is further confirmed by the strong
similarity of the 〈ŵŵ〉1/2 profiles [see Fig. 4(c)] of the rms vertical velocity which is the key
ingredient of the vertical turbulent transport. Differences, however, appear between the vertical
profiles of the rms temperature and streamwise velocity perturbations. A direct and ‘unfiltered’
signature of the forcing is, indeed, clearly visible on the temperature response to thermal forcing
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(a) (b)

FIG. 5. Relative contributions of the first (a) and of the first two (b) POD modes to the peak variance of the
stochastic response versus the friction Richardson number Riτ for Reτ = 1000.

[see Fig. 4(d)] that is almost-constant in the bulk of the flow because not immediately filtered by
the non-normal couplings of the system. In the case of the streamwise velocity, differences in the
response rms profiles are confined to the central part of the channel [see Fig. 4(e)], where the mean
shear is small the coupling to the vertical velocity negligible.

These results suggest that the response to stochastic forcing is composed of (a) an endogenous
dominant (most amplified) highly correlated part with structure similar to that of the critical mode
and (b) a more direct response to the forcing which is much less amplified/filtered and which,
similarly to the forcing itself, lacks of cross-correlation between different response components. To
quantify the relative weight of these two different components in the stochastic response, a POD
analysis is performed in correspondence to each of the considered peak responses for Richardson
numbers ranging from Riτ = 0.8 to Riτ = −0.8 (always with Reτ = 1000).

In Fig. 5 the relative contribution to the total variance of the leading [Fig. 5(a)] and of the two
leading [Fig. 5(b)] POD modes are reported as a function of Riτ . The results confirm that the two
leading POD modes associated to the mechanically forced velocity large-scale peak contribute for,
respectively, ≈60% and ≈30% of the VMu variance in the unstratified case Ref. [28]. We find that
the contribution of these two leading POD modes to VMu increases for increasingly destabilizing
stratifications (increasingly negative values of Riτ ), heading towards 100% at Riτ,c. A similar trend
is observed for the contribution of the leading POD mode to the large-scale peak of the VT θ , which
is in the similar situation of having a direct contribution of the forcing to the observed variance,
but with a less important contribution of the second POD mode. On the contrary, for the VT u, VMθ

amplifications, where the observed response is only indirectly forced, the contribution of the first
POD mode is always larger than ≈95% (≈100% for the first two modes) for all the considered
values of Riτ . These trends confirm that a strongly coherent large-scale mode is responsible of the
emergence of the primary peak in the forcing response variances and is responsible of the observed
strong similarity of the cross-correlations.

C. Influence of the Reynolds number

All the results discussed so far pertain to the Reynolds number Reτ = 1000, a value typical of
current direct numerical simulations (DNS) capabilities but which is on the lower end of regimes
relevant to most industrial and geophysical applications. To examine the influence of the Reynolds
number on the findings discussed above, additional responses to stochastic forcing have been
computed for Reynolds numbers extending from Reτ = 500 to Reτ = 20 000 (the highest Reynolds
number considered in related previous investigations [23,26,28,33]).

We find that for all considered Reynolds numbers, the most amplified perturbations remain the
streamwise-uniform ones (kx = 0), which also remain the most sensitive to buoyancy effects (not
shown). Furthermore, the structure of the premultiplied variance amplification curves is found to be
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(a) (b) (c) (d)

FIG. 6. Premultiplied variance amplification ratios VMu (a), VMθ (b), VT u (c), and VT θ (d) of streamwise-
uniform perturbations versus the spanwise wavelength λy = 2π/ky for Reτ = 10 000 and selected values
of Riτ .

substantially unaffected by an increase of Reτ . This can be appreciated from Fig. 6 where the shown
amplification curves, computed at Reτ = 10000, remain similar to those obtained at Reτ = 1000
[see Figs. 2(a)–2(d)], except for the increase in spatial scale separation between the primary (large-
scale) and secondary (buffer-layer) peaks in the mechanically forced responses [Figs. 6(a) and 6(b)].
The peak of the (premultiplied) variance amplifications and of the associated spanwise wavelengths
are reported as a function of Reτ in Fig. 7 for the moderately unstably stratified case Riτ = −0.4.
This figure shows that the most amplified wavelengths increase monotonically with Reτ but with
only limited variations, of the order of 10% between Reτ = 1000 and Reτ = 20 000. The maximum
variance amplifications do also monotonically increase with Reτ , but only slightly in the considered
Reτ range.

Finally, we consider the influence of the Reynolds number on the relative contribution of the
leading first and two POD modes to the total variance for the same moderately unstably stratified
case Riτ = −0.4. As shown in Fig. 8, the contributions of the first and first two POD modes to VMu
and VHθ slightly increase with Reτ , while the leading contributions to VHu and VMθ remain ≈100%.

IV. CONCLUSIONS

The main goal of this investigation was to assess the influence of stratification on the non-normal
energy amplifications of coherent perturbations in turbulent channels. The analysis, based on a
linearized approach including the effect of turbulent Reynolds stresses in the linear operator, has
been performed by computing the variance of the response to stochastic forcing. The analysis

(a) (b)

FIG. 7. Reynolds number dependence of the most amplified spanwise wavelengths λmax of streamwise-
uniform perturbations corresponding to the large-scale peak (a) and of the most amplified premultiplied
variances (b) for the four considered types of variance amplifications VMu, VMθ , VHu, and VHθ computed for
streamwise-uniform perturbations in the moderately unstably stratified regime at Riτ = −0.4.
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(a) (b)

FIG. 8. Reynolds number dependence of the relative contributions of the first (a) and of the first two
(b) POD modes to the variance of the stochastic responses computed in correspondence to the large-scale
peaks of the premultiplied variance amplifications in the moderately unstably stratified case Riτ = −0.4.

distinguishes momentum forcing from thermal forcing and velocity fluctuations from thermal
fluctuations in the response, analogously to previous investigations distinguishing different velocity
and forcing components in the unstratified case [46]. Results have been obtained for friction
Reynolds numbers ranging from Reτ = 500 to Reτ = 20 000, Pr = 1 and friction Richardson
numbers ranging from Riτ = 0.8 (stabilizing stratification) to Riτ = −0.86 (unstable stratifica-
tion) corresponding to bulk Reynolds numbers and Rayleigh numbers extending up to Reb ≈ 106

and Ra ≈ 109.
The main findings concerning stochastic forcing amplifications are the following: (a) momentum

forcing systematically leads to larger (by at least one order of magnitude) peak variance amplifi-
cations than thermal forcing; (b) the effect of stratification on the amplifications is non-negligible
only for large-scale streamwise-elongated structures; (c) variance amplifications do increase with
increasingly unstable stratification, diverging when approaching the linear instability threshold
Riτ,c = −0.86, and decrease with increasingly stable stratification, except for the variance of
velocity fluctuations induced by thermal forcing, which is zero in the unstratified case; (d) peak
variance amplifications do slightly increase with the Reynolds number.

These findings are consistent with direct numerical simulations results [17,51] showing that
stable (unstable) stratification respectively lead to decreasing (increasing) thermal and velocity
fluctuations but mostly at large scale and in the bulk of the flow while leaving almost unaffected
buffer-layer structures, at least when the Richardson numbers are not too large. Our results are
also reminiscent of previous findings, obtained for laminar base flows, where the influence of
stratification on the optimal temporal (spatial) response to initial (boundary) conditions was found
to be limited to streamwise-elongated large-scale structures [11,12,52].

Concerning the spatial structure of the most amplified responses to stochastic forcing, the main
findings are that: (a) the most amplified spanwise wavelength in the velocity variance response to
momentum forcing VMu, which is λy ≈ 3.5 in the unstratified case, slightly decreases with stable
stratification and increases with unstable stratification tending to λy ≈ 6 when approaching the
linear instability threshold; (b) the most amplified spanwise wavelengths of the indirectly forced
responses (the velocity response to thermal forcing VT u and the thermal response to momentum forc-
ing VMθ ) do also increase when evolving from stable to unstable stratification, but are always larger
than the VMu most amplified spanwise wavelength; (c) all most amplified spanwise wavelengths
converge to λy ≈ 6 when approaching the linear instability threshold; (d) in the presence of even
moderate (linearly stable) unstable stratification, all peak responses display almost indistinguishable
vertical profiles of rms vertical velocity fluctuations and of heat and momentum fluxes, all of which
almost coincide with those of the critical mode becoming unstable at the critical Richardson number;
(e) the two most energetic POD modes of the peak responses contain more than 90% of the VMu,
VMθ , and VHu variance of the response.
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These findings reveal that a single robust mechanism underlies the amplification of coherent
large-scale structures at subcritical Richardson numbers and the onset of the instability of coherent
large-scale rolls at the critical Richardson number. The process leading to the onset of the linear
instability is gradual and the increasing response variance associated to increasingly unstable
mean flow stratification as well as the increase of the optimal spanwise wavelength of the most
amplified mechanically forced streaks are precursors of the linear instability of large-scale rolls. This
suggests that at the onset of the linear instability the large-scale (subcritical) nonlinear self-sustained
structures implying large-scale coherent streaks and quasistreamwise vortices [34,48,53,54] have
probably morphed into convection-driven saturated coherent rolls. It is therefore likely that the linear
analysis developed in the present investigation and in Ref. [33] can be extended into the supercritical
regime by merging now ‘classical’ methods, previously used to investigate nonlinear laminar
convection [55–59], with the more recent techniques used to isolate large-scale self-sustained
processes in turbulent unstratified flows [48,53,54,60]. Such an extension to the nonlinear domain
would probably allow for the elucidation of the nature of the transition from streamwise rolls to
open cells and hopefully provide more insights into the free-convection regime. It would be also be
of great interest to apply the approach taken in this study and in Ref. [33] to atmospheric boundary
layers by including a number of additional effects in the analysis such as surface roughness, the
three-dimensionality of the mean velocity profile including an inflection point and the effect of
Coriolis acceleration. These extensions are the object of current intensive effort. In this context,
however, it would be desirable to obtain, by DNS or experimentally, additional validations of our
theoretical approach at Reynolds numbers much higher than those currently available.

APPENDIX A: TURBULENT MEAN FLOW MODEL

The temporally averaged mean flow profiles, that are used in this study are based on the model
introduced in Ref. [33] which extends Cess’s 1958 model [61] to the (weakly) stratified regime.
Such a model is adapted to the high Reτ small |Riτ | regime, where the flow is fully turbulent but
stratification effects are small enough that the temperature field behaves as a passive scalar. In this
regime the U (z), νT (z), 
(z), and αT (z) profiles do not depend on Riτ . We briefly summarize here
the main features of the model for Pr = 1.

For the eddy viscosity and the mean velocity profiles, Cess’s expressions, as reported in Ref. [32],
are assumed:

νT = 1

2Reτ

{
1 +

[
κ Reτ (1 − z2)

1 + 2z2

3
(1 − e−z+/A)

]2
}1/2

+ 1

2Reτ

,
dU

dz
= − z

νT
, (A1)

where the mean velocity profile is obtained from integration of dU/dz and the values of the von
Kármán constant κ = 0.426 and A = 25.4 are calibrated on DNS data obtained at Reτ = 2000
in Ref. [62]. Cess’s model has been widely used in linear analyses of turbulent mean flows (see,
e.g., Refs. [23,26,28,32,40,42,43], among others) providing reasonable approximations of the U (z)
profiles, a few examples of which are shown in Fig. 1(a). Furthermore, in Ref. [33] is was shown
that the friction law Cf (Reb) computed with Cess’s model agrees well with DNS data reported in
Ref. [17] and fits the Prandtl’s law derived therein even at Reynolds numbers much higher than
those accessed in the DNS. The Cess model has been extended to provide a reasonable fit to the
mean temperature profile:

αT = 1

2PrReτ

{
1 +

[
κ Reτ (1 − z2)

1 + 2z2

3

1 − χz2

1 − χ
(1 − e−z+/A)

]2
}1/2

+ 1

2PrReτ

,

d


dz
= − Q

αT
, (A2)

074601-12



NON-NORMAL ENERGY AMPLIFICATIONS IN …

where the same constants κ , (a) as in Eq. (A1) are used, χ = 0.25 (see Ref. [33] for more details) and
the mean temperature profile is obtained by the usual vertical integration. In Ref. [33] is was shown
that: (a) the model’s mean temperature profiles, a few examples of which are shown in Fig. 1(b), fit
reasonably well the DNS data of Ref. [17] and (b) that the Nu(Reb) curve computed by means of
Eq. (A2) fits well DNS data reported in Ref. [17] as well as the empirical fit Nu = 0.0073 Re0.802

b
reported in the same study, and this even at Reynolds numbers much higher than those accessed in
the DNS.

APPENDIX B: INFLUENCE OF THE STREAMWISE WAVE NUMBER

In Sec. III A, the effect of stratification on variance amplifications was investigated for
streamwise-uniform perturbations (i.e., for kx = 0) and for the case where the streamwise wave-
length was twice the spanwise wavelength λx/λy = 2 (i.e., kx/ky = 1/2). It was shown that
stratification effects on the variance amplifications were negligible when kx/ky = 1/2 and the anal-
ysis was therefore subsequently focused on the kx = 0 case. In this Appendix we report additional
results for values of kx/ky intermediate between 0 an 0.5 to confirm that the maximum sensitivity to
stratification effects is found for streamwise-uniform perturbations (kx = 0) and not, e.g., for (finite)
streamwise wavelengths longer that 2λy. To this end, in Fig. 9 are reported the stratification-induced
variations 	V (Riτ , kx, ky) = V (Riτ , kx, ky) − V (0, kx, ky) of the variance amplification ratios VMu,
VMθ , VT u,VT θ with respect to the neutrally stratified case. The moderately unstably stratified case
Riτ = −0.4 and moderately stably stratified case Riτ = 0.4 and the wavelength ratios λx = 10λy

(kx/ky = 0.1), λx = 5λy (kx/ky = 0.2), λx = 3.33λy (kx/ky = 0.3), λx = 2.5λy (kx/ky = 0.4) are
considered.

From Fig. 9 it is seen that the maximum deviations from the neutrally stratified case are
effectively obtained for streamwise-uniform perturbations and that these deviations monotonically
decrease with decreasing values of λx/λy (i.e., with increasing values of kx/ky). For all considered
cases these deviations are significant only for large-scale structures with λy = O(1 − 10).

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 9. Stratification-induced variations 	V (Riτ , kx, ky ) = V (Riτ , kx, ky ) − V (0, kx, ky ) of the variance
amplification ratios VMu (a), (e), VMθ (b), (f), VT u (c), (g), and VT θ (d), (h) for the unstably stratified case
Riτ = −0.4 [top row (a)–(d)] and the stably stratified case Riτ = 0.4 [bottom row (e)–(h)] for selected ratios
kx/ky of the streamwise to spanwise wave number and Reτ = 1000. The variations are reported in premultiplied
form ky(	V ) as a function of the spanwise wavelength λy = 2π/ky.
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