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Understanding the coupling between flow, hydrodynamic transport and dispersion of
colloids of finite size in porous media is a long-standing challenge. This problem is
relevant for a broad range of natural and engineered processes, including contaminant
and colloidal transport, mixing of biochemical compounds, kinetics of reactions, and
groundwater bioremediation, but also transport phenomena related to different systems
like membranes or blood flow. While classical models for colloidal transport rely on
macrodispersion theory and do not take into consideration the complex and heterogeneous
structure of the porous host medium, recent studies take into consideration the detailed
structure of the porous system and its impact on fluid velocity. However, the impact of
confinement conditions, represented by the ratio of the radius of particles a and pore-throat
size λ, has been overlooked. Here, we use numerical simulations of fluid particle dynamics
in resolved porous media to demonstrate that particle confinement affects the fluid macro-
scopic velocity field which in turn affects the particle transport itself. Our results show
that even under small confinement conditions (a/λ ∼ 2 %), fluid and transported particles
are dynamically rerouted toward more permeable paths. This leads to the emergence of
ephemeral laminar vortices at pore-throat entrances and affects the variance and mean fluid
velocity.

DOI: 10.1103/PhysRevFluids.8.074501

I. INTRODUCTION

Most engineered and natural systems characterized by a porous structure can host fluids that,
driven by a macroscopic pressure gradient, move through their network of pores [1]. In most
scenarios, the concerned fluid is water that, being an excellent solvent, is carrying dissolved
substances or suspended particles, whose transport rate controls several phenomena, including
mixing, reaction kinetics and filtration [2]. The characteristics of these phenomena are a direct
consequence of the underlying pore structure. A common issue of such pore structures is their
inherent structural heterogeneity [3], or spatial variability, that has been shown to emerge from
submicron to meter scales [4]. A wide range of variability appears in the distribution of individual
pores size (i.e., the space among solid grains, available for fluid motion).

Since within such porous systems fluid velocities are typically low (on the order of 1 m d−1,
equivalent to about 20 µm s−1) the flow of water can be assumed to be laminar on average length
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scale, controlled by viscous forces rather than inertia, and stationary [1]. Under such conditions, an
analytical relationship between the pore-throat size distribution fλ ∼ λ−β and the distribution of low
fluid velocities fu ∼ u−β/2 has been suggested in Ref. [5]. Under the assumption of Stokes flow it has
been shown that each pore-throat hosting a net transfer of fluid has the same statistical distribution
of velocities as the one of a pipe, called the porelet, so that the overall probability density function
(PDF) of fluid velocities within the heterogeneous structure can be determined by the superposition
of all porelets in two-dimensional [5] and three-dimensional [6] systems. This relationship, which
allows us to make predictions within a continuous-time random-walk framework for the asymptotic
statistics of the spreading of fluid particles along their own trajectories, is based on the linearity of
the Stokes equation and assumes dissolved substances and suspended particles to have no impact on
the stationary flow field. The assumption at least becomes questionable if instead of average length
scale the spatial variable pore-throat size and the impact of the particles on the flow are considered.

The spatial variability of fluid velocity, which measures the overall velocity contrast between
pores or between channels of high velocity and zones of stagnation, has a major control on the
transport of substances, dissolved or suspended [3]. While classical macrodispersion theories have
been shown to adequately represent relatively homogeneous media (e.g., the ones characterized by
a well defined scale for average pore size) [1], it is known that such model predictions diverge from
the observation of transport through complex porous systems that results in anomalous transport
properties as early arrival times and long tailing [3,7]. In such media the observed transport
also impacts mixing kinetics [8,9], and mixing-driven processes as filtration [10,11], or microbial
dispersal [12,13]. In several scenarios, flowing water carries suspended colloidal particles and
microbial cells or aggregates. The size of such suspended particles and cell aggregates can vary over
several orders of magnitude, affecting their sedimentation [14,15] and overall transport [16,17]. In
particular, enhanced suspended particle velocity in confined environments has been observed and
associated with their finite size, also known as size exclusion effect [18,19]. This phenomenon
forces larger particles to remain within channels of high flow while preventing them from accessing
pores of low velocity whose size is comparable to the particle diameter. The macroscopic effect is
to increase the average suspended particle velocity, which modifies the macroscopic breakthrough
curves [20] and dispersion coefficient [21]. These phenomena clearly breakdown the assumption
that transported particles do not affect the stationary velocity field, as in Refs. [5,11,12] that relate
the medium physical structure to the fluid and suspended particles velocity to predict macroscopic
transport.

Here, we investigate the impact of transported finite-size particles on fluid velocity distribution
and dynamics, by means of a novel fluid particle numerical scheme for simulating flow and transport
through complex porous structures that takes particle-particle and particle-fluid interactions into
account. The model includes inertial effects as well, although they are generally negligible in the
regime considered in this work. We consider the local feedback of particles with a finite radius
a, smaller but comparable to the local pore-throat size λ, on the fluid velocity distribution. The
no-slip boundary conditions at grain walls exert a viscous drag on finite-size particles when facing
a constriction (pore opening) of comparable size. Thus, a dynamic interaction between the passage
of finite-size particles through such pores and the flow field is expected. We point out that the model
employed in this work simulates soft particles whose dynamic can be regarded as solid particle
dynamic as discussed in Sec. II B. Our modeling does not include clogging or jamming effects
as throat sizes are comparable, but larger than the particle radius. We numerically investigate the
dynamical change of fluid and particle velocity in laminar conditions. We compare our simulation
results with Stokes flow and point particles. We show that for even small confinement conditions
(a/λ ∼ 2 %), fluid and transported particles are dynamically rerouted toward more permeable paths.
This leads to the emergence of ephemeral laminar vortices at pore-throat entrances and affects the
variance and mean fluid velocity. We set the physical problem and present the results in terms of
adimensional quantities, as detailed in the method section.
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FIG. 1. (a) Geometry � and frames of the subgeometries �i considered for Stokes flow and fluid par-
ticle dynamics, respectively. The frames are color coded with respect to the velocity magnitude averaged
over the subgeometry, see Fig. 3. (b) Delaunay triangulation of �, where edges are marked in red. Each
edge corresponds to d . (c) Rescaled velocity magnitude ur = log10(u/〈u〉); u = ‖u‖, from Eqs. (1) and (2).
(d) Streamlines of point particles initialized on the left side of �. The different colors are for visualization
purposes. They correspond to three equal size subdomains of the left boundary.

II. METHODS

Natural and engineered porous systems have a three-dimensional structure that is often hetero-
geneous, i.e., spatially variable. The latter is typically characterized by grains of different sizes
that are randomly packed. As a consequence, the pore space among grains is also heterogeneously
distributed. Mostly for practical reasons (experimental and/or numerical), studies on porous media
flow and flow-driven processes are often conducted in two-dimensional replicates that mimic key
structural features, such as the pore-size distribution [5,22]. The main topological differences
between two-dimensional and three-dimensional structures rely on the contact point between the
nearest grains (in a two-dimensional system different grains do not touch) which represent hot
spots for shear and fluid stretching and the chaotic advection resulting from the fluid mechanics
analog of the baker’s map. The chaotic advection could impact scalar mixing when diffusion is
considered [23]. However, here we focus on the dynamical coupling between finite-size particles
transported by simple advection (no diffusion) and the carrying flow itself which does not depend
on the peculiar flow kinematics and, thus, we expect that the discussed results are independent of the
system dimension. Thus, to be comparable with previous results [5] and since the numerical method
adopted is computationally expensive we decided to consider a two-dimensional heterogeneous
structure, as described below.

To study the impact of suspended and finite-size particles on flow and transport we consider a
two-dimensional porous domain � modeled by a rectangle [x0, x1] × [y0, y1] with cutout nonover-
lapping disks of random position and diameter, see Fig. 1(a). This disordered arrangement of disks
is characterized by a Delaunay triangulation of the disk centers to identify the nearest neighbors:
each triangle defines a pore and each edge defines a throat, see Fig. 1(b). The statistical properties
of the structure are characterized in terms of pore-throat size λ = d − r1 − r2 distribution: d being
the distance between the two neighboring disk centers and r1 and r2 being the respective radii. To
consider a heterogeneous medium the domain structure is generated such that the PDF of the pore-
throat size roughly follows the power law distribution pλ(λ) ∼ λ−β , with β = 0.17 as in Ref. [5].

Before we introduce the fluid particle dynamics model we consider Stokes dynamics. The results
will be used to investigate potential differences and to validate the numerical approach against [5].
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A. Stokes dynamics

Within this geometry we consider the Stokes equations

−ν∇2u + ∇p = 0, (1)

∇ · u = 0, (2)

where u = u(x) is the fluid velocity, p = p(x) the fluid pressure, ν the fluid viscosity and x ∈ � ⊂
R2. Boundary conditions at ∂� are specified at the rectangle edges and the grain walls (perimeter
of the disks). We impose u = uinflow on the left side of the rectangle ∂�L, ∇u · n = 0 on the right
side of the rectangle ∂�R, u · n = 0 on top ∂�T and bottom ∂�B rectangle boundaries and u = 0
on the remaining boundaries ∂�disk. Thereby, n denotes the outward normal to ∂�. We consider

uinflow(x0, y) =
{

1

2

[
1 + tanh

(
α −

∣∣∣∣y − y1 + y0

2

∣∣∣∣
)]

, 0

}T

,

where α is chosen such that ‖uinflow(x0, y0)‖ = ‖uinflow(x0, y1)‖ � 10−16 to numerically satisfy the
compatibility condition with the top and bottom boundary conditions. The Dirichlet boundary
condition imposed on ∂�L differs from more commonly used pressure boundary conditions or a
body force acting on ∂�L and is chosen to be comparable with previous studies in Ref. [5]. For all of
the aforementioned inflow modeling, the magnitude of the velocity field develops as a heterogeneous
field characterized by channels with variable velocity and stagnation zones, which is what we want
to reproduce.

The problem is discretized in space with finite elements. To implement no-slip boundary condi-
tions at solid interfaces and inflow conditions, we consider weak solutions of Eqs. (1) and (2) with
u ∈ V := {v ∈ H1(�)2 : v = 0 at ∂�disk, v = uinflow at ∂�L, ∇u · n = 0 at ∂�R} and p ∈ L2(�),
such that ∫

�

∇v : ν[∇u + (∇u)T ] − p∇ · v dx = 0, (3)
∫

�

q∇ · u dx = 0, (4)

for every v ∈ H1
0 (�)2 and q ∈ L2(�). We partition the domain � by a conforming triangulation Th.

Then, the continuous spaces V × L2 are approximated by the Taylor-Hood space Th defined as

Th = (V2,g0 × V2,g1 ) × V1,

Vm,g = {v ∈ Vm : tr∂�′v = g},
Vm = {p ∈ C0(�) : p|T ∈ Pm(T ),∀T ∈ Th},

where Pm is the space of polynomials of order at most m and ∂�′ = ∂� \ ∂�R. The velocity u and
pressure p are approximated by functions from Th, i.e., m = 2 piece-wise quadratic for u and m = 1
piece-wise linear for p. In the simulations we consider ν = 102. We remark that because Eqs. (1)
and (2) are linear, ν corresponds only to a rescale of the pressure p and does not modify the velocity
field u. For further details about parameter setting see Sec. II B 4.

The resulting velocity field u is heterogeneous and organized into channels of high and fluc-
tuating velocity and zones of stagnation. Figure 1(c) shows the logarithm of ur = u/〈u〉 with
u = ‖u‖ and 〈·〉 the average. The color map is such that blue (red) regions are associated with
velocity magnitude below (above) its average value (gray). To visualize the transport properties
within the medium we track the displacement of point particles along the streamlines, as shown
in Fig. 1(d) where for each trajectory the color denotes its own initial vertical location, separated
in three regions. Figure 2 shows the pore-throat size distribution (left) and the distribution of the
low velocities (right). The results reproduce a related power law distribution in the low range of
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FIG. 2. Left: Double logarithmic plot of the probability density function (PDF) of the pore-throat size
distribution fλ. The black line is a least-square fit of the data. The theoretical distribution is λ−β , β = 0.166,
which match the fitted exponent. Right: Double logarithmic plot of the probability density function of the
velocities distribution fur . The black line is a fit of the data for small velocities, i.e., ur < 10−2. The fitted line
has slope −0.100 ± 0.022 in agreement with the prediction fur ∼ u−β/2

r .

pore-throat size fλ ∼ λ−β and low velocities fur ∼ u−β/2
r , with β = 0.166. The exponents are within

the 95% confidence interval of the analytic theory of Ref. [5].

B. Fluid particle dynamics

1. Mathematical model

To develop a model that takes into account the fluid-particle dynamics we follow the method
propose by [24]. We consider the Navier-Stokes equations

ρ[ut + (u · ∇)u] − ∇ · [ν(∇u + ∇uT )] + ∇p = f, (5)

∇ · u = 0, (6)

where u = u(t, x) is the fluid velocity, p = p(t, x) is the fluid pressure, ρ = const is the fluid den-
sity, ν = ν(t, x) is the viscosity, f = f (t, x) is the external volume forces, and (t, x) ∈ (0, T ] × �.
The external boundary conditions are the same as in the previous Sec. II A with � replaced by
sampled subdomains �i to reduce the computational cost, see Figs. 1(a) and 3.

The fluid-particle dynamics approach describes particles as high viscosity regions within the
fluid. This implies that the momentum transfer within the particle is much faster than through the
fluid outside and it thus behaves like a solid particle. To deal with the viscosity contrast the particle
is described by a diffuse domain approach. Let x j = x j (t ) be the position of the center of mass of
particle j of radius a. Then, the particle is represented through the concentration field

φ j (x) = 1

2

[
1 + tanh

(
a − |x − x j |

ξ

)]
, x ∈ �i, (7)

where ξ is the width of the diffuse interface. For ξ → 0 the concentration field φ j (x) approaches a
characteristic function to represent the particle. Let νF and νP with νF � νP be the fluid and particle
viscosity, respectively. Then, the viscosity field ν is defined as

ν(x) = νF +
N∑

j=1

(νP − νF )φ j (x), x ∈ �i, (8)
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FIG. 3. Different geometries �i, i = 1, . . . , 12 obtained from � in Fig. 1(a) ordered with respect to the
average value of the Stokes flow 〈u〉 over the domain. The geometries consider different throat sizes but are too
small to define a reasonable throat size distribution.

where N is the number of particles. In the limit case νP/νF → ∞ and ξ → 0 we approach solid
particle dynamics, see Ref. [24]. In this way, interactions between fluid and particles are encoded
in the viscosity field. Particle-particle interactions are encoded in the force term f . We consider the
repulsive part of the Lennard-Jones potential, i.e.,

V (�) = ε
(σ

�

)12
, (9)

where ε is the strength of the potential, σ the interaction range, and � the distance. The force acting
on particle j is given by

f j = −∂
∑

k �= j V (|x j − xk|)
∂x j

, j = 1, . . . N. (10)

Finally, the continuous force field, which enters the Navier-Stokes equations, is given by

f (x) =
N∑

j=1

f jφ j (x). (11)

The position of particle j is determined by

dx j (t )

dt
= u j (t ) with u j (t ) =

∫
�

u(t, x)φ j (x) dx∫
�

φ j (x) dx
. (12)

Equations (5)–(12) together with the described boundary conditions and appropriate initial condi-
tions define the model to solve.

The model contains several length scales (diffuse interface width ξ , particle radius a, average
throat size 〈λ〉 and domain size |�i|), for which ξ < a < 〈λ〉 < |�i|, and several time scales which
range from fast particle-particle interactions to slow penetration times. All these different scales
need to be resolved by the numerical method, which makes it computational expensive.

In the limit of point particles (particle radius a → 0) also the interaction range σ , which is related
to a, goes to zero and the fluid-particle and particle-particle interactions vanish. In this limit Eqs. (5)–
(12) can be approximated by the Stokes Eqs. (1) and (2).

The fluid particle dynamics method has the advantage of removing solid-fluid boundaries. This
simplifies remarkably its implementation. A critical aspect of the approach employed in this work is
that the artificial viscosity contrast (νF − νP )φ j requires a small time-stepping in the discretization
of the evolution equations.
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2. Time discretization

As the finite size of the particles dynamically modifies the local flow field, the governing
equation (5) explicitly depends on time t . To solve the flow evolution through time, we discretize
time into K steps of duration τ = T/K so that tk = kτ ∈ [0, T ], k = 0, . . . , K . We consider a
semi-implicit Euler method and an operator splitting approach to systematically solve first for the
fluid flow and then for the particle positions integrating their motion equations (12). Given the value
of uk = u(tk, x), νk = ν(tk, x) and fk = f (tk, x), the velocity field and pressure at the next time step,
uk+1 and pk+1, respectively, are approximated by

ρ

[
1

τ
uk+1 + (uk · ∇)uk+1 + (uk+1 · ∇)uk

]
− ∇ · {νk[∇uk+1 + (∇uk+1)T ]} + ∇pk+1

= fk + ρ

[
1

τ
uk + (uk · ∇)uk

]
, (13)

∇ · uk+1 = 0. (14)

The velocity field uk+1 is used to update the particles position at the next time step by solving
Eq. (12) with the explicit Euler method

xk+1
j = xk

j + τuk+1
j . (15)

3. Space discretization

The spatial discretization is accomplished by finite elements. We consider weak solutions of
Eqs. (13) and (14) with u ∈ V and p ∈ L2, and � replaced by �i, such that∫

�i

ρ

[
1

τ
uk+1 + (uk · ∇)uk+1 + (uk+1 · ∇)uk

]
v + ∇v : νk[∇uk+1 + (∇uk+1)T ] − pk+1∇ · v dx

=
∫

�i

{
fk + ρ

[
1

τ
uk + (uk · ∇)uk

]}
v dx, (16)

∫
�i

q∇ · uk+1dx = 0, (17)

for every v ∈ H1
0 (�i ) and q ∈ L2(�i ). As for the Stokes equations we partition the domain �i

by a conforming triangulation Th. Then, the continuous spaces V × L2
0 are approximated by the

Taylor-Hood space Th with � replaced by �i. The velocity uk and pressure pk are approximated by
functions from Th, i.e., m = 2 piecewise quadratic for uk and m = 1 piecewise linear for pk .

4. Particle constraints and physical parameters

Expressing time in [s], space in [cm], and mass in [g], we used for the density the value of ρ = 1,
as water, and for the fluid viscosity νF = 102, which corresponds to a very viscous fluid. Thus, since
the average pore size 〈λ〉 is about 50 and the average fluid velocity magnitude 〈u〉 is about 1, the
characteristic Reynolds number of the system is Re = 〈λ〉〈u〉ρ

νF
= 0.5. Particles are represented as

disks of high viscosity νP = 104 with radius a and center of mass x j . The values we have chosen
for νF and νP are a compromise between computational feasibility and representing the physical
properties of the system. The relation between νF and νP follows previous studies [24].

Particle positions x j are updated through Eq. (15). The new position results from averaging the
velocity field uk+1 over the high viscosity region associated with the particle. As a consequence the
distance between x j and ∂�i could be less than a at the new time instance. To avoid this we impose
a constraint on Eq. (15). As soon as the distance between ∂�i and x j is less or equal to a, we adjust
the velocity uk

j by taking only the tangential component with respect to the boundary ∂�i.
The fluid and particle densities have been matched and set to ρ = 1. This allows us to neglect

any gravitational effect. We consider the potential strength ε = νP and the interaction range σ = 2a
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TABLE I. Average throat size 〈λ〉 for � and the sampled subgeometries.

Geometry � �1 �2 �3 �4 �5 �6 �7 �8 �9 �10 �11 �12

〈λ〉 56.791 42.539 42.673 47.410 47.924 53.106 53.729 53.633 42.748 48.904 52.591 52.127 52.996

to ensure effective repulsion. To deal with the singularity of the Lennard-Jones potential V (x) at
x = 0 we consider V (x) = V (2a) for x < 2a. We further truncate the potential such that V (x) = 0
for x > (5/2a)2.

The domain partition Th is chosen in such a way that its elements remain as coarse as possible
but are small enough to resolve the flow field. To ensure that the mesh size for fluid particle
dynamics simulations is significantly smaller than ξ , we use adaptive refinement at the diffused
particle interfaces. We chose ξ = a/4, where a is the particle radius. The time step size τ has been
chosen small enough so that the particle displacement never overcomes the particle radius, i.e., we
impose τuk+1

j < a. Considering that at every time step the whole velocity field is recomputed and
particles are advected, we have chosen τ = 0.5. A similar finite element implementation of the fluid
particle method, with similar parameters but simpler geometries can be found in Ref. [25].

C. Implementation of the numerical scheme

The numerical simulations are performed using AMDiS [26,27]. In its current version [28] it
is based on the DUNE [29,30] framework [31]. Particular features are adaptive refinement and
wrappers from linear system solvers as PETSc. Both features are extensively used. We choose to
discretize the domains � and �i with the grid manager ALUGrid, see Ref. [31], and use the solver
library MUMPS [32,33] imported by PETSc as a linear solver, see Ref. [34]. However, also with
these advanced tools the fluid particle dynamics model cannot be solved with reasonable effort on
the full domain � and is therefore considered on sampled subdomains �i, shown in Fig. 3.

III. RESULTS

Our goal is to show how particle confinement, defined by the particle radius to averaged pore-
throat size ratio a/〈λ〉, affects the velocity field u and the particles transport itself. As the particles
radius is comparable to the constriction the particles have to pass through, the pore throat, the fluid
velocity is expected to dynamically change and to reroute fluid through other porous paths free
of solid particles. This pore-scale phenomenology is also expected to breakdown the assumptions
classically used that the laminar flow, dominated by viscous forces, transporting suspended particles
is stationary [2,3,5]. We perform several simulations by systematically varying the particle radius
a ∈ {0, 1, 2, 4}. In Table I we report the average pore-throat size for all considered geometries �i.
We thus impose confinement conditions a/〈λ〉 of ∼2% (a = 1), ∼5% (a = 2), and ∼10% (a = 4),
corresponding to realistic scenarios for suspensions moving through soil systems (e.g., a bacterial
aggregate can easily reach a diameter of 10 µm moving through pores of about 100 µm).

To compare our simulations with each other we introduce the rescaled time t/t∗, where t∗ =
〈λi〉/〈uS,i〉 with λi the throat size and

〈uS,i〉 = 1

�i

∫
�i

‖uS,i‖ dx (18)

the average velocity magnitude of the Stokes flow over the geometry �i, respectively. Then, we
study the evolution of the system for t ∈ [0, 1000], corresponding to a final time 1000/t∗ ∈ [10, 29].
Figure 4 shows snapshots of the rescaled velocity magnitude

uk
r := log10(‖uk‖/〈uS,i〉), (19)
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ur

FIG. 4. Left: Snapshots of ur of the fluid particle dynamics model at different times t/t∗ =
6.42, 19.26, 28.90 (t = 200, 600, 900, from top to bottom). The velocity field is visualized with the line integral
contour technique (LIC) and color coded by the rescaled velocity using Eq. (19). Right: Magnification of the
region identified by the black box. In particular, particles are visualized as dark dots with radius a. On top
we observe typical fluid flow through the channel. In the middle magnified particle-particle interactions are
highlighted and the effect on fluid flow is visible, e.g., by vortices on the left side of the channel. At the bottom
a particle almost blocks the flow through the pore throat. These results correspond to �9 and confinement
condition a/〈λ〉 ∼ 10%.

for �9 at three time instances and a confinement a/〈λ〉 ∼ 10%. The color code is such that blue (red)
zones are regions where the velocity magnitude is below (above) the average velocity magnitude
(gray). As for the Stokes solution under no confinement (a/〈λ〉 = 0), the velocity field exhibits high
velocity channels and stagnation zones. However, this heterogeneity now changes over time. In par-
ticular, the magnified pictures show that fluid-particle and particle-particle interactions significantly
influence the velocity field. Laminar vortex structures appear for t/t∗ = 19.26 (t = 600) left of the
pore throat. They result from fluid rerouting toward other, more permeable paths. The fluid-particle
and particle-particle interactions can also lead to a dramatic flow reduction almost stopping fluid
motion in some pore throats, as seen at t/t∗ = 28.90 (t = 900), where this situation results from a
particle almost blocking the flow through the pore throat.

A. Velocity field

To analyze the temporal variability of the velocity field u, we consider the spatial mean of
uk = ‖uk‖ and plot it against the rescaled time t/t∗. The PDFs are constructed by considering a fixed
bin range [bl , br] for all �i, where br = maxi uS,i and bl = br/104. The bins are logarithmically
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FIG. 5. Top: From left to right the mean of the PDF of uk for the different geometries �i for the confinement
a/〈λ〉 ∼ 2% (left), ∼5% (mid), ∼10% (right). On the x axis is the rescaled time t/t∗, t∗ = 〈λ〉/〈uS,i〉, where
〈uS,i〉 is the average velocity field of the static Stokesian flow corresponding to the domain �i. Bottom: The
variance of the PDF of uk . It is evident that for small confinement (∼2%) the mean and variance are almost
constant, while for larger confinements (∼5% and ∼10%) the values oscillate with increasing intensity.

distributed in [bl , br]. The mean E[uk] and variance Var[uk] of the PDFs are shown in Fig. 5.
These results suggest that the mean velocity oscillates mainly around a constant value. However,
the variance strongly depends on the confinement and increases significantly with increasing
confinement a/〈λ〉.

To confirm this we consider the time-average velocity field ū and its variance σu, as

ū = 1

K

K∑
k=1

uk, σu =
√√√√ 1

K

K∑
k=1

‖uk − ū‖2. (20)

Figure 6 shows both quantities as functions of the confinement a/〈λ〉 for different subdomains �i.
The space-time averaged velocities are constant with respect to the confinement, but the velocity
field changes over time and these changes increase with confinement. While the actual values

u σu

FIG. 6. For the geometries �i in Fig. 3 the quantities 〈ū〉 (left) and 〈σu〉 (right) are displayed. The
numbering and color coding of the subdomains is ordered with respect the the averaged velocity.
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urur

σur

FIG. 7. Top: Color plot in logarithmic scale of the rescaled velocity ur for the Stokes flow with a magnifica-
tion of the region identified by the black box. Middle: Average flow ur obtained by the fluid particle dynamics
approach with particles of radius a = 4 (particle confinement ∼10%). The resulting velocity fields are similar.
This is justified by the fact that high velocity channels of the dynamic flow flip repetitively, resulting, on
average, in similar flow profiles as the Stokes flow. Bottom: Color plot of σu. Notice that the velocity field has
mostly changed within the high velocity channels. See also the magnified region.

depend on the considered subdomain �i and with it the actual pore structure, the qualitative behavior
remains the same for all �i. Both quantities are also shown in Fig. 7 for the geometry �9 and particle
confinement a/〈λ〉 ∼ 10%. For comparison, we consider also the stationary Stokes equations with
pointlike particles for the same geometry and parameter setting. The time average velocity field
corresponds to the solution of the Stokes equations, while its variance strongly differs mostly in
a few pores characterized by high velocity. This reflects the microscopic effect of particle-fluid
interactions under confinements. When particles approach a constriction they interact with the
viscous fluid modifying the local velocity field and rerouting the flow (and the particles themselves)
toward another permeable path nearby. Thus, the resulting velocity field variability is stronger in
channels of higher permeability and velocity.

B. Transport properties

We track the suspension particles over time to illustrate their effect on the velocity field as well as
their own transport properties. Figure 8 visualizes particle streamlines at 1000/t∗ for the geometry
�9: for pointlike particles, and particles of radius a = 1, 2, 4. The starting locations of particles on
the left boundary are the same for all simulations and are flux-weighted [5]. However, the trajectories
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FIG. 8. Particle streamlines for the geometry �9 and different particle radius a: point particles (a = 0)
(top-left), a = 1 (top-right), (bottom-left) a = 2, (bottom-right) a = 4. The different colors are for visualization
purposes. They correspond to three equal parts of the left boundary.

develop in a very different manner depending on the pore structure. Due to the finite size of particles
and their interaction with the fluid, trajectories tend to spread over the computational domain. The
color coding is as in Fig. 1(d). While for pointlike particles the divergence free velocity field implies
that trajectories never cross, for finite-size particles this is no longer true. See the mixing colors in
Fig. 8. This effect increases with the suspended particle radius. The trajectory spreading clearly
invades low velocity regions which are poorly invaded by point particles.

We next conduct the same analysis as for the velocity field but now restricted to particles.
In particular, for each geometry �i we consider the PDF of the particle velocities magnitude
uk

j = ‖u j (t k )‖ [see Eq. (15)] and compute the mean and variance at every time step t k averaged
over all trajectories, shown in Fig. 9. The mean particle velocity magnitude E [uk

j], Fig. 9 (top), is

FIG. 9. At each time step the PDF of the particle velocity magnitude is computed. On the x axis is the
rescaled time t/t∗, where t∗ = 〈λ〉/〈u〉 with u magnitude velocity of the Stokesian flow. Notice that we have
different time scales for different geometries since the throat size average varies with �i. On the y axis the
mean (top) and variance (bottom) of the PDF for different particle confinements ∼1% (left), ∼5% (middle),
and ∼10% (right) are shown.
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uj σuj

FIG. 10. The space-time average of the particle velocities (left) and their variance (right) is shown for all
subgeometries �i as a function of the particle confinement a/〈λ〉.

larger than the corresponding mean of the velocity field E [uk] in Fig. 5 (top). This can be explained
as particles are most likely to be found in high velocity channels. The numerical simulations suggest
that the mean particle velocity mainly oscillates around a constant value during the time evolution
for t/t∗ sufficiently large. Differently from the variance of the velocity field magnitude Var[uk] in
Fig. 5 (bottom), the variance of the particles velocity magnitude Var[uk

j] [Fig. 9 (bottom)] does not
increase systematically with particle confinement a/〈λ〉. This indicates that particles remain in high
velocity channels even if the flow changes. To better highlight these effects we further average over
time and plot the results in Fig. 10. The space-time averaged velocity 〈uj〉 and its variance 〈σu j 〉
remains essentially constant with respect to particle confinement.

To provide a quantitative measure of individual displacement, we compute the average particles
velocity along the longitudinal, x, direction. Let t0

j and t∗
j be the spawn and stop times of the

individual particle j. The spawn time corresponds to the injection time of particle j at the left
side of the domain, and the stop time t∗

j corresponds either to the end of the simulation time or the
time at which the particle j reaches the right side of the computational domain. Let [x j (t ), y j (t )] be
the position of the particle j at time t . Then, the average velocity along the x direction is given by

v̄ = 1

J

J∑
j=1

v j, v j = x j (t∗
j ) − x j

(
t0

j

)
t∗

j − t0
j

.

Table II gives v̄ for the different geometries and radii. Notice that as particle confinement increases,
the propagation velocity decreases for most of the considered geometries.

IV. CONCLUSIONS

We have simulated the transport of soft particles of finite size through 2D porous geometries
systematically changing the confinement conditions, represented by the ratio between the particle
radius and the average pore-throat size of the pore structure. The numerical approach employed is
the fluid particle dynamics approach introduced in Ref. [24]. The numerical scheme allows us to
simulate the Navier-Stokes equations with particle interactions without explicitly treating particle
boundaries. We found that particle confinement affects the fluid velocity field u which in turn affects
the particles transport. We show that these fluid-particle interactions significantly impact the overall
transport.

Microscopically, as shown in Fig. 8, even under small confinement conditions, the fluid and
the transported particles are dynamically rerouted toward more permeable paths in a dynamical
way. This is expected to have a significant impact on transport-driven phenomena associated
with the particles themselves or the solutes dissolved in the fluid. Among these phenomena we
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TABLE II. Longitudinal (x direction) average propagation velocity v̄ of particles for different geometries
�i and radii a. Within brackets is reported the value χ = 1 − v̄a/v̄0, where v̄, v̄0 are the average velocities
along the x-direction of particles with radius a and 0 (point particles), respectively. A positive value implies
that particles with radius a have propagated faster than the corresponding point particle and vice-versa for a
negative value.

Radius �1 �2 �3 �4 �5 �6

0 0.791 1.543 1.266 1.698 1.906 1.470
1 0.721 (0.09) 1.500 (0.03) 1.176 (0.07) 1.687 (0.01) 1.765 (0.07) 1.461 (0.01)
2 0.708 (0.10) 1.518 (0.02) 1.192 (0.06) 1.734 (−0.02) 1.789 (0.06) 1.445 (0.02)
4 0.606 (0.23) 1.384 (0.10) 1.107 (0.13) 1.688 (0.01) 1.888 (0.01) 1.304 (0.11)

Radius �7 �8 �9 �10 �11 �12

0 1.833 1.872 2.248 2.363 1.956 1.805
1 1.847 (−0.01) 1.961 (−0.05) 2.220 (0.01) 2.284 (0.03) 1.943 (0.01) 1.777 (0.02)
2 1.737 (0.05) 1.855 (0.01) 2.021 (0.10) 2.234 (0.05) 1.965 (0.00) 1.776 (0.02)
4 1.495 (0.18) 1.588 (0.15) 1.495 (0.33) 2.046 (0.13) 1.813 (0.07) 1.746 (0.03)

highlight (i) the formation/dissipation or persistence of solute gradients, (ii) mixing, (iii) chemical
reaction with the solid grains, or (iv) filtration. In particular, we expect the latter to be affected
by this phenomenon. This is because classical filtration theories do not take into account flow
variability and assume stationary conditions, which we show here to be disrupted by confinement.
Moreover, this leads to the emergence of ephemeral laminar vortices at pore-throat entrances
(as shown in Fig. 4), a qualitative property that could affect solute transport and their gradient
dynamics.

Macroscopically, Table II shows the impact of confinement on the overall velocity experienced
by transported particles along the longitudinal x direction. More specifically, Table II reports the
value of the average propagation velocity v̄ of particles in each geometry �i and radius a. Then,
the quantity χ = 1 − v̄a/v̄0 is computed, which measures the variability of the overall velocity
experienced by particles of size a compared to their pointlike counterparts. A positive value of
this quantity implies that particles of radius a have propagated faster than pointlike particles and
a negative value implies the opposite. Among the 12 cases investigated for the 4 confinement
cases considered, most showed positive results. This means that confinement has the net effect of
forcing particles to move significantly faster through the medium: 0.025 is the average of χ over the
12 geometries for a = 1 and 0.12 for a = 4 corresponding to weaker and stronger confinement.
This is expected to impact the overall arrival times and breakthrough curves in larger porous
systems.

The complexity of the fluid-suspended particles interaction, flow hydrodynamics, the coupling
between particles size, local fluid velocity and associated transport have been widely overlooked.
Our results estimate the effect of these phenomena on macroscopic flow kinematics and transport
which are relevant for mixing, reaction kinetics, filtration and bacterial transport that often are found
as aggregates of variable size. We expect these results to be also of relevance in more complex
scenarios where also morphological variability, in terms of grain shape [35–37] plays critical roles,
e.g., in groundwater contamination and remediation [38], enhanced hydrocarbon recovery [39],
transport through river sediments that create a closely packed pore network [40], water filtration
systems [41] and extra-cellular transport in brain tissue [42]. Also, for pores surrounded by a
single grain that cannot host a net transfer of fluid, the so-called dead-end pores, which have
been recently shown to host laminar flow vortices and are able to trap fluid for long times [43],
it would be interesting to estimate the impact of fluid-suspended particles interaction and flow
hydrodynamics.
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