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Transition to branching flows in optimal planar convection
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We study steady flows that are optimal for heat transfer in a two-dimensional periodic
domain. The flows maximize heat transfer under the constraints of incompressibility and
a given energy budget (i.e., mean viscous power dissipation). Using an unconstrained
optimization approach, we compute optima starting from 30–50 random initializations
across several decades of Pe, the energy budget parameter. At Pe between 104.5 and 104.75,
convective rolls with U-shaped branching near the walls emerge. They exceed the heat
transfer of the simple convective roll optimum at Pe between 105 and 105.25. At larger
Pe, multiple layers of branching occur in the optima and become increasingly elongated,
asymmetrical, and heterogeneous. The rate of heat transfer scales as Pe0.575, which, in
this range of Pe, is very close to the Pe2/3(ln Pe)−4/3 behavior of self-similar branching
solutions proposed earlier. Compared to the simple convective roll, the branching flows
have lower maximum speeds and thinner boundary layers but nearly the same maximum
power density.

DOI: 10.1103/PhysRevFluids.8.074502

I. INTRODUCTION

The transfer of heat between solid surfaces and adjacent fluid flows is essential to many natural
and technological phenomena [1–4]. Fundamental results in the field of heat transfer concern how
the rate of heat transfer (quantified by the Nusselt number Nu) depends on the form of the fluid
flow, with the flow magnitude quantified by the Rayleigh number (for buoyancy-driven or free
convection) or the Péclet number, Pe (for forced convection) [2,5]. Scaling laws have been derived
for fluid flows that are simple in form (e.g., Poiseuille flow through a channel [6]) or flows driven
by simple forcings (e.g., pressure-driven flows past obstacles [2,7–9] and buoyancy-driven flows
between surfaces at fixed temperatures [10–16]).

Recently, Hassanzadeh et al. studied convective flows in a 2D fluid layer between horizontal
walls at fixed temperatures, hot at the bottom and cold at the top, as in Rayleigh-Bénard convection
[17]. Instead of buoyancy-driven flows, they considered forced incompressible flows and performed
a continuation search for flows that maximize the rate of heat transfer from the solid surfaces for
a given mean kinetic energy or rate of viscous dissipation of the flow (given as a type of Péclet
number). They did not explicitly identify such flows as forced flows, but any incompressible flow is
a solution to the Navier-Stokes equation with a given distribution of forcing per unit volume, spread
over the flow region [18,19]. They studied steady 2D flows, periodic in the horizontal direction
(along the walls), with free-slip boundary conditions. They found optimal flows in the form of
rectangular convection rolls of decreasing horizontal width and sharpening boundary layers near the
walls as the average input power (Pe) increases. Later, Souza et al. performed a continuation search
in the fixed-viscous-dissipation case with no-slip instead of free-slip boundary conditions at high
Pe with higher numerical resolution and obtained Nu ∼ Pe6/11 instead of Pe10/17 in the free-slip
case [20]. Tobasco and Doering analytically constructed self-similar branching flows that obtain
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Nu ∼ Pe2/3/(ln Pe)4/3 [21,22], close to the O(Pe2/3) upper bound obtained using the background
method [23], which holds independently of the flow boundary conditions. Meanwhile, Motoki et al.
studied the same problem in three dimensions, periodic in the two directions perpendicular to the
walls [24]. Both Souza et al. and Motoki et al. used combinations of Newton’s method and artificial
time-stepping procedures to solve the system of nonlinear equations obtained by taking variations
of the Lagrangian function for the heat transfer with Lagrange multipliers for the constraints of
flow incompressibility, the advection-diffusion equation, and the fixed rate of viscous dissipation.
At Pe = 79.2, the optimal flows of [24] bifurcate from the 2D rolls of Ref. [20] to 3D flows that
eventually adopt branching structures near the no-slip walls. The branching occurs over a wider
range of spatial scales as Pe increases from 500 to 10 000. Along with the 3D branching structures,
the scaling Nu ∼ Pe2/3 was found. The same method was used earlier by the same authors to study
similar transitions with Couette-flow (moving-wall) boundary conditions [25]. Recently, Kumar
theoretically constructed 3D branching flows that achieve the scaling Nu ∼ Pe2/3 [26].

The goal of this paper is to search broadly for optimal 2D no-slip flows. Reference [20] found
a sequence of rectangular convective rolls as Pe was increased, while Refs. [21,22] constructed a
self-similar branching flow that is close to optimal in the large-Pe limit. Are there optimal flows
that interpolate between these two, and are there other types of optimal flows? Is there a succession
of branching flows similar to those found in 3D by Ref. [24]? We address these questions with a
different computational method than the previous works, simpler in some ways because it uses an
unconstrained optimization formulation.

II. MODEL

A layer of fluid is contained between walls at y = 0 and 1, with temperatures 1 and 0, respec-
tively. We have chosen to nondimensionalize all quantities with dimensions of length (including y)
by the channel height H and quantities with units of temperature by the temperature difference
between the walls �T . We search for a steady 2D flow field (u, v) = u = (∂yψ,−∂xψ ), automat-
ically incompressible for a given stream function ψ (x, y). The flow is assumed periodic in x with
period Lx, to be determined as part of the optimization of ψ . The flow velocity is zero at the walls:
ψ = ∂yψ = 0 at y = 0 and ψ = ψtop and ∂yψ = 0 at y = 1. The constant ψtop is the net horizontal
fluid flux through the channel. In test runs, our computational solutions always converge to the
case ψtop = 0, so we assume this value in general because it reduces the number of optimization
parameters.

The temperature field is determined by the steady advection-diffusion equation:

u · ∇T − ∇2T = 0. (1)

We have set the prefactor of ∇2T (the thermal diffusivity) to unity, corresponding to nondimen-
sionalizing velocities by κ/H , with κ the dimensional thermal diffusivity. The setup is similar to
Rayleigh-Bénard convection, but instead of solving the Boussinesq equations for the flow field, we
determine the flow field that maximizes the Nusselt number, the mean heat transfer from the hot
lower boundary:

Nu ≡ 1

Lx

∫ Lx

0
−∂yT |y=0 dx. (2)

We maximize Nu over flows with a given spatially averaged rate of viscous dissipation Pe2:

Pe2 ≡ 1

2

1

Lx

∫ Lx

0

∫ 1

0
(∇u + ∇uT )2dy dx = 1

Lx

∫ Lx

0

∫ 1

0
(∇2ψ )2dy dx. (3)

Pe2 is the average rate of viscous dissipation nondimensionalized by μκ2/H4, with μ the viscosity.
The second equality in Eq. (3) holds for incompressible flows given the no-slip and periodic
boundary conditions we have here [27,28].
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One way to solve this constrained optimization problem is to find stationary points of the
Lagrangian [17,20,24], which can be written as [18,19]

L = 1

Lx

∫ Lx

0
−∂yT |y=0 dx + 1

Lx

∫ Lx

0

∫ 1

0
m(x, y)(−∇⊥ψ · ∇T − ∇2T )dy dx

+ λ

(
Pe2 − 1

Lx

∫ Lx

0

∫ 1

0
(∇2ψ )2dy dx

)
. (4)

By setting the variations of L with respect to T , ψ , and the Lagrange multipliers m and λ to 0 and
integrating by parts, we obtain a system of nonlinear equations and boundary conditions for these
four variables that can be solved using Newton’s method [18]:

δL
δm

= −∇⊥ψ · ∇T − ∇2T = 0, (5)

δL
δT

= ∇⊥ψ · ∇m − ∇2m = 0, (6)

δL
δψ

= ∇⊥m · ∇T + 2λ∇4ψ = 0, (7)

δL
δλ

= Pe2 − 1

Lx

∫ Lx

0

∫ 1

0
(∇2ψ )2dx dy = 0. (8)

The boundary conditions for T and ψ have been stated, and those for m are the same as those for T .
In the limit of small Pe, the solutions can be expanded in powers of Pe:

T = T0 + Pe T1 + · · · , (9)

m = m0 + Pe m1 + · · · , (10)

ψ = Pe ψ1 + · · · , (11)

with m0 = T0 = 1 − y, the purely conductive solution. Inserting the expansions into Eqs. (5)–(8),
we find m1 = −T1 and the system is reduced to a generalized eigenvalue problem:

∂xψ1 − ∇2T1 = 0, (12)

−∂xT1 − λ∇4ψ1 = 0. (13)

The eigenmodes can be written as (T1, ψ1) = (T̂1k (y) sin(kx + φ), ψ̂1k (y) cos(kx + φ)) for any real
k and an arbitrary phase angle φ. In Appendix A, we derive an alternative expression for Nu [17]:

Nu = 1 + 1

Lx

∫ 1

0

∫ Lx

0
vT dx dy, (14)

which can be computed using T1 and ψ1, whereas Eq. (2) would require us to also compute T2, the
O(Pe2) contribution to T , because Nu = 1 + O(Pe2), and the O(Pe2) term determines the optimal
flows. We have

Nu = 1 + 1

2

∫ 1

0
kψ̂1k (y)T̂1k (y)dy. (15)

Two examples of eigenmodes are shown in Figs. 1(a)–1(d). The flows consist of discrete
sequences of convective rolls between the two walls, similar to those in Ref. [17], but nonsinusoidal
in y now due to the no-slip instead of free-slip boundary condition. The cases with one and two rolls
between the walls are shown in Figs. 1(a) and 1(b), and the horizontal period Lx = 2π/k is chosen
in each case to maximize Nu. Thus, ψA and ψB are the best and second-best locally optimal flows
at Pe � 1, and the convective rolls are slightly larger horizontally than vertically. In Figs. 1(c) and
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(a)

(c)
(d)

(b)

FIG. 1. Streamlines for the best and second-best optimal flows in the limit Pe → 0 (a), (b) and contour
lines for the O(Pe) components of the corresponding temperature fields (c), (d).

1(d), the O(Pe) components of the temperature fields are shifted by 1/4 period from ψ [in Figs. 1(a)
and 1(b)], so there is a local maximum/minimum of temperature where the flow is directed vertically
upward/downward between the plates.

References [20,24] solved alternative versions of the variational eqs. (5)–(8), using u and the
pressure p instead of ψ , and found optimal flows at large Pe. The system of equations (5)–(8)
involves fourth-order derivatives of ψ , and is ill-conditioned when discretized with finite differences
on a fine mesh. To compute solutions at larger Pe, here we adopt an alternative approach that leads
to an unconstrained optimization problem.

III. COMPUTATIONAL METHOD

We now describe our computational method to find optimal flows at moderate and large Pe. We
include Lx among the optimization parameters by changing variables from x to p = x/Lx, so the
equations are solved on the fixed domain p ∈ [0, 1] and Eqs. (1)–(3) become

1

Lx
(∂yψ∂pT − ∂pψ∂yT ) −

(
1

L2
x

∂2
p + ∂2

y

)
T = 0 Lx ≡ s2, (16)

Nu =
∫ 1

0
−∂yT |y=0 d p, (17)

Pe2 =
∫ 1

0

∫ 1

0

(
1

L2
x

∂2
pψ + ∂2

y ψ

)2

d p dy. (18)

We optimize Lx ≡ s2 by using s as the optimization parameter, so Lx is nonnegative while s is
unconstrained. Next, we express ψ as a linear combination of functions with period p that satisfy
the no-slip boundary conditions in y. The functions are products of Fourier modes in p and linear
combinations of Chebyshev polynomials in y:

ψ (p, y) =
M∑

j=1

N−3∑
k=1

AjkYk (y) cos(2π j p) + BjkYk (y) sin(2π j p), (19)

Yk (y) ∈ 〈T0(2y − 1), . . . , Tk+4(2y − 1)〉. (20)
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Yk is a linear combination of Chebyshev polynomials of the first kind up to degree k + 4 that obeys
the no-slip conditions at y = 0 and 1. Its computation is described in Appendix B. An arbitrary
horizontal shift can be added to ψ without changing the solution. To remove this degree of freedom,
we set B11 = 0.

We define a grid that is uniform in p with m = 256 points, {0, 1/m, . . . , 1 − 1/m}. We concen-
trate points near the boundaries in y, anticipating sharp boundary layers in the optimal flows. This is
done by starting with a uniform grid for η ∈ [0, 1] with spacing 1/n, and mapping to the y grid by

y = η − y f

2π
sin(2πη). (21)

with y f a scalar. The y spacing is maximum, ≈ (1 + y f )/n, near y = 1/2, and minimum,
≈ (1 − y f )/n, near y = 0 and 1. We take y f = 0.997 and n = 512 or 1024, giving a grid spacing
�y ≈ 3×10−6 or 6×10−6 at the boundaries.

The discretized ψ is written �, a vector of values at the m(n − 1) interior mesh points for (p, y) ∈
[0, 1)×(0, 1). To form �, we first normalize each mode in Eq. (19) to have power Pe2 (for better
numerical conditioning). The differential operators and the integrals in Eq. (18) are discretized to
compute the power with second-order accuracy. We arrange the modes as columns of a m(n −
1)×2M(N − 3) − 1 matrix V. Here we take M = 5m/32 and N = 5n/32, so we limit the modes
to those whose oscillations can be resolved by the mesh. We set �̃ = Vc, a linear combination of
the discretized modes with coefficients c. To form a � with power Pe2, we discretize the integral in
Eq. (18) as a quadratic form aT Ma, where the vector a stands for a discretized ψ in Eq. (18), and
the matrix M gives the effect of the discretized derivatives and integrals in Eq. (18). Then

� = Pe Vc√
(Vc)T MVc

(22)

has power Pe2, as can be seen by evaluating �T M�. Such a � automatically gives an incompress-
ible flow by the stream function definition, and automatically satisfies the power constraint, so we
are left with an unconstrained optimization problem: maximize Nu [Eq. (17), discretized at second
order] over c ∈ R2M(N−3)−1 and s ∈ R.

We solve the optimization problem using the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method [29], a quasi-Newton method that requires evaluations of the objective function Nu and
its gradient with respect to the design parameters: {dNu/dc, dNu/ds}. Nu is computed by forming
� from c, then computing u and solving Eq. (16) for the discretized temperature field T using
second-order finite differences. We use a second-order rather than spectral discretization to obtain a
sparse matrix in the advection-diffusion equation, allowing for relatively fast solutions.

The gradient can be computed efficiently using the adjoint method [29]. Using the chain rule,

dNu

dc
= dNu

dT
dT
d�

d�

dc
;

dNu

dLx
= dNu

dT
dT
dLx

+ dNu

dT
dT
d�

d�

dLx
. (23)

The right-hand side of the second of Eqs. (23) is a sum of two terms because T depends on Lx

directly, through the coefficients of Eq. (16), and through �, which depends on Lx through M in the
denominator of Eq. (22). In the first of Eqs. (23), T depends on c only through �.

The entries of dT/d� and dT/dLx can be calculated using the discretized advection-diffusion
equation (16), written as

r(T,�, Lx ) = 0 (24)

with r (the residual) a vector that takes values at each interior grid point. We can think of Eq. (24)
as an implicit equation for the temperature field T as a function of � and Lx. If we apply small
perturbations (��,�Lx ) to � and Lx, we obtain a small perturbation �T to the temperature field
such that the residual remains zero:

0 = �r ≈ dr
dT

�T + dr
d�

�� + dr
dLx

�Lx. (25)
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In the limits ‖��‖ → 0 and ‖�Lx‖ → 0, the matrices that map �� and �Lx to �T are

dT
d�

= − dr
dT

−1 dr
d�

;
dT
dLx

= − dr
dT

−1 dr
dLx

, (26)

so Eqs. (23) become

dNu

dc
= −dNu

dT
dr
dT

−1 dr
d�

d�

dc
= −qT dr

d�

d�

dc
;

dNu

dLx
= −qT dr

dLx
− qT dr

d�

d�

dLx
. (27)

where q is the adjoint variable and is computed by solving the adjoint equation:

dr
dT

T

q = dNu

dT

T

. (28)

Here dr/dT is a sparse matrix that corresponds to the differential operators that multiply T in (16),
discretized with second-order finite differences. The cost of solving the linear system Eq. (28) for q,
and therefore the cost of computing the gradient terms {dNu/dc, dNu/dLx}, is essentially the same
as that of computing Nu itself, by solving Eqs. (16) and (17). As noted above, we optimize over s
instead of Lx to ensure Lx � 0, and use dNu/ds = 2s dNu/dLx instead of dNu/dLx for the gradient.

We initialize with 30–50 random choices of c and s and run the optimization until convergence,
when ‖(dNu/dc, dNu/ds)‖ is less than a threshold that ranges from 10−8 to 10−2. Larger thresholds
are allowed at larger Pe, where the gradient is larger in the initial random state, and where conver-
gence to very small gradients is more difficult. At large Pe, the initial gradient norm is typically
between 103 and 104, so the gradient norm threshold of 10−2 corresponds to 10−5–10−6 relative to
the initial norm. The discretized advection-diffusion equation becomes increasingly ill-conditioned
as Pe increases, causing a decrease of accuracy in Nu and its gradient, and slowing convergence
[30]. Nonetheless, we are able to obtain accurate Nu values up to Pe = 107.5.

IV. COMPUTATIONAL RESULTS

In Fig. 2, we show the progression of optimal flows and corresponding temperature fields as Pe
increases from 101.5. Here the temperature field is the whole temperature field, not just the deviation
from the conductive part as in Fig. 1. At Pe = 101.5, the convective rolls are very close to those for
Pe � 1 in Fig. 1(a), and the local increase in the temperature where the flow is upward from the hot
lower boundary at the x midpoint can be seen.

As Pe increases to 104.5, the convective rolls become narrower horizontally, increasing the surface
area where hot upwelling regions meet cold downwelling regions. The advantage for heat exchange
is sufficient to outweigh the increase in viscous power dissipation due to the increase in |∂xv| with
convective roll narrowing. The viscous power dissipation is largest along the boundary, where |∂yu|
is particularly large. The best optimal flows are labeled ψA and are the same as those in Ref. [20].
At Pe = 103.5 and above, small closed streamlines emerge close to the boundaries, showing a region
of concentrated flow there. Despite this additional complexity, we refer to the flows labeled ψA

collectively as simple roll optima, in contrast to the alternative flow optima we show next. In
four cases, optima that are slight variations of the simple roll optima are shown, labeled ψB. At
Pe = 102.5, the two convective rolls for ψB are noticeably asymmetrical, while at Pe = 103.5 and
above the two rolls are skewed in oblique directions. In these latter cases, we will show that there
is little change in Nu (�1%), so the skewed convective rolls are almost as efficient as the straight,
simple rolls.

Between Pe = 104.5 and 105, the class of optima changes dramatically with the emergence of
branched flows. Examples of the best local optima at Pe = 105 are shown in Fig. 3. Each flow is
shown by three panels, a tall narrow panel showing the streamlines over the whole domain, and to its
right, two wider panels showing the streamlines close to the boundaries (within distance 0.15). The
flows are labeled at the top with their Nu value. Flow A, with Nu = 100, is the simple convective
roll optimum and is the global optimum. (In this paper, “global optimum” means the best optimum
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FIG. 2. The progression of optimal flows and temperature fields as Pe increases from 101.5 to 104.5. Shown
are the best flow and temperature fields among the optima, (ψA, TA), and at four Pe an alternative optimum
(ψB, TB) with the temperature field below the corresponding flow.

FIG. 3. Optimal flow fields at Pe = 105.
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FIG. 4. Optimal flow fields at Pe = 105.5.

among those we have computed, not among all possible flows, which cannot be determined by
computations like these). Flow B has two pairs of convective rolls, and one of the eight roll ends
shows a branched structure near the bottom boundary. The flow is noticeably skewed, but by many
comparisons of other examples of skewed and nonskewed optima, the skewness seems to have little
effect on Nu. In flows C–H, the proportion of branched ends generally increases while Nu decreases,
with some ties between neighboring flows. There are additional versions of these flows (not shown)
with variations in the degree of skewness.

Optimal flows for Pe = 105.5, shown in Fig. 4, are similar, with slightly elongated branched
regions compared to Pe = 105. Now the globally optimal flow (A) has branched ends. Moving from
A to F, Nu decreases while the number of branched ends also decreases, the reverse trend of Fig. 3.
The simple roll optimum is F with Nu = 186, within 2% of the global optimum, 189 (A). Optima
G and H have much lower Nu, but are shown to illustrate the wide range of optima that may occur,
including cases like G with branching but with Nu well below the global optimum. No inset is
shown for H because the flow lacks fine structures near the walls and is surprisingly similar to the
second best optimum for Pe � 1 [Fig. 1(b)]. We hypothesize that G and H are just a small sample
of a much larger space of optima with much lower Nu. The algorithm tends to find Nu close to the
maximum in most cases, however, because at each iterative step, a backtracking line search in the
direction of the gradient is used, and it accepts a step when it gives a flow with higher Nu. As a
result, the algorithm probably tends to wander away from local optima with relatively small Nu,
such as G and H.

Figure 5 shows optimal flows at Pe = 106. The branched tips are more elongated now, and small
recirculation regions with closed streamlines are seen at their tips, similar to the simple roll optimum
(flow F, with Nu = 346). There is also more skewness in the flows here, a general trend as Pe
increases. Flows B–D have branched tips that undergo a second level of branching, a step towards
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FIG. 5. Optimal flow fields at Pe = 106.

the hierarchical branching flows of Ref. [21]. Flow E is a case with three levels of branching near
the top boundary. Although these flows are local optima, Nu decreases with the complexity of the
branched structures, though there is also an increased gap between Nu for the global optimum (A),
which has branching, relative to the simple roll optimum (F), with no branching.

With Pe increased further, to 106.5, Fig. 6 shows a continuation of many of the same trends.
Now the global optimum has two layers of branching. In all cases, there is further elongation of
the branched tips, which also adopt more complex shapes, with changes in width and direction
near the walls (e.g., near the top walls in C and E). There is a steady decrease in the optimal Lx

with increasing Pe, which was identified with a power-law behavior in Ref. [20] for the simple roll
optimum.

At Pe = 107 (Fig. 7), the optimal flows (A–D) still have two layers of branching in some cases,
but with increased elongation and waviness in the boundaries of the branches. The increase in Nu in
flows A–D over that of the simple roll optimum (E) now exceeds 10%. Flow F is an optimum with
much lower Nu that resembles a skewed version of the simple convective roll. It also has larger and
stronger eddies close to the walls, with less extreme values of the stream function in the interior,
and therefore a weaker wall-to-wall flow.

At the largest Nu studied here, Pe = 107.5, the flows again have one or two levels of branching
and further elongation of the branches (Fig. 8). It is possible that the simultaneous optimization of
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FIG. 6. Optimal flow fields at Pe = 106.5.

Lx and the flow inhibits the appearance of higher levels of branching, which would require larger
Lx. Near the bottom boundary, flow C has three levels of very wavy branches shown by the blue
streamlines (which can be seen by following the streamlines across the periodic boundary). There is
generally a peculiar waviness of the flows near the bottom boundary. There is no asymmetry between
the top and bottom boundaries in the model and no obvious asymmetry in the computations, except
in the ordering of the unknowns for the matrix equations, i.e., Eq. (16) for T and Eq. (28) for q. The
unknowns are ordered starting at the lower left corner and proceeding rightward across a horizontal
row and then upward row by row. We have not investigated the effect of the ordering of unknowns,
but given that the discrete advection-diffusion operator becomes increasingly ill-conditioned as
Pe increases, the solutions will eventually become noticeably inaccurate, and the waviness could
be an early indication of this effect. Although we do not understand the reason for the up-down
flow asymmetry at the largest Pe (107.5), we have checked that the heat transfer for these flows is
converged with respect to further increases in mesh spacing. The changes in Nu when doubling the
mesh in either direction are much less than 1% for the optimal flows at Pe � 106.5 and between 1
and 2% at Pe = 107 and 107.5.
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FIG. 7. Optimal flow fields at Pe = 107.

Flow F is an example of an atypical optimum, with strong eddies distributed away from the walls
and throughout the domain, and no branching near the walls.

In Fig. 9, we plot Nu for the flows shown thus far, and additional computed flows that were not
shown. The simple roll optima Nu are shown with red hash marks centered at the corresponding
(Pe, Nu) pair. The values for the four alternative flows in Fig. 2 are shown by the blue triangles. The
values for the alternative flows above the branching transition (for Pe � 104.75) are shown by the
black hash marks, which can exceed Nu for the red hash marks for Pe � 105.25.

The simple convective roll solutions (red hash marks) fit Nu ∼ Pe0.54 (red dashed dotted line
above), the same as in Ref. [20]. The upper envelope of the black marks, which correspond to

FIG. 8. Optimal flow fields at Pe = 107.5.
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FIG. 9. Nu versus Pe for optimal flow fields shown in this paper and additional computed cases. The red
hash marks give Nu for the simple roll optima. The black hash marks give Nu for other optima at Pe � 104.75.
The blue triangles show Nu for ψB, TB in Fig. 2. The lines at the upper right correspond to the trends Nu ∼ Pe2/3

(green dashed line), Pe2/3(ln Pe)−4/3 (black dotted line), Pe0.575 (gray solid line), and Pe0.54 (red dashed dotted
line), from top to bottom. The black dotted line and gray solid line almost coincide.

certain branching flow optima, has a maximum slope of 0.575 (gray solid line above), very close to
Nu ∼ Pe2/3 (ln Pe)−4/3 (the black dotted line that almost coincides with the gray solid line) of the
self-similar 2D branching flows of [21]. All these trends are well below the Pe2/3 upper bound (green
dashed line) [23] that has been seen in 3D computationally [24] and theoretically [26], but not in
the 2D problem studied here. At the upper end of the Pe range considered here, 107–107.5, the slope
of the upper envelope of the black hash marks drops from 0.575 to slightly below 0.54, indicating
perhaps that the computations are less successful in approximating globally optimal flow(s) in this
region.

So far, we have presented the streamlines of the optimal flow configurations. The flow speed is
proportional to the spacing between the streamlines, but since we limit the streamlines to 21 equally
spaced values of the stream function for visibility, this gives only a rough estimate. Also, near the
walls the streamlines are too close together to perceive their spacing. For a more accurate view, in
Fig. 10 we plot the flow speed as a color field near the top wall for three optima from Fig. 5 (in the top
row) and four optima from Fig. 7 (in the bottom row), with labels at the top of each panel identifying
the specific flow. In each row, the color bar gives the speeds for all the color fields in that row. At
the right, the flow speed versus the vertical coordinate is plotted along one cross section for each
panel, shown by the red arrows. The cross section is located at x where the highest speed occurs in
the whole flow domain, and the cross-section speed is plotted along the entire range 0 � y � 1 even
though the color fields are limited to 0.9 � y � 1. On the horizontal axis, two separate logarithmic
scales are used for 0 < y � 1/2 and 1/2 � y < 1. The data are logarithmically spaced with respect
to distance from y = 0 on the left half of the plot, and from y = 1 on the right half, to show the
boundary layers near both walls.

For all seven flows considered here, the highest flow speed occurs at the boundary layer next
to one of the walls. We define the boundary layer width δ for each flow as the distance from the
flow speed maximum to the nearest wall. For the top row, Pe = 106, the speeds reach a peak
≈2×104 over a boundary layer of width ≈10−3, while in the bottom row, Pe = 107, the speeds
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FIG. 10. Color field plots of flow speed overlaid with streamlines (in black) for three optima from Fig. 5
(in the top row) and four optima from Fig. 7 (in the bottom row), with labels at the top of each panel identifying
the specific flow. At the right, the flow speed versus the vertical coordinate is plotted along one cross section for
each panel, shown by the red arrows.

reach a peak ≈105 over a boundary layer of width ≈4×10−4. The peak speeds and boundary layer
widths are about 20% higher for the simple convective roll than for the best optimum in the top row
(A:362 and F:346) and about 40–60% higher in the bottom row (A:1351 and E:1202), where Pe
is larger.

For the simple convective rolls, we find that the maximum speed ‖u‖max ∼ Pe0.75 and δ ∼ Pe−0.49

for 105 � Pe � 107.5. The maximum power density is approximately the wall vorticity squared,
≈‖u‖2

max/δ
2 ∼ Pe2.48, and grows faster than the average power density = Pe2. For the optimal flows

[(a) panels in Figs. 3–8], we find ‖u‖max ∼ Pe0.71 and δ ∼ Pe−0.54. Both ‖u‖max and δ are smaller
than for the simple convective roll, but the maximum power density is almost the same and has
almost the same scaling with Pe (∼Pe2.5).

Next, we consider the length scales of the main flow structures and how they depend on Pe. In
Fig. 11, we plot Lx and lengths of flow features for the simple convective rolls and the branching
optima in Figs. 3–8, i.e., over 105 � Pe � 107.5. At the top of the figure, the black crosses and red
circles give the values of Lx for the branching optima and the simple convective rolls, respectively.
The two sets of data are fairly close to each other and to the trend Pe−1/3(ln Pe)1/6 (black solid line)
given by Tobasco and Doering [21] for the bulk length scale, i.e., the width of convective rolls far
from the walls, in their analytical branching flows. The black crosses do not follow the analytical
scaling for branching flows significantly better than the red circles (for flows without branching),
but possibly one would see a difference at much larger Pe. Three of the four scattered black crosses
above the trend line at Pe = 105 and 106 are for cases in Figs. 3 and 5 that have two pairs of outer
convective rolls per horizontal period (Lx), and hence for these cases Lx is roughly double the values
of the other cases at these Pe.

Below the red circles are three more data sets giving lengths scales of flow features near the
walls for the branching optima only in Figs. 3–8. We identify three types of flow regions adjacent to
the walls. Each is defined by a portion of the wall between two flow stagnation points on the wall.
Streamlines run from these stagnation points to other stagnation points, typically also located on
one of the walls. Examples of all three types of flow regions are seen near the branched end of a
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FIG. 11. Dependences of flow length scales on Pe for the simple convective rolls and the branching optima
in Figs. 3–8.

convection roll at the bottom of Fig. 3(b). To the left of the branched end is the first type of region,
with blue streamlines, which we call an unbranched end. It is bounded by two green streamlines
that run from stagnation points at the bottom wall to stagnation points at the top wall. We call the
second type of region a branch, exemplified by the two branches on the branched end in Fig. 3(b).
They are bounded by one streamline that runs from the bottom wall to the top wall, and a second
streamline that runs from the bottom wall to another point on the bottom wall. The region enclosed
by this second streamline is the third type of region, which we call an eddy. To summarize, the
three regions are defined by portions of the walls that are bounded by two stagnation points. If both
streamlines that emanate from the walls at these stagnation points run to the other wall, we have
an unbranched end. If one runs to the other wall and the other does not, we have a branch. If both
streamlines run to the same wall (and are the same streamline in fact), we have an eddy.

We define the length of each region by the length of the portion of the wall that defines it. This is
only an estimate, however. It can be seen in Figs. 3–8 that the widths of branched and unbranched
ends and eddies vary as one moves away from the walls. The unbranched ends’ lengths are shown
by orange plusses in Fig. 11. These occur most commonly at Pe = 105 and 105.5, where some of
convective rolls in the branching optima have unbranched ends, like the simple convective roll. The
branches’ lengths are shown by blue squares. They are fairly uniform in length at Pe = 105 and
105.5 and span a much wider range of lengths at Pe = 106–107.5, where there are multiple levels of
branching. The eddies’ lengths are shown by green triangles. They are smaller than the branches’
lengths, and have a similar transition from greater to lesser uniformity when Pe reaches 106. Tobasco
and Doering defined a boundary layer length scale of Pe−2/3(ln Pe)1/3 (blue dashed line here) for
the branches and eddies, which have the same lengths in their analytical construction [21]. The
length scales of the branches and eddies in the computed optima cover wide ranges at each Pe here.
If we take the mean of the ranges on the log scale as a typical length, they do not seem to decay
as quickly as the analytical relationship over this range of Pe. Computations beyond the largest Pe
here would help clarity the asymptotic behaviors.

It is also interesting to consider the relative magnitudes of convective transport, uT , and diffusive
transport, ∇T . At large Pe we find that convective transport dominates diffusive transport, i.e.,
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‖uT ‖  ‖∇T ‖, except in very thin layers near the walls and in streaks that emanate short distances
from the walls, O(10−3) at Pe = 106 and O(10−4) at Pe = 107, along streamlines that emanate from
the walls at stagnation points.

V. CONCLUSIONS AND DISCUSSION

We have computed optimal steady flows for heat transfer in a 2D region between parallel walls,
the “wall-to-wall” problem [17,20,24]. At Pe � 1, the optimal flows are squarish convection rolls,
similar to the free-slip case [17]. In contrast to previous studies, at large Pe we used an unconstrained
optimization method with the adjoint method to compute gradients and the BFGS algorithm to
maximize the Nusselt number. Starting from 30–50 random initial flows, and increasing Pe from
101.5 to 107.5, we find a sequence of transitions. For moderate Pe (∈ [101.5, 104.5]), the algorithm
converges to rectangular convection rolls (the “simple convective roll”) or perturbations with skewed
convection rolls that have nearly the same Nu as the simple convective roll in most cases.

Between Pe = 104.5 and 104.75, optima with branched ends that have a simple U shape become
prominent. They have Nu that is less than, but within 2% of, that of the simple convective roll
at Pe = 105. Here Nu decreases with the degree of branching. At Pe = 105.5, Nu instead increases
with the degree of branching, and the optimal solution has bilaterally symmetric rolls with U-shaped
branched ends. The simple convective roll, without branching, has Nu within 2% of it. Very different
optima with much lower Nu are also found, indicating a much larger space of local optima. The
simple convective roll and the optima with U-shaped branched ends seem to persist as distinct
branches of optima over the range 105 � Pe � 105.5, and possibly beyond, though our algorithm
is focused on maximizing Nu rather than tracing branches of optima over their maximal ranges of
existence.

At Pe = 106, optima with two and three layers of branching are found, though the best optimum
again has a single layer of U-shaped branching at the walls. As Pe increases, there is a general trend
towards more vertically elongated branching as well as smaller Lx, perhaps for the same reason—
to increase lateral conduction across convective rolls. There is also the presence of small closed
eddies at the branched ends, as occurs for the simple convective roll. The branching patterns become
more complex and deviate more from symmetry across vertical planes. These trends continue at
Pe = 106.5, 107, and 107.5.

The scaling exponent for Nu with respect to Pe is as large as 0.575, larger than 0.54 for the simple
convective roll, and similar to the Pe2/3(ln Pe)−4/3 behavior of the analytical solutions of [21] in
this range of Pe. It is currently unclear if 2D solutions can reach the 2/3 scaling (without logarithmic
corrections) that is an upper bound in 2D [23] and is seen in the the 3D computations of Ref. [24]
and the 3D analysis of Ref. [26]. We also studied the scaling of the flow speed and boundary layer
thickness near the wall, defined as the distance from the wall to the global maximum speed, which
always occurs very close to the wall, at the end of a monotonic rise from zero velocity at the wall.
For the branched flows, the maximum speed and the boundary layer thickness are both somewhat
smaller than for the simple convective roll at the same Pe, and so are the power law exponents.
However, the maximum power density, the squared ratio of the maximum speed and boundary layer
thickness, is very close in both cases, with scalings close to Pe2.5, compared to the Pe2 spatial
average.

Two-dimensionality makes the problem more tractable computationally than the 3D case [24],
though this is balanced somewhat by the need to compute at higher Pe to study the branching
transition and the asymptotic scaling of Nu with Pe, still unclear at the largest Pe used here, 107.5.
At larger Pe, the solutions would probably continue to develop more complex branching structures,
perhaps with a hierarchy of levels like that in Ref. [21], but probably with more heterogeneity near
the boundaries, as seen in the computed optima here. In Ref. [24] a Nu ∼ Pe2/3 scaling is already
clear at Pe = 104. At higher Pe, the optimal flows and corresponding temperature fields have sharper
gradients, which may inhibit the convergence to optimal solutions.
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APPENDIX A: OTHER EXPRESSIONS FOR THE NUSSELT NUMBER

Writing Eq. (1) in divergence form and integrating over a horizontal period,

0 =
∫ Lx

0
∇ · (uT − ∇T ) dx =

∫ Lx

0
∂x(uT − ∂xT ) + ∂y(vT − ∂yT ) dx = ∂y

∫ Lx

0
(vT − ∂yT ) dx,

(A1)

using the periodicity of the flow and temperature for the last equality. Thus

1

Lx

∫ Lx

0
(vT − ∂yT ) dx (A2)

is constant in y. Evaluating Eq. (A2) at y = 0 or y = 1 (where v = 0), we have the rate of heat
transfer from the hot boundary or the rate of heat transfer to the cold boundary, both equal to Nu.
Integrating Eq. (A2) from y = 0 to 1, we have

Nu = 1 + 1

Lx

∫ 1

0

∫ Lx

0
vT dx dy. (A3)

Reference [21] shows that Nu has a minimum value of 1 for the purely conductive temperature
field (T = 1 − y) that occurs with u = 0, and is strictly greater than 1 for any other u (and the
corresponding T ).

APPENDIX B: NUMERICAL DETAILS

The subspace of 〈T0(2y − 1), . . . , Tk+4(2y − 1)〉 that obey the no-slip conditions at y = 0 and 1
consists of

∑
AkTk (2y − 1) such that

∑
AkTk (−1) =

∑
(−1)kAk = vT

1 A = 0, (B1)
∑

AkTk (1) =
∑

Ak = vT
2 A = 0, (B2)

∑
AkT ′

k (−1) =
∑

(−1)kk2Ak = vT
3 A = 0, (B3)

∑
AkT ′

k (1) =
∑

k2Ak = vT
4 A = 0. (B4)

In the basis {T0(2y − 1), . . . , Tk+4(2y − 1)}, Tk+4 is the unit basis vector êk+4. We subtract its
orthogonal projection onto the four-dimensional subspace {v1, . . . , v4} to obtain the coefficients
of Yk (y) in the basis {T0(2y − 1), . . . , Tk+4(2y − 1)}. This determines Yk (y).
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