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We study size segregation in the limit of a single large particle (intruder) embedded
within a flowing granular layer. Using discrete-element-method-based computations, we
calculate and characterize the drag, lift, and buoyancy forces experienced by the in-
truder in two systems: (1) a simple shear flow without gravity and (2) gravity-driven
flow down an inclined plane. In agreement with previous studies, the drag force in
both systems is seen to follow Stokes’ Law with a slightly different constant. However,
in contrast with previous work, we report that lift force does not follow the Saffman
relation; instead, its variation is captured effectively using a size-corrected Stokes’ Law.
The buoyancy forces calculated in our work scale in a manner that compares well with
previous studies. The computed effective volumes of the intruders were found to be close to
previously reported values, and the buoyancy force calculated using this effective volume
was found to be significantly lower than our computed buoyancy force, suggesting contri-
butions from other factors. Analysis of the relative velocity and stress in the neighborhood
of the intruder shows that the lift force is caused by a net upward collisional stress arising
from a higher relative inward velocity in the lower part of the intruder due to a positive slip
velocity. The buoyancy force is higher than that predicted by Archimedean buoyancy due to
large fluctuations in the pressure near the intruder. A continuum model for the segregation
flux is presented based on the computed drag, lift, and buoyancy forces.

DOI: 10.1103/PhysRevFluids.8.074301

I. INTRODUCTION

Spontaneous separation of particles in flowing granular mixtures, or segregation, is a commonly
observed phenomenon in natural processes and has important practical implications [1–4]. Segrega-
tion is driven by differences in properties of the mixture constituents, for example, size, density,
shape, or roughness. The early works of Drahun and Bridgwater [5], Savage and Lun [6], and
Jenkins and Mancini [7], using different approaches, provided the first mechanistic understanding
of the process. Since then, granular segregation has been the subject of considerable research,
summarized in reviews by Ottino and Khakhar [1] and Gray [4]. More recently, particle-level
computational approaches such as the discrete element method (DEM) have allowed a deeper
investigation of the mechanisms underlying segregation [8–16], and this approach is used in the
present work. A review of prior work using this method is given below.

DEM is well suited to calculate the forces acting on the different species in the granular mixture,
which are the basis of segregation. Consider first the case of density segregation in a flowing
mixture, that is, the segregation of particles of different densities but equal size, in which heavier
particles sink and lighter particles rise. Tripathi and Khakhar [8] studied the terminal sedimentation
velocity of a single particle (or intruder) of different density (ρi) but the same size (d) as particles
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flowing down an inclined plane. Considering the flowing particles to be a fluid of density ρφ, they
found that the intruder experiences a drag force given by Stokes’ Law: FD = CDηdus, where ρ is
the particle density, φ is the volume fraction of solids, us is the particle velocity, η is the apparent
viscosity of the flowing particles, and CD is a constant of value between 3.1π and 3.7π , slightly
greater than what is observed in the case of fluids. The buoyancy force was found to be equal to
the Archimedean buoyancy, but with the effective volume of the test particle given by Vi/φ, where
Vi is the volume of the intruder. The effective volume is calculated from the requirement that the
buoyancy force must be equal to the weight of the intruder when its density is equal to that of
the flowing particles (ρi = ρ). Tripathi and Khakhar [9] then extended these results to mixtures of
heavy and light particles and obtained good agreement between the predictions of the theory and
DEM simulation results for mixtures.

The size segregation in flowing mixtures of particles with equal density but a different size is
more complex. In this case, the larger particles rise and the smaller particles sink, which is not
predicted by kinetic theory [17]. In the absence of other forces, this requires the buoyancy force to
be larger than the weight of the particle. Guillard et al. [10] carried out a two-dimensional DEM
study of the segregation force of a large intruder disk in a shear flow of smaller disks between
parallel plates with gravity. A spring force is applied on the intruder normal to the flow direction.
The segregation force is computed from the mean extension of the spring. The segregation force
was correlated with the pressure gradient, the shear stress gradient, and the effective friction (μ),
which is the ratio of the shear stress to the pressure. All the data collapsed to a single curve using
two empirical functions of μ.

The forces on an intruder were studied in detail by van der Vaart et al. [11] by considering a single
large particle in an inclined plane system, similar to [8]. The effective volume of the large particle
is obtained using Voronoi tessellation, and Kumar et al. [13] showed that these values were close to
the partial molar volume of the large particle computed from kinetic theory. The net upward force
on the particle due to the flowing bed was found by imposing a linear spring force on the particle, as
in the work by Guillard et al. [10]. The lift force on the particle was then calculated by subtracting
the Archimedean buoyancy force, computed using the effective volume, from the upward force due
to the bed. In their work, van der Vaart et al. [11] measured the particle’s slip velocity and related
it to the lift force using the theory of Saffman Lift [18]. However, the slip velocities are very close
to zero with significant error bars since the net body force on the intruder in the direction of flow
was very small. More recently, van Schrojenstein Lantman et al. [15] have computed the pressure in
the neighborhood of an intruder and showed that Archimedean buoyancy is lower than the upward
force experienced by the intruder, in agreement with the results of van der Vaart et al. [11].

Adopting the same spring force approach, Jing et al. [14] carried out an extensive study using
DEM of the segregation of a single large particle in an inclined plane flow and a shear flow with
gravity. They found that the total upward force due to the bed, scaled using the Archimedean
buoyancy force based on the particle volume (rather than the effective volume), was a function
of the size ratio (S) alone for a wide range of system parameters. An empirical fit to the data
was presented and it was seen that the scaled segregation force was larger than the component
of the weight of the intruder for 1 < S < 4, indicating that intruders within this size range would
rise, whereas those outside it would sink. In subsequent work, Jing et al. [16] obtained a scaling
law for the segregation force by decomposing it into two terms: First, a gravity-induced pressure
gradient term similar to buoyancy, and a second shear rate gradient term, both shown to be a function
of the particle size ratio alone. Duan et al. [19] extended this approach to bidisperse flowing granular
mixtures with arbitrary concentrations of small and large particles and predicted the concentration
below which results for single intruders would remain applicable.

In the present work, we compute the lift, drag, and buoyancy forces acting on a single large
particle (intruder) in a dense granular flow using DEM simulations. The intruder is constrained by
a linear spring in the direction normal to the flow as in [10]. A pulling body force FP (positive or
negative) is imposed on the intruder in the direction of the flow to generate significant slip velocities
to enhance the accuracy of our subsequent force calculations. Two systems are studied: (1) a simple
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FIG. 1. Schematic view of the systems used in the simulations. (a) Shear flow of layer thickness h, with
wall velocity of U and a force FN acting on each particle of the upper wall. (b) Inclined plane flow of layer
thickness h, at an inclination angle θ . The components of the gravitational acceleration vector are indicated.

shear flow without gravity to compute the lift and drag forces in the absence of buoyancy, and
(2) flow down an inclined plane. In the latter case, the drag, lift, and buoyancy forces on the intruder
are individually calculated by carrying out simulations for different values of the pulling force (FP).
The work aims to develop both a qualitative and quantitative understanding of the effect of intruder
size and local shear rate on the lift, drag, and buoyancy forces on an intruder, while improving
upon previous work in terms of the accuracy of computations. The relative velocity and stress in the
neighborhood of the intruder are also studied to gain insight into the causes of the forces experienced
by the intruder. Computational details are given next, followed by the results of the study, which
includes a brief discussion of the application of the results to segregation in sheared binary mixtures.
The conclusions are given in the final section.

II. COMPUTATIONAL DETAILS

Systems. The flow of particles with a nominal diameter d and an intruder of diameter di is
simulated using the discrete element method in two systems: (1) a gravity-free shear flow and
(2) a gravity-driven flow on a rough inclined plane, shown schematically in Fig. 1. The shear flow
is generated by parallel plates composed of particles of diameter d arranged on a square lattice,
moving in opposite directions with a velocity U . The plates are made rough by displacing their
particles through a random distance in the range (0, d ) along the inward surface normal. The
inclined plane has the same configuration, except that the random displacement is instead in the
range (0, 1.5d ). The shear flow is generated at constant pressure by allowing the upper plate to
move in the z direction and applying a constant force FN in the −z direction on each particle of
the plate. The simulation box has a cross section 25d × 25d in the xy plane and a height of about
40d . Periodic boundary conditions are applied in the x and y directions. The lift force is sensitive to
the cross-sectional dimensions and we use sufficiently large values so that further increase does not
affect the results. Here, 25 000 particles form the bulk medium and a polydispersity in size is used
with diameters uniformly distributed in the range (0.9d, 1.1d ) to prevent crystallization. A single
intruder, characterized by a size ratio S = di/d , is used in each simulation. The density ρ of the
particles and the intruder are the same. In both systems, the position of the intruder is constrained
in the z direction by the application of a spring force,

FS = K (zi − z0), (1)

where zi is the position of the intruder, z0 is the zero force position, and K is the spring stiffness. In
addition, we apply a pulling force on the intruder, FP, in the x direction. In the case of the inclined
plane flow, the pulling force results in a higher mean velocity. To counteract this, a reaction force
−FP/25 000 is applied on each bulk particle.

Parameters. The simulations are carried out using the LAMMPS package [20]. We take d = 0.1 cm
and ρ = 2.5 g/cm3 in all the simulations. Intruders of sizes corresponding to the size ratios S = 1,
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TABLE I. Parameter values used in the DEM simulations.

Parameter Dimensionless value Value in cgs units

kt 2 × 107 2568000
kt/kn 2/7 2/7
γn 50.0 4952.0
γt 0.0 0.0
en 0.88 0.88
et 1 1
μ 0.5 0.5

2, 3, 4, 5, and 6 are used. The Hookean spring model with viscous dissipation and friction
corresponding to the L3 model of Silbert et al. [21] is used to calculate the interparticle forces,
and the parameter values are listed in Table I. In the shear flow, we take the normal force to be
FN = 3 dyn per particle, which results in a pressure of 300 dyn/cm2, and different wall velocities,
U = 25, 50, and 100 cm/s. Three angles are used for the inclined plane simulations, θ = 25, 26,
and 27◦.

The spring force parameters used are K = 20 dyn/cm and z0 = 20d in both systems; however,
for large intruders (S > 4) in the inclined plane system, we use K = 40 dyn/cm and z0 = 25d .
Such values are chosen to ensure that the intruder is roughly in the middle of the flowing layer,
and the results are independent of the values of K and z0. Simulations with different pulling force
values, positive and negative, are carried out to generate a range of slip velocities. For the shear
flow, we use FP = −5S, −2.5S, 2.5S, and 5S, and for the inclined plane flow, we use FP = −10S,
−5S, 5S, and 10S. Different values of FP are used so as to obtain similar slip velocities, accounting
for the higher resistance of larger particles and the higher viscosity of the inclined plane flow. The
integration time step used was dt = 10−6 s, which is 1/50th of the time of a collision. To attain a
steady state, we first simulated the flows with dt = 10−5 s for 10 s and then for 1 s with a time step
dt = 10−6 s. Steady-state data are generated over a run of 10 s with dt = 10−6 s, corresponding to
107 steps, and split into 20 sets of duration 0.5 s each. The protocol is repeated three times for each
parameter set, starting with different random seeds, yielding 60 data sets, which are used to calculate
the mean value and standard error for quantities of interest, discussed below. Additional simulations
are carried out for both systems with S = 4 to study the flow and stress in the neighborhood of the
intruder.

In addition, simulations to determine the effective volume of an intruder (VE ) are carried out for
an inclined plane system of size 12d × 12d × 40d , with an angle of inclination 25◦ and 8000 base
particles. Here, ni well-separated intruder particles are added and we compute the resulting increase
in the height of the flowing layer (�h). The number of intruders (ni) is such that the total volume of
the intruders is about 64V , where V = πd3/6 is the volume of a base particle. This gives an increase
in the height of about 0.15%.

Analysis. The primary data generated from the simulations are the mean position of the intruder,
z̄i, which yields the mean value of the spring force, F̄S from Eq. (1), and the mean slip velocity,
defined as

us = ui − u(z̄i ), (2)

where ui is the mean velocity of the intruder in the x direction and u(z̄i ) is the mean velocity of
the bulk particles at the mean position of the intruder. The mean slip velocity is calculated by
approximating the mean velocity of the bulk particles to be locally linear.

In the case of the shear flow system at steady state, the lift force is equal to the spring force,

FL = FS (z̄i ), (3)
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and the mean drag force is equal to the pulling force applied on the intruder,

FD = FP. (4)

We correlate the drag force using a Stokes’ Law–type scaling of the form

FD = CDηdius, (5)

where CD is a constant, η = τxz/γ̇ is the apparent viscosity, τxz is the shear stress, and
γ̇ = (du/dz)|z̄i is the shear rate at the mean position of the intruder. The latter two are computed for
simulations of the system without the intruder.

For the inclined plane system at steady state, the spring force is given by

FS (z̄i ) = FL + FBz − Fgz, (6)

where FBz is the component of the buoyancy force in the z direction, Fgz = migcos θ is the
component of the weight of the intruder in the −z direction, and mi is the mass of the intruder.
To obtain the buoyancy force and the lift force from the computed spring force, we assume that the
buoyancy force is independent of the slip velocity (us), and the lift force is dependent on the slip
velocity [FL = FL(us)]. The buoyancy force is then calculated from the spring force at us = 0, i.e.,
when there is no lift force (FL = 0). Similarly, the pulling force at steady state is

FP = FD + FBx − Fgx, (7)

where FBx and Fgx are components of the buoyancy force and weight in the x direction. Again
the buoyancy force is calculated from Eq. (7) at us = 0, which corresponds to a zero drag force
(FD = 0). The solid fraction (φ), velocity (vx), and shear stress (τxz) profiles are computed over the
height of the systems (z), using bins of height d to characterize the flows.

The effective volume of the intruder (VE ) is calculated from the change in the free surface height
(�h) as

VE ≡ �Vbed = �hLxLy/ni, (8)

assuming that the increase in system volume on the addition of intruders, for all other conditions
remaining constant, is the effective volume occupied by the intruders. As shown in Sec. III C, VE

is larger than Vi, the intruder volume, and corresponds to the volume of the intruder along with a
portion of the void space around it. As computed, VE is the partial molar volume of the intruder at
infinite dilution.

The local two-dimensional velocity distribution and stress distribution are computed in a neigh-
borhood of the intruder in a vertical slice of thickness d passing through the center of the intruder
and in a layer adjacent to the intruder surface. In addition to the two-dimensional distributions, two
types of profiles are presented: Variation with the height relative to the intruder and variation over
the circumference in a vertical plane passing through the center of the intruder.

III. RESULTS AND DISCUSSION

In the following sections, we first present results for the shear flow system followed by the
inclined plane flow system. Analysis of the lift, drag, and buoyancy forces in the two systems is
presented next. Results for the variation of solid fraction, velocities, and stresses in the neighborhood
of the intruder are given in the final section.

A. Shear flow system

The computed steady-state profiles for the system are shown in Fig. 2 for an intruder with a size
ratio S = 6 (solid lines). A linear velocity profile and a constant shear stress of about 150 dyn/cm2

are obtained for the shear flow. The solid fraction is nearly constant with height. Distortions in the
three profiles are clearly seen in the interval z ∈ (2, 2.5) cm, which corresponds to the location of
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FIG. 2. Variation of the (a) solid fraction φ, (b) velocity vx , and (c) shear stress τxz for the shear flow for
U = 50 cm/s and two different intruder sizes.

the intruder. For other, smaller intruders, the degree of distortion is considerably smaller, as can be
seen for the profiles for S = 2, also shown in Fig. 2 (dashed lines). The results are representative of
the general trends in the velocity, shear stress, and volume fraction over all combinations of S and
U studied.

Figure 3 shows the variation of the spring force (FS) and the slip velocity (us) with the pulling
force (FP) for three different intruder sizes (S). The variation of both FS and us is linear with FP.
In this case, the spring force is equal to the lift force (FL), and the pulling force is equal to the
drag force (FD). The results indicate that the lift force is proportional to the drag force (FL ∝ FD),
and the drag force is proportional to the slip velocity (FD ∝ us). Further, the lift force and the slip
velocity are zero for FP = 0, as might be expected from the system’s symmetry, and the direction
of the lift force is in the positive z direction. For a fixed pulling force, the lift force (FL) and slip
velocity (us) decrease with an increase in intruder size (S). The dashed lines in the figure are the
linear least-squares fit to the data of the form FL = RFD and us = FD/ξ , where R and ξ are the
fitting constants. Similar results are obtained for the other intruder sizes (S) and plate velocities (U )
considered.

B. Inclined plane flow

The computed profiles for the inclined flow system are shown in Fig. 4 for an intruder with a
size ratio S = 6. The velocity profile is a Bagnold profile [21] and the stress increases linearly with
depth. The solid fraction is nearly constant with height in the system, as for the shear flow (Fig. 2).

We define the forces FT x = FP + Fgx and FT z = FS + Fgz, which correspond to the total bed force
on the intruder in the −x and z directions, respectively. Figure 5 shows the variation of these forces
(FT x, FT z) versus the slip velocity (us). The forces FT x and FT z both vary linearly with the slip
velocity (us) over the range of pulling forces used, and both increase with intruder size for a fixed
slip velocity (us). The data are plotted in this form to facilitate analysis using Eqs. (6) and (7), which
can be written as

FT x = ξus + FBx, (9)

FT z = Rξus + FBz, (10)

taking the drag force to be FD = ξus and the lift force to be FL = Rξus. The dashed lines in the
figure are linear least-squares fits of the above equations to the data taking ξ , R, FBx, and FBz as
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FIG. 3. Variation of (a) the spring force (FS) and (b) the slip velocity (us) with the pulling force (FP) in
the shear flow system for three different intruder sizes (S), for a wall velocity, U = 50 cm/s. The error bars
indicate the standard error and the dashed lines are linear least-squares fits to the data.

fitting constants. The fits, thus, yield the drag, lift, and buoyancy forces for each intruder size (S)
and inclined plane angle (θ ). Similar results are obtained for the other intruder sizes and inclined
plane angles studied here. Figure 6 shows the variation of the lift force (FL) with the drag force (FD),
which is linear. As found for the shear flow, the lift force acts upward for a positive slip velocity.

C. Scaling relations

We consider here the scaling behavior of the drag, lift, and buoyancy forces computed for the
two systems. Anticipating a Stokes’ Law scaling for the drag force [Eq. (5)], Fig. 7 shows a plot of
the drag force (FD) versus ηdius for all the data for both systems, as indicated in the legend. The data
collapse to a single line and the dashed line is a linear least-squares fit of Eq. (5) to the data taking
CD to be a fitting parameter. The fitted coefficient CD is slightly lower than that obtained by Tripathi
and Khakhar [8], which may be due to the larger system used in the present work. The Stokes’ Law
scaling is reasonable on dimensional grounds since the particle Reynolds number Re = ρφd2

i γ̇ /η

is less than 2 in all cases, implying that inertial effects are negligible. Here, the shear rate is given
by γ̇ = |du/dz|.

We first consider scaling of the lift force using the theory of Saffman [18] and Stone [22], which
gives the lift force as

FL = −1.615(ρφηγ̇ )1/2d2
i us, (11)
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FIG. 4. Variation of the (a) solid fraction φ, (b) velocity vx , and (c) shear stress τxz for the inclined plane
flow for an inclination angle θ = 25◦ and two intruder sizes.

for du/dz > 0. The theory predicts that the lift force acts in the −z direction for a positive slip
velocity us, which is opposite to the results obtained here. We thus consider only the magnitude of

FIG. 5. Variation of the components of the total applied force on the intruder with slip velocity (us): (a) x
component (FT x) and (b) z component (FT z). The error bars indicate the standard error and the dashed lines are
linear least-squares fits of Eqs. (9) and (10) to the data.
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FIG. 6. Variation of the lift force (FL) with drag force (FD) for three intruder sizes (S). The error bars
indicate the standard error and the dashed lines are linear least-squares fits to the data.

the force in the scaling. From Eq. (11), the ratio R = FL/FD is given by

R = CL

√
Re, (12)

where CL is a constant. Figure 8 shows a plot of R versus
√

Re for all the data. The results indicate
that the data do not conform to the Saffman theory, even in magnitude.

Based on the finding that FL ∝ FD and that the lift force decreases with increasing intruder size,
we consider next an empirical scaling of the form R = A − BS or, equivalently,

FL = FD(A − BS) = 2.52πηdius(A − BS), (13)

where A and B are constants. Fitting Eq. (13) to all the data gives A = 0.27 ± 0.02 and B = 0.028 ±
0.005, and a comparison of the predictions of Eq. (13) to the simulation data is shown in Fig. 9. The
match between the two is reasonably good. The results indicate that the lift force is 10–30% of the
drag force, with the ratio R varying linearly with the intruder size ratio S.

FIG. 7. Variation of the drag force (FD) with ηdius for all the data. Empty polygonal symbols correspond
to data for shear flow at wall velocity U = 25 cm/s and filled polygonal symbols to data for the inclined plane
flow for inclination angle θ = 25◦, for different size ratios (S) as indicated in the legend. The other symbols
correspond to S = 2, different wall velocities (U ) for shear flow, and different inclination angles (θ ) for inclined
plane flow. The dashed line is a linear least-squares fit to the data.
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FIG. 8. Variation of the ratio of the lift force to the drag force (R = FL/FD) with Re1/2 for all the data.

Next we consider the scaling relations for the buoyancy forces obtained from the data for
the inclined plane flow. Figure 10 shows the variation of the buoyancy forces in the x and z
directions scaled by the component of the weight of the particle in the corresponding direction
(FBx/Fgx, FBz/Fgz) versus the intruder size ratio (S). The data for the buoyancy force in both
directions collapse to a single curve. The scaled buoyancy forces are larger than unity (FBz > Fgz)
for S > 1 and S < 4, indicating a net upward force on the intruder, even in the absence of a lift
force. The correlation of Jing et al. [14] for the scaled total upward force (FT z/Fgz), which is a sum
of the buoyancy force and the lift force, is

f (S) = φ[1 − c1 exp(−S/R1)][1 + c2 exp(−S/R2)], (14)

with c1 = 1.43, c2 = 3.55, R1 = 0.92, R2 = 2.94, and is shown in the figure as a dotted line.
We apply a correction to the correlation by subtracting the lift force estimated from Eq. (13). In
the absence of a pulling force, which corresponds to the system of Jing et al. [14], the drag force
is given by FD = Fgx − FBx. Using Eq. (13) and the relation FBx/Fgx = FBz/Fgz, the lift force is
given by

FL = −α(FBz − Fgz ), (15)

FIG. 9. Comparison of the computed lift force (FL-comp) with the lift force predicted from Eq. (13) (FL-
pred). The symbols are the same as in Fig. 7.
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FIG. 10. Variation of the buoyancy forces in the two directions (FBn, n = x, z) scaled with the correspond-
ing component of the particle weight (Fgn, n = x, z) with size ratio S for the inclined plane flow for inclination
angle θ = 25◦. Data for inclination angles θ = 26◦ and 27◦ and S = 2 are included. The correlation of Jing
et al. [14] [Eq. (14)] and the correlation corrected for the lift force (Jing et al. corrected) are shown. The
correlation [Eq. (14)] fitted to the data is shown (Jing et al. fitted). The scaled Archimedean buoyancy forces
(φVE/Vi) using the computed intruder effective volume (VE ) are shown along with the scaled Archimedean
force reported by Kumar et al. [13] and van der Vaart et al. [11].

where α = (A − BS) tan θ . In this case, when FBz > Fgz, the slip velocity is negative and the lift
force acts downward (in the −z direction), which is opposite to the direction of the buoyancy force.
Finally, from FT z = FBz + FL, we obtain a relation for the buoyancy force as

FBz

Fgz
= 1

1 − α

(
FT z

Fgz
− α

)
. (16)

Predictions of the correlation for the buoyancy force using Eq. (16) are shown as a dashed line in
Fig. 10, and the difference between the dashed line and the dotted line shows the contribution of lift
to the upward force, which is small. The predictions of the correlation are slightly higher than our
computed values. A fit of Eq. (14) to the data is also shown in Fig. 10, and the coefficients obtained
from fitting are c1 = 20.3, c2 = 2.11, R1 = 0.25, and R2 = 4.17.

Finally, consider the calculations based on Archimedean buoyancy for which the buoyancy force
is given by FBz = ρφVE gz, where VE is the effective volume of the intruder, taking into account the
excluded volume around it. The scaled buoyancy force is then

FBz

Fgz
= φVE

Vi
. (17)

The increase in the height of the flowing layer on adding a single intruder of size S = 4 is shown
in Fig. 11. Similar results are obtained for other size ratios (S). The scaled Archimedean buoyancy
using the effective volume computed using this method is shown in Fig. 10. We also calculate
the Archimedean buoyancy using two different estimates of the effective volume: (1) assuming
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FIG. 11. Volume fraction profiles [φ(z)], with an intruder of size ratio S = 4 and without an intruder. Inset:
A magnified view of the increase in the free surface height on adding an intruder.

the effective volume to be equal to the partial molar volume obtained by Kumar et al. [13], and
(2) using the Voronoi tessellation-based data reported by van der Vaart et al. [11]. The results are
also shown in Fig. 10 and are close to those based on the intruder addition method. All three results
are smaller than the computed buoyancy force, indicating that Archimedean buoyancy is not large
enough to predict the rise of the intruder, even when the effective volume is considered, as noted in
previous works [11,15]. The lift force cannot account for the difference since it acts in a direction
opposite to the buoyancy force, as shown in Eq. (15). The causes of the lift force and the buoyancy
force are discussed next.

D. Microscale analysis

We consider the flow and stress in a local region around an intruder of size ratio S = 4 for both
flows. In the results presented below for the shear flow, we take the wall velocity to be U = 50 cm/s
and the pulling force to be FP = 40 dyn. For the inclined plane flow, we take the inclination angle
to be 25◦ and the pulling force to be FP = 1.74 dyn, at which slip velocity is us = 0. The shear flow
simulations provide insights into the causes of the lift force, while the inclined plane simulations
give insights into the causes of the buoyancy force.

Figure 12 shows the variation of the relative velocity (vxr = vx − ui) and the normal stress (σzz)
with height relative to the intruder center, zr = z − zi, along a vertical line passing through the
center of the intruder. The bins, of dimension d × d × 0.2d , used for computing the profiles are
shown schematically in the inset in Fig. 12(a). The dashed lines show the profiles in the absence of
the intruder. The velocity profiles [Figs. 12(a) and 12(b)] indicate that the influence of the intruder
is limited to a short distance (2d − 3d) from the surface of the intruder, and most of the change
is due to slip of the first layer of particles adjacent to the intruder. The profiles are not similar to
the Stokes’ flow profiles. The slip is symmetric for the inclined plane flow since the slip velocity
is us = 0, but not for the shear flow for which the slip velocity is positive. The stress profile shows
large fluctuations near the surface of the intruder with maximum values about six times the mean
value for both flows [Figs. 12(b) and 12(d)].

Figure 13 shows the variation of solid fraction (φ) and the inward normal velocity relative to the
intruder (vn), computed for a vertical slice of thickness d centered on the intruder centroid, using
bins of cross section 0.2d × 0.2d in the xrzr plane and thickness d , shown schematically in the
inset of Fig. 13. The shear flow and the inclined plane flow results are qualitatively similar, though
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FIG. 12. Variation of the relative velocity (vxr) and normal stress (σzz) with height from the center of the
intruder (zr) for size ratio S = 4. (a),(c) Shear flow for U = 50 cm/s and FP = 40 dyn. (b),(d) Inclined plane
flow for inclination angle θ = 25◦ and FP = 1.74 dyn (us = 0).

FIG. 13. The distribution of the solid fraction (φ), and inward normal velocity (vn) in a vertical plane
passing through the center of the intruder of size ratio S = 4 for (a),(c) shear flow for wall velocity U = 50
cm/s and (b),(d) inclined plane flow for inclination angle θ = 25◦. Inset: Schematic of the bins used in the
computations, with bin dimensions 0.2d × d × 0.2d .
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FIG. 14. Variation of (a),(b) the inward normal velocity (vn) and (c),(d) the upward stress (|σnz|) at the
surface of the intruder of size S = 4 with angles (θs, φs) in spherical coordinates for shear flow with wall
velocity U = 50 cm/s (top row) and for inclined plane flow with inclination angle θ = 25◦ (bottom row). The
bin dimensions are �θs = 2◦, �φs = 2◦, and �r = 1.5d .

the velocity magnitudes are significantly different. The solid fraction (φ) shows strong layering in
the second and fourth quadrants near the intruder [Figs. 13(a) and 13(b)]. This is a consequence
of the positive values of vn in these quadrants [Figs. 13(c) and 13(d)]; the negative values of vn are
not shown for clarity.

Figure 14 shows the inward normal velocity (vn) and the magnitude of the upward component of
the total stress (|σnz|). The figure shows the variation of the variables over a hemispherical surface
of the intruder in spherical coordinates (θs, φs), where θs = 0 corresponds to the north pole of the
intruder and φs = 0 to xr = −di/2. In other words, the front hemispherical surface is mapped to
a square area. The dimensions of the bins used are �θr = �φr = 2◦ and �r = 1.5d . The inward
normal velocity, for vn > 0, is higher in quadrant IV relative to that in quadrant II for the shear
flow due to the significant slip velocity [Fig. 14(a)]. For the inclined plane flow, the velocities in
the two quadrants are nearly the same since the slip velocity us = 0 [Fig. 14(b)]. The magnitude
of the upward component of the total stress on the surface is low over most of the surface, except
for patches of high stress in quadrants II and IV, with the stress in quadrant IV being higher for
both flows [Figs. 14(c) and 14(d)]. The higher stress in quadrant IV for the shear flow is due to
the higher collisional stress due to the higher relative velocity in the quadrant because us > 0. In
contrast, the higher stress for the inclined plane flow is due to the stress variation with height and the
concentration of the stress in small patches on the surface of the intruder. The stress for the inclined
plane flow is significantly larger than the shear flow case.

Figure 15 shows the variation of the inward normal relative velocity (vn) and the upward
component of the total stress on the surface of the intruder (σnz) with angle (β) for the shear flow,
acting on the surface of the intruder in a vertical slice passing through the center of the intruder.
The bins used in the computations have dimensions �β = 2◦, �r = 1.5d , and width d , and are
shown schematically in the figure. The inward normal velocity has peaks in the second and fourth
quadrants, and the dashed lines show the magnitudes of the peak values of vn in quadrant II. The
peak in quadrant IV is slightly higher than that in quadrant II due to the positive slip velocity.
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FIG. 15. Variation of (a) the inward normal velocity (vn) and (b) the total upward stress (σnz) at the surface
of the intruder with angle (β) defined in the schematic view shown in the inset with bins of dimensions �β = 2◦

and �r = 1.5d . The data are for intruder sizes S = 4 and S = 2, and wall velocity U = 50 cm/s for the shear
flow. The dashed lines correspond to the magnitude of the minimum values of the stress.

The stress is nearly zero in the first and third quadrants, acts downward in the second quadrant,
and acts upward in the fourth quadrant. The dashed lines in the figure show the magnitudes of the
stress minima in the second quadrant and show that the upward stress is larger than the downward
stress. The net upward force, resulting from a relatively higher inward normal velocity in quadrant
IV, is then responsible for granular lift. Data for an intruder size S = 2, for which the lift force is
higher than that for S = 4, are also shown in Fig. 15. The difference in values vn of quadrant IV
and quadrant II are higher for S = 2, resulting in a higher net upward stress. This reinforces the
conclusion that the higher inward normal velocity in quadrant IV due to a positive slip velocity
(us > 0) is the cause of granular lift.

Figure 16 shows similar graphs for the inclined plane for an intruder of size S = 4. The inward
normal velocity (vn) is nearly the same in quadrants II and IV [Fig. 16(a)], which is expected since
the slip velocity is zero, us = 0. The variation of the total stress in the z direction (σnz) with angle
β is shown in Fig. 16(b). The stress acts downward in quadrant II and upward in quadrant IV, and
is nearly zero in the other two quadrants. The dashed line shows the magnitude of the minimum
stress in quadrant II. The maximum net upward stress, given by the height of the peak above the
dashed line, gives a measure of the buoyancy force. The z component of the hydrostatic force on
the intruder for S = 4, considering its volume to be the effective volume (VE ), is also shown in the
figure. The maximum net upward stress, in this case, is about two orders of magnitude smaller since
the stress is assumed to be hydrostatic over the surface of the intruder. Thus, shearing causes strong
layering of particles in quadrants II and IV, leading to stress concentration in these quadrants, and
these high stresses generate buoyancy forces larger than the predictions of Archimedean buoyancy.
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FIG. 16. Variation of (a) inward normal velocity (vn) and (b) the total upward stress (σnz) at the surface
of the intruder with angle β, as defined in Fig. 15. The data are for intruder size S = 4, and inclination angle
θ = 25◦ for the inclined plane flow. The dashed line corresponds to the magnitude of the minimum value of
the stress. The predicted pressure on the intruder surface for a linear variation of the pressure with height
(hydrostatic) is also shown.

The results of this section show that the velocity disturbance is confined to a small region around
the intruder, and the stress is localized with large fluctuations of the stress relative to the mean value.
The rapid decrease in the velocity disturbance with distance from the intruder indicates that the
inertial contribution required for the Saffman lift is negligible. The lift force in the granular system
is, instead, due to the higher collisional stress in the fourth quadrant due to the higher inward normal
velocity generated by the positive slip velocity. The buoyancy force is larger than the Archimedean
buoyancy force due to the high concentration of stress in the second and fourth quadrants, compared
to the hydrostatic stress on the surface.

E. Application to segregation modeling

Finally, we show how the computational results for buoyancy, lift, and drag can be used to
formulate continuum models for the segregation flux in binary mixtures of large and small particles
in a shear flow under gravity, following the approach given in [9]. There is no pulling force on the
particles (FP = 0). The segregation flux can then be incorporated in the convective-diffusion balance
equation to compute the concentration distribution of the large particles in the system.

Consider first the dilute limit in which the volume concentration of large particles, νi = φi/φ, is
low, with φi being the solid fraction of the large particles. In this case, the segregation flux of the
large particles in the z direction is

J0
iz = vSiνi, (18)
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where vSi is the segregation velocity of the large particles given by

vSi = (FBz + FL − Fgz )/ξ . (19)

On substituting for FL and FBz using Eqs. (13) and (14), we get

vSi = [ f (S) − 1]migcos θ/ξ + (A − BS)us. (20)

From the force balance in the z direction, the slip velocity is obtained as

us = [ f (S) − 1]mig sin θ/ξ . (21)

Combining Eqs. (20) and (21), we get the segregation flux for small volume concentrations of the
large particles as

J0
iz = mig[ f (S) − 1]

CDηdi
[cos θ + (A − BS) sin θ ]νi. (22)

Given the small values of the coefficients A, B and sin θ , the contribution of the lift force to the
segregation flux is small, as seen in Fig. 10.

To extend the above expression for the segregation flux to higher volume concentrations of the
large particles, we may use the empirical correction proposed by Kumar et al. [13],

Jiz = J0
iz(1 − νi )(1 + kνi ), (23)

where k ≈ S is an empirical coefficient. The correction was shown to give good predictions of the
concentration profile, νi(z), for S � 2. A more rigorous approach would involve computation of
the buoyancy, lift, and drag forces for mixtures with different concentrations of the large particles
instead of a single intruder, as done by Duan et al. [19] for the segregation force.

IV. CONCLUSIONS

Forces on an intruder in two flows, i.e., a shear flow at constant pressure and an inclined plane
flow driven by gravity, are computed using DEM simulations. The force normal to the flow direction
is obtained using a linear spring, and a pulling force is applied in the flow direction to generate
substantial slip velocities. The system size is taken to be sufficiently large, and averaging is taken
over long enough times to ensure accurate results. Lift and drag forces are obtained from the shear
flow computations, and lift, drag, and buoyancy forces are obtained from the inclined plane flow
computations, with the buoyancy force defined as the upward force when there is no slip velocity
(us = 0).

The computed drag force was found to follow Stokes’ Law scaling over the range of velocities
considered, and data for both systems, for varying intruder sizes and shear rates, collapse to a single
line, despite significantly different apparent viscosities in the two systems. The computed granular
lift force was found to act in a direction opposite to the Saffman Lift and to be 10–30% of the drag
force in the magnitude. The ratio of the lift force to the drag force (R) was found to vary linearly with
the intruder size ratio as R = A − BS, and all the data for different sizes and shear rates collapsed
to a single line for different intruder sizes and shear rates for both systems. The buoyancy forces
on the intruder, computed in directions normal to the flow and the direction of flow, when scaled
with the corresponding component of the weight of the intruder, are found to depend only on the
size ratio (S). Again, all the data for the inclined plane flow collapse to a single curve and are close
to, but slightly lower than, the correlation of Jing et al. [14]. The buoyancy force is larger than
the weight of intruders with a size ratio in the range S ∈ (1, 4) and is responsible for the rise of the
intruder. The lift force does not contribute to the rise since it is much smaller in magnitude and acts
in a direction opposite to the buoyancy.

Analysis of the velocity profiles in the neighborhood of the intruder for both systems shows
that they are not similar to Stokes flow, and there is significant wall slip at the intruder surface
as well as high-stress fluctuations near the intruder—as much as six times the mean stress. The
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stress distributions for the shear flow indicate that there are high-stress patches in the second and
fourth quadrants of the intruder caused by particle layering due to the inward normal velocity of
the base particles in these regions. The lift force is caused by the upward stress in the fourth
quadrant being higher than the downward stress in the second quadrant, which results from the
higher inward normal velocity in the fourth quadrant caused by a positive slip velocity (us > 0).
The stress distributions for the inclined plane flow with a pulling force at which there is no slip
velocity (us = 0) again show patches of high stress in the second and fourth quadrants because of
the inward normal velocities in these regions. The upward stress in the fourth quadrant is larger
than the downward stress due to the hydrostatic gradient causing the upward buoyancy force.
The magnitude of this buoyancy force is significantly larger than the buoyancy force (even after
accounting for the effective volume) due to the large stress concentration in patches on the surface
of the intruder.

The results presented here for a single intruder are applied to model segregation in mixtures with
a low volume concentration of large particles. The results indicate that size segregation in such dilute
systems of particles of different sizes and equal density is primarily due to buoyancy. However, lift
forces could play a role if the inclination angle is sufficiently large so as to cause a significant slip
velocity. The model for segregation is extended to the entire range of concentrations of the large
particles by means of an empirical correction factor applied to the single particles’ values. However,
for a more accurate estimate of the buoyancy, drag, and lift forces, a similar computational approach
as used here, but with mixtures of large particles of different concentrations, would be required, as
done by Duan et al. [19] for the segregation force.
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