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To get a deeper understanding of our laboratory experiments [Q. Kriaa et al., Phys. Rev.
Fluids 7, 124302 (2022)], we numerically model settling clouds produced by localized
instantaneous releases of heavy particles in a quiescent fluid. By modeling particles as a
field of mass concentration in an equilibrium Eulerian approach, our two-way coupling
simulations recover our original experimental observation of a maximum growth rate for
clouds laden with particles of finite Rouse number R = 0.22, where R is the ratio of
the individual particle settling velocity to the typical cloud velocity based on its initial
radius and total buoyancy. Consistent with the literature on buoyant vortex rings, our
clouds verify the relation o ox I'> between the clouds’ growth rate «, as firstly defined
by Morton et al. [Proc. R. Soc. London A 234, 1 (1956)], and their eventually constant
circulation I'o. As the Rouse number approaches R ~ 0.22, the baroclinic forcing of the
circulation reduces down to a minimum, thus optimizing the cloud growth rate «. This
analysis highlights the role of the mean flow in the enhanced entrainment of ambient fluid
by negatively buoyant clouds. Our results also validate, on the basis of direct comparison
with experimental results, the use of a one-fluid two-way coupling numerical model to
simulate particle clouds in the limit of weak particle inertia.

DOI: 10.1103/PhysRevFluids.8.074302

I. INTRODUCTION

The present study follows up on a series of 514 systematic laboratory experiments presented
in Kriaa et al. [1] which focus on the evolution of instantaneously released particle-laden clouds
settling from rest in initially quiescent water, under the sole action of their buoyancy. By varying the
size of particles yet keeping an identical buoyancy for all clouds, the latter proved to grow linearly
in depth, with a growth rate « that reaches a maximum for a finite particle inertia (R >~ 0.3 & 0.1),
where the Rouse number R = w; /Uy is the ratio of the terminal velocity of an isolated particle
w, over the reference fall velocity U of the cloud due to the sole action of its buoyancy. This
observation was unexpected because the theory of turbulent thermals [2], commonly used to model
such clouds, predicts that all clouds should grow similarly as a saltwater cloud of identical buoyancy.
Yet, our measurements revealed that the particle inertia can increase the growth rate by up to 75%.
Our experiments did not enable us to answer some remaining questions: Through which mechanism
do particle clouds entrain more than saltwater clouds of identical buoyancy? In particular, does
the particle inertia alter the mean flow around the cloud or does it modulate the intensity of the
turbulence that develops inside the cloud? The aim of the present study is to gain understanding
on these questions thanks to complementary numerical simulations. The numerical approach to be
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adopted should capture the macroscopic physics of particle clouds as observed in our experiments,
yet with the minimum ingredients to keep a low numerical cost, with a motivation to later apply the
method to a planetary-scale multiphase flow called “iron snow” [3].

When the size of particles, their volume fraction, and the particle-to-fluid density anomaly are
low, the fluid governs the motion of particles whose feedback on the flow is negligible, a situation
called one-way coupling [4]. Many studies have considered the one-way coupling between particles
and fluid motions [5-9] and evidenced that inertia is a source of nonuniformities in the field
of particle concentration [10]: despite the incompressibility of the fluid phase, inertia allows the
disperse phase to be compressible. Maxey [10] showed that very small particles behave as passive
tracers due to their low inertia; conversely, large particles are insensitive to local modifications
of the flow due to their large response time (see also Refs. [7,11]). Due to this low-pass “inertial
filtering” of timescales, dense particles of intermediate size partly decouple from fluid motions.
For some finite inertia they have been observed to optimally couple with the surrounding flow and
concentrate in some specific regions. This phenomenon of “preferential concentration” (Ref. [10],
see also Refs. [7,9,12—14]) leads to the accumulation of small particles in regions of large strain rate
or equivalently of low vorticity [10], possibly due to centrifuging of particles outside of vortices
[5,9], while larger dense particles rather concentrate in regions of vanishing fluid acceleration [8,15].

With the addition of gravity, another heterogeneity originates from the tendency of heavy
particles to fall on the side of downward velocity of eddies [16], which can be grasped by simple
advective arguments even in laminar flows [17]. This phenomenon of “fast tracking” or “preferential
sweeping” is also optimum for a finite particle inertia [16]; it has been observed in two-dimensional
(2D) periodic laminar vortices [18] and in turbulent flows [6,9,19-21]. Additionally, due to their
inertia, falling particles lag behind fluid motions so their trajectories are biased in the direction of
gravity. As particles cross upwelling and downwelling regions, they spend more time in upwelling
regions, increasing their sensitivity to velocity variations in these upwellings. This loitering [17] is
a third example of preferential sampling of the flow.

All these phenomena of preferential sampling determine the distribution of particles in time
and space. This observation is paramount if the flow is altered by the feedback of particles on
the fluid, a situation referred to as two-way coupling [4]. Inclusion of this feedback in numerical
simulations has proved to be essential as it further modifies the structure of particle-laden flows
even in well-controlled idealized isotropic turbulent flows [19-22], especially in the presence of
gravity, which breaks the flow isotropy. As an example, experiments [12] and simulations [21,22]
have shown that the nonlinear modification of the settling velocity due to preferential concentration
and preferential sweeping is further favored by two-way coupling since clusters of particles drag
fluid with them as they sweep downward, producing downward acceleration of the fluid which
enhances the fluid velocity and therefore the particle settling velocity. Most importantly, even in the
presence of low mass loadings, the feedback of particles on the fluid is essential if the flow is driven
by the particles themselves, e.g., in downdrafts [23], turbidity currents [24,25], and presumably iron
snow [3]. The present work fits in this framework: in our experiments [1] particles were released
from rest in quiescent water, hence all fluid motions resulted from the drag exerted by particles on
water during their fall.

Thus, in this study we adopt an equilibrium Eulerian approach [4] to model our settling particle
clouds at reasonably low numerical cost, while still accounting for the two essential ingredients
of (i) the feedback of particles on the fluid through a drag term which forces the flow, and (ii) a
differential motion between water and settling particles through a gravitational drift, a formalism
already used in the literature to model particle-laden flows [26-30]. The latter effect is quantified
by a Rouse number which is about R = 0.3 for the optimum growth rate in experiments, and which
lies below unity for most of our clouds. Our experiments therefore fit in the range of validity of the
equilibrium Eulerian model, as pointed out by Boffetta et al. [27]. Note, however, that we extend
our analysis up to R =~ 3 as in our experiments. Boffetta et al. [27] showed that such particles have
so much inertia that they undergo the “sling effect,” i.e., particles tend to converge and thereby
form caustics, so that the continuum modeling of particle motions through a unique velocity field
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locally breaks down. Yet, our results using the equilibrium Eulerian formalism up to R =~ 3 show
good agreement with our experiments, supporting the fact that if the sling effect plays any part in
experiments, it still has no strong statistical signature on the macroscopic quantities we measured in
experiments and reproduce numerically here.

The paper is organized as follows. Section II introduces the equations of motion to model
particles as a field of mass concentration verifying an advection-diffusion equation and forcing
the flow through a drag term. Section III presents the numerical setup of the three-dimensional
numerical simulations. Then, Sec. IV presents the two main regimes of cloud settling; it notably
evidences the same maximum of the cloud growth rate « as observed in our experiments [1].
Section V is devoted to the analysis of this effect, showing that particles with a Rouse number
close to the optimum impose a weaker baroclinic forcing of the clouds’ circulation, resulting in
an enhanced growth rate according to the theory of buoyant vortex rings. Further discussion and
concluding remarks are presented in Sec. VI. Appendix A provides details on the robustness of
the numerical simulations, and Appendix B gives numerical results for particle clouds of larger
Reynolds number than those presented in the core of this study.

II. EQUATIONS OF MOTION

If a particle has finite inertia and is not neutrally buoyant, it moves with a velocity v, which
is different from that of the fluid v in its vicinity, and the particle acceleration verifies its own
momentum equation. This momentum equation for a small spherical particle was established in
1983 by Ref. [31] under the assumptions that the particle of radius r, is much smaller than the
characteristic macroscopic length scale L of the flow, that the particle Reynolds number based
on the slip velocity of the particle is much lower than unity (so the disturbance flow due to the
particle can be considered a Stokes flow), and that the diffusive timescale rg /v is much lower than
the advective timescale L/U, (v being the kinematic viscosity of the fluid and Uy a characteristic
velocity scale of the flow). With these assumptions, the leading terms boil down to the particle
acceleration, its buoyancy, and the Stokes drag exerted by the fluid. Furthermore, in the equilibrium
Eulerian formalism, assuming that all particles have very small inertia (limit of vanishingly small
Stokes number, i.e., vanishing particle response time compared to the timescale of the flow at the
particle scale), the particle acceleration can be neglected [4] so that the particle velocity is solely
prescribed by the balance between buoyancy and drag [9,32]. This balance yields

v, =V + weey, (D

as derived in Ref. [33], where v is the fluid velocity, v, is the particle velocity, w, is the terminal
velocity of the particle in quiescent fluid, and e, = g/||g]|| is aligned with the gravity field g. In
the present study we use this approximation to the momentum equation even for particles with
non-negligible inertia, and try to assess the accuracy of this approach. To keep a moderate numerical
cost, as in previous studies of particle-laden flows [26-30,34,35] we model particles as a continuum
with a field of concentration C (mass of particles per unit volume) that is advected at the velocity
v,, hence, mass conservation reads

3C+v,-VC=0. )

In practice, such modeling neglects particle dispersion at the particle scale. In fact, even in dilute
suspensions for which collisions are negligible, and even in the absence of Brownian motions,
particles induce long-range perturbations, particle-wake interactions, and collective-settling effects
in the fluid depending on their particulate Reynolds number [36-39]. These perturbations lead
to a dispersion which has been analyzed analytically [40], numerically [41], and experimentally
[42-46], and which can be approximated by a diffusive process. Together with other ingredients
such as concentration gradients and shear [47], these effects are referred to as a hydrodynamic
diffusion [48]. They are often approximated at a macroscopic level by a term of diffusion in the mass
conservation above [33,44,46,49]. In addition, including a diffusive term in the mass conservation
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equation is necessary to prevent the formation of caustics in the field of particle concentration,
which would lead to numerical instabilities in the current Eulerian framework [34]. By introducing
the effective particle diffusivity «,, and using Eq. (1), the new equation of mass conservation reads

aC
C+v-VC =k, V*C— W=, 3)
2z
where the last term accounts for the gravitational drift of particles.
Fluid motions are constrained by the condition of incompressibility
V.-v=0, “)

which also prescribes the incompressibility of the field of concentration using Eq. (1). The fluid
velocity v verifies the Navier-Stokes equation for a Newtonian fluid

v 1 2
—4+v-Vo=——Vp+vV v—i——fdmg, 5)
ot Pf
where p is the fluid density, p is the pressure field including the hydrostatic contribution, v is the
constant fluid kinematic viscosity, and f,, is the average drag force exerted by particles on the
fluid per unit volume. This drag term in Eq. (5) describes how particles force the flow: the field of
concentration and the fluid are now two-way coupled. The present model is derived for supposedly
spherical particles of vanishingly small Reynolds number, hence they fall in the Stokes regime with
a settling velocity

2
wSlokes — 2grp(’0p — pf)

6
b 5o (©6)

with p, the density of a spherical particle of radius r,, and g = ||g|| corresponds to gravity.
Then, using Eq. (1), the Stokes drag exerted by the fluid on a particle reads —6m prvr, wiokese
Summation on all the particles in the unit volume requires to multiply this individual acceleration
by the number of particles per unit volume, i.e., 3C /4nr137,o,,. Using Newton’s third law, the drag
force reads

fdrag = C 0 pfg (7)

P

The previous equations are nondimensionalized using the length scale D.,; which corresponds
to the diameter of the vertical cylinder that was initially containing the particles in our water
tank experiments [1]. This cylinder was immersed at the top of our tank and closed by an elastic
membrane, until this membrane was ruptured at ¢ = 0 to instantly release the particles. As for the
velocity scale, we use the characteristic velocity that clouds can build up when accelerating from
rest, which is

o)
Uet = g<1 —— )Dcyl, (8)
Lo

where po = pr + (1 — pr/pp)mo/ (47'[D3yl /3) is the typical initial effective density of particle
clouds (see Ref. [1] for details). Time ¢, pressure p, and concentration C are respectlvely nondlmen—
sionalized by the advective timescale Dcy)/Urer, the characteristic dynamic pressure U, ref, and the
fluid density p,. With the dimensionless variables, Eq. (4) is unmodified while mass conservation

now reads
1 aC
3C+v-VC= P—vzc R— 9)
52

gravitational drift

074302-4



TWO-WAY COUPLING EULERIAN SIMULATIONS OF PARTICLE CLOUDS ...

where Pe = UpetDcy1/kp is the Péclet number, and R = w;/Ur is the Rouse number which char-
acterizes the gravitational drift of particles. When R « 1 particles hardly drift with respect to the
fluid and tend to follow fluid motions, whereas particles having R >> 1 largely decouple by vertical
settling so their trajectories largely differ from those of fluid particles in their vicinity. Using Eq. (7),
similar nondimensionalization of Eq. (5) leads to

ov 1 2 .
— +v-Vv=—-Vp+ —V-v +RiCe,, (10)
ot Re —_——

drag term

where Re = UpetDey1/v is the Reynolds number and Ri = gD.yi1(1 — pr/pp)/ Ur%f is the Richardson
number, which boils down to a ratio of density contrasts Ri = (1 — ps/p,)/(1 — py/po) for our
specific choice of Ut used to nondimensionalize the equations.

III. NUMERICAL SETUP

The numerical setup aims at reproducing the experimental conditions for the generation of our
particle clouds [1], released with no initial velocity from the top center of a tank of still water. Every
particle cloud is composed of my = 1g of spherical glass beads with a mean radius r, chosen in
the range 5 um-1 mm, as well as some water, sometimes dyed with rhodamine. All this material is
initially contained in a cylinder of diameter D.,; = 3.2 cm partially immersed in water and sealed
by a latex membrane. When an experiment starts, the membrane is ruptured by a needle, and it
quickly retracts and lets particles settle from rest in the tank with the dyed fluid. Visualizations are
performed in a vertical green laser sheet with two cameras: the one with a green filter records the
motion of particles only, while the camera with an orange filter records only motions of turbulent
eddies dyed with rhodamine, see Fig. 1(a) for an illustration. Some reference clouds without particle
inertia contained an identical mass excess my = 1 g of salt water and were generated in the same
way. Their dynamics is characterized by a Rouse number R = 0. Experiments were performed in
a tank of depth 1 m with a horizontal square cross section of 42x42cm? surface area; the side
walls of the tank were considered far enough from particle clouds to have a negligible influence
on the settling of particles. In the present simulations, the computational domain represents a cube
of volume 1 m? with side length Lyomain = 31.25Dy1. Figure 1(b) shows a numerical analog of our
experimental clouds in a simulation having R = 0.221 at time t = 34.

To model the instantaneous release of particles from the cylinder, the field of concentration is
initialized in a narrow cylindrical region of diameter Dy, horizontally centered and localized at
distance 1.5Dy below the top of the computational domain. In experiments particles rested at the
bottom of the cylinder on the latex membrane as a very thin layer of height Heompact. To smooth the
initial concentration gradients that are required to model the initial layer, the field of concentration
is initialized in a cylindrical region of height 10Hcompact, and the lateral and vertical edges of this
cylindrical region are smoothed by a hyperbolic tangent with typical length scale Heompaci. The
factor 10 on the initial height of the pile of particles is expected to have negligible influence: indeed,
our experiments showed that varying the height of the pile of particles from Heompact t0 40Hcompact
had negligible impact on the dynamics we aim to model here (see Ref. [1] for further details).
To compensate for the errors introduced by the hyperbolic tangent smoothing, the exact mass of
particles is enforced (in dimensional form, my = 1 g) by an appropriate rescaling. The uniform fluid
is initially motionless, save for a cylindrical envelope around particles at time # = 0 in which the
velocity field is perturbed by a random infinitesimal noise with uniform probability distribution.

A passive tracer is implemented to mimic rhodamine in simulations. This tracer is initialized
exactly like the concentration C and satisfies Eq. (9) with its own Rouse number R = 0 so it does not
drift vertically as particles do. Importantly, unlike the field of particle concentration C, the passive
tracer does not force any flow [it is absent of Eq. (10)].

On all walls, the velocity field satisfies no-slip boundary conditions, while the concentration C
and the passive tracer satisfy no-flux Neumann boundary conditions.
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FIG. 1. (a) Visualization of an experimental particle cloud in a vertical laser sheet with particles in gray (set
of polydisperse particles of Rouse number R = 0.308 & 0.080) and dye (rthodamine) in orange. (b) Numerical
analog in the plane y = 0 of the previous photograph with a gray field of concentration C modeling particles and
an orange tracer concentration Cy,..; modeling dye (cloud of Reynolds number Re = 1183 as in the experiment
(a), with a fixed Rouse number R = 0.221). The larger vertical spread of particles in (a) compared to (b) is due
to the polydispersity of the former, whereas simulations are performed for monodisperse particle clouds (see
Kriaa et al. [1] for further details). The coordinates x and z in (b) are nondimensionalized by D.y; (see Sec. II).

Equations (4), (9), and (10) are integrated in three dimensions with the solver Basilisk [50] that
is second-order accurate in space and time, using a time-splitting pressure-correction discretization
of the Navier-Stokes equation (10). The second-order advection scheme of Bell-Colella-Glaz [51]
is used for Eq. (10) and for the two advection terms in Eq. (9). The concentration gradient dC/dz
is computed with the generalized minmod slope limiter [52] to reduce spurious oscillations due to
sharp concentration gradients at initial times, with negligible impact on our numerical measurements
(see Appendix A). Due to the large-scale separation between the domain size and the initial cloud
size (Lgomain = 31.25D.y1), an adaptive mesh refinement is adopted. This octree mesh is made of
hierarchically organized cubic cells, each refinement of a cell corresponding to a division of this
cell in eight identical cubes. This refinement is based on local values of the concentration C and on
the local viscous dissipation, see an illustration in Fig. 2(a). The smallest mesh cell has a size fixed
t0 Lgomain/ 1024 while the largest mesh cell has a size Ljomain/128.

Our main focus is to analyze the influence of gravitational settling on the evolution of particle
clouds by varying the Rouse number from R = 0 to R = 3.03. Consequently, with a fixed density
pp = 2500 kg/m? for all particles (the density of the fluid is pr = 1000 kg/m?), the Richardson
number Ri = 138 does not vary between simulations, and the same conclusion holds for Re and
Pe. These last two numbers are equal because we assume v = k, as a first approximation. The
value Re = 454 is chosen by following this conservative estimate: if the particle clouds were highly
inertial and if their turbulence was homogeneous and isotropic with a fully developed energy
cascade from the integral cloud scale of order ~3D, to the Kolmogorov scale, then the latter
would have a size 3Dclee’3/ 4. By prescribing that this smallest length scale should have a size
Laomain/ 1024, this prescribes the value of Re = (Lgomain/3072Dcy1)~*3 = 454. This calculation is
conservative since no flow structure reaches such a small length scale in our simulations. In fact,
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FIG. 2. (a) Adaptive mesh refinement on the field of concentration C for R = 0.221 in the plane y = 0 at
time = 35. (b) Bird’s eye view of the three-dimensional structure of C(x, y, z, t = 33.75) for R = 0.221 in
blue-red colors (color bar and opacity in the bottom left-hand corner). Streamlines show the toroidal velocity
field, with blue-red colors for the velocity magnitude ||v|| (color bar in the top left-hand corner).

the transient cloud formation does not permit the development of an energy cascade down to
the Kolmogorov scale. Instead, the clouds we model are close to laminar, with a predominating
coherent structure of size ~3D,y, confirming that all length scales are appropriately resolved. An
example of the fields obtained is shown in Fig. 2(b). For completeness, additional simulations at
Re = 1183 (which is the Reynolds number of particle clouds in our experiments [1]) are presented
in Appendix B, which show similar results to those presented in the core of the present analysis.

IV. REGIMES OF CLOUD SETTLING
A. Overview

Figure 3 shows snapshots as well as an average image of the field of concentration C(x,y =
0, z,t) in a vertical cross section of the computational domain. They faithfully account for all the
qualitative morphological features observed in our experiments (see Fig. 4 in Kriaa et al. [1]).
Particle clouds initially grow as they propagate downward. For the lowest Rouse numbers this
regime of growth and dilution lasts over the entire fall of the cloud. For intermediate Rouse numbers,
this regime is more prominent [see Fig. 3(c)], yet this growth gradually vanishes and stops [see in
particular average images in Figs. 3(d) and 3(e)]. This transition is due to separation of the field of
concentration from eddies, which is why the field of concentration deforms less and less, and settles
more and more vertically.

The cloud evolution can be quantified by tracking the vertical position z¢(¢) of its front, defined
as the lowermost position of the isocontour of concentration C(x, y, z,t) = 10~® (this low value
ensures that measurements are independent of the specific threshold), and by tracking the vertical
position z(¢) of the center of mass, defined as the weighted average of the vertical coordinate
z in the whole computational domain as z(¢) = fv zCdV/ fv CdV . Figure 4 shows the evolution
of these two positions in time; for all figures we use dashed lines if R > 0.221 and solid lines
otherwise, with gray shades diverging from the thick darkest line of R = 0.221. For low Rouse
numbers (R < 1), after a short phase of acceleration, the positions z;(¢) and z(¢) evidence a concave
evolution revealing the cloud deceleration. For intermediate Rouse numbers, a smooth transition
occurs that leads to a regime of constant settling velocity when particles separate from fluid motions
and settle in quiescent liquid. For the largest Rouse numbers (R > 1), clouds almost immediately
transition from the regime of acceleration to the regime of constant settling velocity. The literature
[1,53-55] distinguishes between the first regime of turbulent thermal, or equivalently of buoyant
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FIG. 3. Each row shows snapshots of the field of concentration C(¢, x, z) in the plane y = O for a different
Rouse number, as well as the average of 40 snapshots taken with a constant time step At = 1 over the fall.

vortex ring, and the second regime of swarm. All these observations are consistent with our
experimental observations, which were obtained by tracking the front of the light intensity reflected
by the glass spheres in time, which is analogous to z; here. In the next sections, the two regimes of
buoyant vortex ring and swarm are described separately.

B. Buoyant vortex ring regime (a.k.a. thermal regime)

Due to the lower cloud Reynolds number in numerical simulations than in experiments (see
Appendix B for results at higher Reynolds number), numerical results evidence clear buoyant vortex
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FIG. 4. For several Rouse numbers, evolution in time of the vertical position of (a) the center of mass of
particles, and of (b) the cloud front. Lines are dashed if R > 0.221 and solid otherwise.

rings whose toroidal structure is less apparent in our more turbulent thermals in the laboratory. Yet,
several studies have shown that turbulent thermals (i.e., instantaneous releases of a finite volume
of buoyant fluid with no initial momentum) are formed like buoyant vortex rings [56,57], and
have a very similar structure [58—61] and dynamics [62,63], to such an extent that thermals have
been considered as buoyant vortex rings whose circulation is fully determined by their buoyancy
[64,65]. Consistently, turbulent thermals at the cap of starting plumes [66], immiscible thermals
[63], and settling particle clouds [67—69] have all been successfully modeled as vortex rings. In fact,
different models of turbulent thermals (for example, Refs. [2,70]) and models of buoyant vortex
rings [61,62,71] lead to the same scalings after the transient formation of these structures. Given
the morphology of clouds in Fig. 3, we present the essential equations governing the evolution of
buoyant vortex rings, which will prove enlightening to analyze the clouds growth.

When buoyant particles start settling, the cloud initially rolls up as a buoyant vortex ring. After a
transient, one observes that vorticity concentrates inside a toroidal core. It is often assumed, and
appropriate in our simulations as we shall see, that the vortex ring is sufficiently thin-cored to
guarantee the absence of any buoyant material along the vortex centerline (axis of symmetry of
the vortex ring, parallel to e, and passing through the center of symmetry of the torus), and that
no vorticity diffuses through this line, leading to the conclusion that the circulation I" of the vortex
ring remains constant after the short transient of spin-up (see Eq. (4) in Ref. [61]), as verified in
numerical simulations for a cloud Reynolds number of 630 and 6300 [61]. Consequently, the initial
spin-up of the vortex is paramount because it sets the ultimately constant value of the circulation,
which plays a key role in determining the cloud growth rate.

The impulse of a thin-cored vortex ring of radius R under the Boussinesq approximation reads
T ,ofFR2 [61,62]. This impulse varies in time due to buoyancy, which is the sole external force,
hence we have

d 2
o TR) = mog. (11)

from which it is clear that in the absence of buoyancy, the impulse would be constant, hence the
vortex ring would keep a constant radius, as verified in the literature [57,72] for vortex rings of
Reynolds number up to 10* [72]. Assuming a constant circulation, the previous equation simplifies
to

Mg, (12)

R*(t) — R*(t =0) = .
wprl

To verify this scaling, the cloud radius is measured in numerical simulations with the quantity
oy, which is the horizontal standard deviation of the particles’ spatial distribution with respect to the
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FIG. 5. Time evolution of the increment of square radius compensated with time [ahz(t) — ahz(t = 0)]/t,
measured in simulations for several Rouse numbers. Lines are dashed if R > 0.221 and solid otherwise.

cloud center of mass

fC(X/, y/’ Z/, t)(x/z + y/2)
Jew,y. 2. 1)

where the origin of coordinates (x', ', z’) corresponds to the cloud center of mass, and integrals are
computed in the whole computational domain. From this definition, the scaling (12) is verified in
Fig. 5: aside from slight oscillations, clouds of low Rouse number (R < 0.221) eventually grow as
o, ~ t'/2, as evidenced by the plateau of the compensated quantity [ah2 — o2(t = 0)]/t. Conversely,
clouds with large Rouse numbers (R > 0.221) grow slower than o, ~ ¢!/2 so the quantity [0} —
ah2(t = 0)]/t eventually decreases in time, meaning that these clouds do not follow the scaling (12).
Note that according to Eq. (12), the plateaus in Fig. 5 are inversely proportional to the circulation
", suggesting the existence of a minimum of circulation for intermediate Rouse numbers close to
R = 0.221; this observation will receive considerable attention in Sec. V.

The clouds’ growth is generally analyzed along depth z rather than in time. Figure 6(a) shows
the evolution of the radius oy,(z) for all clouds. For R « 1 clouds tend to grow linearly in depth

on(t) = (13)

(@ (b)
101 4
4,
10° ’
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= F
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21 3
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| | | i
0 10 20 102 1071 100
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FIG. 6. (a) Evolution of the clouds’ radius o), along depth. Lines are dashed if R > 0.221 and solid
otherwise. (b) Growth rate « computed in the range z < 0.45Lgomain = 14, divided by the reference value oy
of a saltwater cloud, i.e., of a cloud with no particle settling (R = 0).
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(a) R =0.100 (b) R = 0.221 (d) R = 0.885

FIG. 7. Hovmbller diagrams for four increasing Rouse numbers showing the gradual decoupling in the
plane y = 0 between the field of concentration (C), (in blue-red colors) and the passive tracer (Cygeer)x (in
yellow-red contours). The values shown for both concentrations are horizontal averages along x in the plane
y = 0 at each time step.

after a short transient. For R = 0.221 a noticeable decrease of the slope doy,/dz is visible at depth
z = 10, as already observable in Fig. 3(c), which is due to the transition to the swarm regime. For
large Rouse numbers, typically above unity, it is manifest that the slope doy,/dz is never constant, it
keeps decreasing as clouds fall deeper.

More importantly, Fig. 6(a) shows that the growth rate doy,/dz(z) tends to be maximum for an
intermediate Rouse number close to R = 0.221. To compare this growth rate with the entrainment
rate that we measured in experiments over a 45-cm-deep field of view i.e. over a depth 0.45Lgomain,
the value of doy,/dz(z) is computed in simulations, then averaged in the range z < 0.45Lgomain- The
resulting average value is denoted « and results are shown in Fig. 6(b). Consistent with our experi-
ments (see Fig. 6 in Ref. [1]), we observe an asymptote towards a constant growth rate as R — 0, a
local maximum for a finite Rouse number which lies in the range R ~ 0.3 £ 0.1 determined from
experiments, and a clear decrease of the growth rate as R increases beyond R = 0.3. The maximum
amplitude of the enhancement o(R = 0.221)/asa = 3.20 &= 0.83 is larger than the value found in
experiments «(R =~ 0.3)/ag = 1.75 £ 0.30. This is likely due to the difference of cloud Reynolds
number between experiments (Re = 1183) and simulations (Re = 454). In Appendix B, numerical
results for clouds of Reynolds number Re = 1183 yield (R = 0.221)/agy = 2.20 £0.42 as a
new maximum, which is in agreement with our experiments. The important point here is that the
present Eulerian approach is capable of reproducing the physical effect we observed in laboratory
experiments.

We now turn to the swarm regime before analyzing the role of the gravitational drift in enhancing
the growth rate « in Sec. V.

C. Swarm regime

During the gradual transition from the buoyant vortex ring to the swarm regime, particles increas-
ingly decouple from fluid motions. This gradual decoupling is analyzed thanks to the concentration
Ciracer Of the passive tracer, which is implemented in four additional simulations of Rouse numbers
R =0.100, 0.221, 0.498, 0.885. As a wish to perform similar processings as in our experiments
where the flow was visualized in a vertical laser sheet, the decoupling is illustrated with space-time
diagrams in Figs. 7(a)-7(d) after averaging the fields C and Cycer along x in the plane y = O (this
averaging process is made explicit with the brackets (-),). The space-time diagrams reveal that
increasing R leads to a faster separation between the field (C), (in blue-red colors) and the passive
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(b)
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FIG. 8. (a) Time evolution of the correlation coefficient C¢ ¢, (t) between particle and passive tracer
concentrations for R € {0.100, 0.221, 0.498, 0.885}, from top to bottom. (b) Evolution in depth of the vertical
velocity of the clouds’ center of mass for all simulations. Lines are dashed if R > 0.221 and solid otherwise.
The inset shows the normalized velocity z/R as a function of time ¢ only for clouds verifying R > 0.221.

tracer (Cyacer)x (in yellow-red contours), which is left behind particles. By construction, the sole
ingredient responsible for this decoupling is the gravitational drift in Eq. (9), which only concerns
the field C, not the passive tracer.

A quantification of the decoupling between C and Cyqcer is possible by defining a correlation
coefficient which computes the overlap between C and Cy.,cer as a percentage of the total region
occupied by these two fields. In practice, minimum thresholds are applied on the fields, whose
values ensure the convergence of the correlation coefficient. As in Fig. 7, the correlation coefficient
is computed in the plane y = 0 (denoted Oxz below) as

t)dxd
Ce.cp(t) = M’ (14)
fOxz & (t)dxdz
where the booleans [£;(¢), & (7)] are defined as
(t) = 1, ifC@#)>Ci(t) and Ciaeer(t) > CZ(I)_
1) = 0, otherwise ’
_ I, ifC@)>Ci(t) or Cuacerl(t) > Cao(t)

b() = {O, otherwise ’ (15)

with C; () = max{C(t)}x10™*, C>(t) = max{Cuacer(f)} x 10~*. The time evolution of CC.Crue () 18
shown in Fig. 8(a) for the same four simulations as above. The correlation coefficient is initially
equal to unity because both fields of concentration are identical. Then, the correlation coefficient
decreases as particles gradually shift away from the passive tracer due to the gravitational drift,
all the faster as the Rouse number is larger. Finally Fig. 8(b) confirms that the settling velocity of
swarms approaches a constant value after separation, equal to the individual settling velocity which
is equal to the Rouse number R in our dimensionless units [see inlet in Fig. 8(b)]. Figure 6(a) already
showed that the growth rate of swarms starts reducing after separation [the concave deflection of
oy(z) is most visible for R = 0.221], so swarms ultimately fall with constant velocity, retaining a
bowl shape without deforming, as shown by the snapshots in Fig. 3(e) for R = 3.03.

V. ROLE OF THE ROUSE NUMBER ON THE ENHANCED GROWTH RATE

The linear growth with depth of buoyant clouds is usually described as resulting from entrainment
of ambient fluid into the cloud, leading to its growth and dilution, and consequently its deceleration
through mixing drag. One reference to describe the process of entrainment for turbulent thermals
is the model of Morton et al. [2]. It is based on the entrainment hypothesis, which states that the
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inflow velocity at the interface of the turbulent thermal is proportional to the vertical velocity of the
cloud’s center of mass; this inflow velocity is considered to be produced by turbulent motions.

Yet, our observation of a maximum growth rate o even for moderate Reynolds numbers
(Re = 454 here) suggests that the enhanced entrainment due to the finite gravitational drift finds
an origin in the large-scale buoyancy-induced mean flow (which, in the case of turbulent particle
clouds, is obtained by an average over realizations) rather than in turbulent fluctuations. Actually,
this question of the origin of entrainment in turbulent flows has long been debated: does it originate
from the large-scale mean flow incorporating ambient fluid into the turbulent region through
“engulfment”? Or from small-scale fluctuations and diffusive processes which mix the ambient
material in the turbulent structure close to its interface through “nibbling”? While Mathew and
Basu [73] observed that mixing in a cylindrical turbulent jet seemed to be driven by nibbling close to
the jet interface, Townsend [74] showed that large-scale eddies of increasing intensity produce more
energy in the turbulent wake past a cylinder and consequently favor a larger growth rate of this wake,
suggesting that the mean flow drives entrainment through engulfment. Discriminating between
engulfment and nibbling can be complex because large and small scales may be insufficiently
separated at moderate Reynolds numbers, and because fluxes at both scales can be connected
through some relationships [73]. For example, in Ref. [75], Reynolds stresses at the mixing interface
of a gravity current are modeled based on Prandtl mixing length theory, thus enabling, through the
use of a large-scale quantity based on the mean flow, the description of entrainment in the mixing
layer by fundamentally local fluxes.

Importantly, the reason for this ambiguity is that both processes contribute to entrainment, as
evidenced by Fox [76], who derived the equations of evolution of a self-similar plume while
considering the equation of conservation of energy, hence lifting the constraint of modeling en-
trainment to guarantee a closure of the equations. In doing so, he showed that entrainment depends
both on the Reynolds stress and on a contribution from the mean flow due to buoyancy. This was
confirmed by Reeuwijk and Craske [77], who carried this analysis further and showed that a third
contribution comes from possible deviations from self-similarity in the streamwise direction. By
analyzing data from the literature, Reeuwijk and Craske [77] showed that the term of turbulence
production due to shear hardly varies between a pure jet and a pure plume, even though plumes
have a larger growth rate than jets. Hence, this last difference between jets and plumes is attributed
to the contribution of the mean flow due to buoyancy, as later confirmed by Reeuwijk ef al. [78] in
direct numerical simulations. These conclusions about entrainment apply similarly to plumes and
thermals, as pointed out by Landeau et al. [63]. From the model of Morton et al. [2], Landeau
et al. [63] proved experimentally that the growth rate of an immiscible thermal verifies a linear
relationship with respect to the thermal’s Richardson number, which is exactly analogous to the
entrainment model of Priestley and Ball [79] for plumes, see Ref. [77] for details. Consistent with
these conclusions, Lecoanet et al. [60] showed that turbulence only enhances entrainment by 20%
between turbulent thermals of Reynolds number 630 and 6300, whereas an artificial sudden shutoff
of buoyancy during the same numerical simulations drastically reduces the entrainment rate of
turbulent thermals [61], highlighting the driving role of buoyancy in entrainment.

Consequently, in the present section we focus on mean flow azimuthally averaged quantities to try
to understand the optimum growth rate of particle clouds for a Rouse number around R =~ 0.22. Past
studies have shown that in the absence of buoyancy, the circulation of a vortex ring generated from a
nozzle increases from zero to a constant value during the transient rolling up of the viscous boundary
layer in the nozzle [72], with this constant circulation increasing as the ratio of the nozzle length over
its diameter increases. When the vortex ring is buoyant, buoyancy provides a new contribution to the
total circulation, which was fully derived by Mc Kim et al. [61] for a thin-cored Boussinesq vortex
ring, yielding the following scaling for the growth rate o (see Refs. [58,71] but also Refs. [60,62,70]
for turbulent thermals)

myg
ol

(16)
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FIG. 9. (a) Time evolution of the axisymmetric circulation in the whole computational domain. Lines are
dashed if R > 0.221 and solid otherwise. (b) Correlation between the growth rate o averaged over the range
z < 0.45Lgomain, and measurements of I',. The solid dark line is the linear least square fit of In(a) vs. In(I'y).

with a proportionality constant accounting for the cloud added mass and its morphology [61], and
with ', the asymptotically constant value of the circulation. The key result here is that since all
clouds undergo the same buoyancy force mog in our simulations, their growth rate « is dictated by
' only. Consequently, vortex rings of lower circulation should have a larger growth rate—crudely
speaking, they should entrain more, as consistently observed in Refs. [58,63].

To verify this scaling, the vortex ring circulation is computed a posteriori for several snapshots
after (i) interpolating the mesh on a regular cartesian grid, (ii) averaging the azimuthal vorticity wy
along the azimuth e, in radial and vertical bins (when ambiguity is possible, we denote azimuthally
averaged quantities with an overline such as wy), and (iii) integrating the resulting average azimuthal
vorticity over the whole radial extent and in the range z € [0.3, Lgomain — 0.3] (top and bottom walls
are removed from this range to avoid integration of vorticity near those boundaries). Results are
shown in Fig. 9(a). We verify that the circulation produced by the particle clouds ultimately reaches
a plateau, except when R > 1, i.e., for clouds which are not expected to behave as buoyant vortex
rings due to separation. From previous sections, Fig. 9(a) already suggests that the circulation I'
is all the lower as the cloud grows faster; this is confirmed in Fig. 9(b), where the scaling o
=2 of Eq. (16) is in excellent agreement with the best fit [see the solid dark line in Fig. 9(b)] of
measurements of the circulation when the cloud center of mass is at mid-depth in the computational
domain, i.e., with the definition ', = I'(z = Ldomain/2)-

Another remarkable observation is the modification of the structure of the vortical core when
increasing the Rouse number, as illustrated in Fig. 10. When R = 4.28x 102 [Fig. 10(a)] the vortex
core is neatly defined, centered around a maximum of azimuthal vorticity whose structure is at first
order isotropic in a plane (e,, e;) of fixed azimuth. Conversely, when R = 0.221 [Fig. 10(c)], the
vortex core is made up of sheets of vorticity of alternate sign and varying intensity which occupy
a much larger region than observed for R = 4.28x 1072 at the same depth. Let us show that as R
gets closer to 0.221 the vortical core induces circulation farther and farther away, thus expanding
the region of entrainment through the toroidal mean flow. After defining the core centroid as the
barycenter of the azimuthal vorticity, the following normalized circulation is computed:

1 2 r
r(r)= — / {wg)gr'dr'do, a7
nr 0 0

where (7, r, 0) here correspond to polar coordinates centered on the core centroid. The size of the
vortex core is defined as argmax{I"*(r)}, i.e., as the radial distance from the core centroid where the
circulation I'*(r) is maximum. Consistently, Fig. 11(a) shows that this circulation I'* spreads further
away from the core centroid when R = 0.221, meaning that this vortex ring induces velocity farther
away, therefore incorporating more ambient fluid within the particle cloud, hence the latter grows
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FIG. 10. Each row shows snapshots of the azimuthally averaged vorticity w, in blue-red colors, and the
azimuthally averaged concentration C with dashed contours in yellow-red shades (see color bars on the left-
hand side). Each snapshot is visualized in the plane (r, z) inthe range 3 < z < 22and 0 < r = {/x* +y? < 10.
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FIG. 11. (a) Time evolution of the size of the vortical core for all clouds. Lines are dashed if R > 0.221
and solid otherwise. (b) Size of the core at depth z = Lgomain/2 for all clouds. The dark arrow corresponds to
the value for R = 0.

faster. This trend is even clearer in Fig. 11(b), where the core size is computed at the same depth
Ldomain/2 for all clouds: one verifies that the core extension is maximum when the Rouse number is
closestto R = 0.221.

The key question is then: Why do vortex rings have a wider core and a lower circulation when
the particle Rouse number is closer to 0.221? The vortex circulation is only produced during a short
initial transient, mainly by the baroclinic torque as long as its contribution along the vortex centerline
is non-negligible. As soon as the buoyant material has spun up and widened sufficiently, one can
define a closed contour encircling the core where no vorticity diffuses and no buoyant material is
present, so that circulation is conserved (e.g., Ref. [61]). The vorticity equation along the azimuth
ey reads

baroclinic torque
——
Dwy  wyv, g 9C 19 [ dwsg 02wy
Dt r py or 1)|:r3r<r 8r) 072 :|’
——

stretching diffusion

(18)

which shows that azimuthal vorticity is produced by vortex stretching, the baroclinic torque, and
diffusion of vorticity. The quantity wyv, is at first order symmetrical around the vortex core, so for
a thin-cored vortex ring having a radius much larger than the vortex core, the stretching term should
be vanishingly small, as previously argued by other authors [61]. Then, if diffusion is assumed
negligible, most forcing is expected to originate from the baroclinic torque. This is especially true
at initial times when the stretching and diffusion terms vanish while the baroclinic torque remains
finite. The baroclinic torque is therefore the leading source of circulation at initial times [61]. To
verify this, the dimensionless baroclinic torque Rid,C along ey is first averaged along the azimuth
(the resulting axisymmetric torque is denoted Rid,C). Then, the axisymmetric torque is integrated in
the plane (e,, e;) and integrated in time until # = 10, when we observe that the torque has vanished
for all simulations. Results are shown in Fig. 12. We verify that Rouse numbers close to R = 0.221,
which correspond to the largest growth rate o [Fig. 6(b)] and lowest circulation [Fig. 9(a)], also
correspond to the lowest baroclinic forcing. This observation is robust: integrating the baroclinic
torque in time even just up to r = 1 modifies the value of the integrated torque, but leaves the
curve in Fig. 12 unchanged. As an indication, the error bars in Fig. 12 show the little influence of
integrating the baroclinic torque up to t = 8 or t = 10, which respectively correspond to the lower
and upper bound of error bars.

The picture that emerges from these results is the following: under the assumption that baro-
clinicity is the leading forcing of the vortex rings’ circulation, the maximum entrainment capacity
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FIG. 12. Results of time and volume integration up until # = 10 of the axisymmetric baroclinic torque as a
function of the Rouse number.

of particle clouds with a Rouse number close to R = 0.221 seems to be due to the gravitational
drift and two-way coupling of particles with the fluid, which reduces the baroclinic torque, thus
reducing the cloud circulation. Since all clouds undergo an identical buoyancy force myg, these
same clouds have a larger growth rate o as predicted by Eq. (16). Similar results have been obtained
at a larger Reynolds number Re = 1183 (see Appendix B), in good agreement with experiments.
Note, however, that the role played by fluctuations in the limit of very large Reynolds numbers
remains to be explored and might have an influence on our conclusions derived from moderate
Reynolds numbers only.

VI. CONCLUDING DISCUSSION

The previous section showed that the gravitational drift modifies the distribution in space and
time of the field of particle concentration C(x, y, z,t) compared to that of a passive tracer. This
modification alters the forcing by the drag force, minimizes the baroclinic torque, and concurs
to a maximum growth rate « for a Rouse number around R = 0.221. All these modifications
are observed at moderate Reynolds numbers and notably quantified by the azimuthally averaged
circulation and baroclinic torque; this is consistent with the literature pointing towards the leading
role of the mean flow and buoyancy in controlling entrainment and the growth of thermals (see
Sec. V). A key conclusion is that the present Eulerian two-way coupling numerical simulations
successfully reproduce our experimental observation of a maximum growth rate o /o,y of particle
clouds for a Rouse number R ~ 0.22 lying within the experimental range R ~ 0.3 £ 0.1. While
results at Re = 454 yield a maximum growth rate slightly above the experimental value a(R =~
0.3)/agae = 1.75 £ 0.30, results at Re = 1183 lie in the experimental range within uncertainty
margins. A systematic study with varying Reynolds numbers might clarify whether the mechanism
identified in this paper persists in the presence of intense turbulent fluctuations.

Our results raise a question: How does the gravitational drift of particles contribute to reducing
the baroclinic forcing? Some light could be shed on this matter by analyzing the properties of the
flow induced by a canonical laminar vortex ring while the field of concentration drifts radially
outward until separation, but the evolution of the structure of the vortex core in Fig. 10 suggests that
the feedback of particles on the vortex ring itself probably plays a non-negligible part. Furthermore,
even though the robust agreement between our experiments and the present results supports the
responsibility of the mean flow in the maximization of « for a finite Rouse number, it remains to
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be investigated whether other physical ingredients could be at play in experiments, in particular
velocity fluctuations due to turbulence at much higher Reynolds numbers than considered here.

In the present numerical simulations, fluctuations are very low compared to the mean flow due
to the low Reynolds number Re = 454 at the scale of the particle cloud. Our experiments, on the
opposite, were characterized by a Reynolds number Re = 1183. Even though this value is too low
to have a well-developed turbulent flow with a clear separation of scales between the integral cloud
scale and the scale of the smallest dissipative eddies, our experimental clouds evidenced some more
fluctuations than in numerical simulations. On one hand, these may modify the cloud circulation
during its transient increase, hence during a limited amount of time. On the other hand, after this
transient, entrainment can be increased by the term of production of turbulent kinetic energy (TKE),
as shown by Reeuwijk and Craske [77] in their entrainment relations. This production term may
differ for one-phase turbulent thermals vs. particle-laden turbulent thermals due to turbulence mod-
ulation by particles [5], as observed in simulations [20,21] and experiments [19,32]. These studies
notably showed a redistribution of energy from small to large wave numbers known as “pivoting,”
which may favor nibbling-like entrainment at small scales rather than engulfment by the mean flow.
Consequently, the possible enhancement of « by fluctuations in a more vigorous turbulent flow
cannot be ruled out, calling for further investigation with a dedicated larger experimental setup and
numerical simulations with a clear separation of scales. Answering these questions also probably
requires a more advanced model such as a two-fluids approach where the particles have their own
velocity field [33,34,80], or a point-force Lagrangian model [30,81-83].
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APPENDIX A: ROBUSTNESS OF NUMERICAL MEASUREMENTS

We verified that numerical measurements of key quantities are invariant with respect to three
numerical parameters: (i) the Schmidt number Sc = v/k,, (ii) the size Ay, of the finest mesh
cell, and (iii) the numerical scheme implemented to compute the concentration gradient. For all
simulations presented in the core of this study, the concentration gradient was computed with the
generalized minmod slope limiter [52], which reads along the direction e,

<§) ~ 1 nax {o, min [e(cm —C),0(C — Ci_y), M] } (A1)
9z ); Az 2

TABLE L. Variability of the macroscopic quantities «, Z and the work of the drag force [ Cv, in the range
Z < 0.45Lgomain When varying the Schmidt number, the size A, of the finest mesh cell, or the numerical scheme
used to compute the concentration gradient.

Varying numerical parameter Fixed Re ax10® zx10? [ Cv,x10°
Sce{l,2,5,10} 1183 172 £ 7 640 + 2 13.8 £ 2.3
Liomain/Pmin € {256, 512, 1024, 2048} 180 328 + 31 429 + 34 64 £+ 1.0
Lgomain/Fmin € {256, 512, 1024, 2048} 454 321 + 29 44.1 +£ 49 6.7+ 1.5
Lgomain/hmin € {512, 1024, 2048} 1183 343 + 28 56 + 14 127 + 74
VC: minmod2 or second order centered 454  305.64 £ 0.03 38.7870 + 0.0004 5.422522 4+ 0.000006
VC: minmod2 or second order centered 1183 2905 £+ 8 399 £ 0.6 57 + 0.2
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FIG. 13. Field of concentration C in the plane y = 0 averaged over up to 20 snapshots taken with a constant
time step At = 2.5 over the cloud fall for clouds of Reynolds number Re = 1183.

with Az the size of a mesh cell in the direction e, 6 a scalar ranging between 1 (the most dissipative
scheme) and 2 (the least dissipative scheme), and Cjcy is the evaluation of C in a mesh cell j along
the direction e,. The default value § = 1.3 of Basilisk was adopted. We verified that adopting a
second-order centered scheme

(%) _ G =Gt (A2)
9z /; 2Az

does not alter our measurements. Results are presented in Table I, providing the average and
standard deviation of (a) the growth rate «, (b) the cloud vertical velocity z, and (c) the work of
the drag term | Cv, responsible for the transfer of energy from particles to the fluid during the cloud
fall. These three quantities are averaged when the cloud position verifies z(#) < 0.45Lgomain, Which
is the range we analyzed with our experiments [1]. Reported values evidence little to negligible
impact of the three numerical parameters on average measurements of «, z, and [ Cv,.
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FIG. 14. Growth rate o computed in the range z < 0.45Lgomain, divided by the reference value o, of a
saltwater cloud, i.e., of a cloud with no particle settling (R = 0). The Reynolds number is Re = 1183.
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APPENDIX B: KEY RESULTS FOR CLOUDS OF REYNOLDS NUMBER Re = 1183

For completeness, we briefly present numerical results for clouds of Reynolds number
Re = 1183 as in our experiments [1]. Figure 13 shows time averages in the plane y = 0 of the
field of concentration C for a set of clouds with varying Rouse numbers. More fluctuations do
appear at low Rouse numbers [Figs. 13(a)-13(c)], whereas clouds of large Rouse numbers still
evidence a thin bowl shape due to rapid particle separation from fluid motions [Figs. 13(d) and
13(e)]. Importantly, these images show the existence of a maximum growth rate as R — 0.221, as
quantitatively confirmed by Fig. 14, similarly as in Sec. IV B and consistent with our experiments
[1]. The maximum amplitude of the enhancement (R = 0.221) /gy = 2.20 &£ 0.42 is lower than
the one measured for Re = 454 in Sec. IV B, and in good agreement with the maximum measured
in experiments o(R =~ 0.3) /o = 1.75 £ 0.30. A systematic study as a function of the Reynolds
number might clarify what determines the amplitude of the optimum o /oy, but this is beyond the
scope of the present work, which focuses on the origin of this amplification and on the capacity of
the numerical model to reproduce it.
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