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Induced capillary dipoles in floating particle assemblies
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Capillary-driven self-assembly is a common fabrication method that consists of placing
floating particles onto a liquid-air interface. The attractive interaction between particles
is due to the local deformations of the interface and is often described via so-called
capillary charges. This approach holds for similar particles far from each other. When
particles are close together or when they differ in size, their contact lines become tilted.
By using different spherical particles, we show evidence experimentally that the capillary
interaction becomes far more complex. We propose to consider induced capillary dipoles
to model the menisci, therefore providing an extra attraction at short distances. This effect
is enhanced for particles of different sizes such that binary self-assemblies reveal unusual
local ordering.

DOI: 10.1103/PhysRevFluids.8.074001

In the last two decades, capillary-driven self-assembly has been proposed as a promising
fabrication method at the mesoscopic scale, i.e., in between usual bottom-up and top-down fab-
rication methods [1–3]. Capillary-driven self-assembly consists of gently placing floating particles
at some liquid-air interface. Local deformation of the liquid interface appears around each particle
depending on the particle’s shape, buoyancy, and wetting properties [4–6]. These deformations
of the interface can cause particles to aggregate and eventually form patterns. A popular ap-
proach describes the interaction by considering so-called capillary charges to characterize the
local deformation around each particle. Capillary charges can be encoded on the particles using
surface treatment [7], or by designing specific particle shapes [6], opening ways to self-assemble
elaborated structures. Using these properties, self-assembly has been exploited to achieve an im-
pressive number of complex tasks in microfluidic, including low-Reynolds-number mixing [8,9],
microfabrication [10,11], drug delivery [12], cargo transport [13], sensoring [14], or photonics
[15,16]. However, the accurate measurement of the capillary force between the components, driving
the dynamics, is a complex problem and has been done recently in independent works [17,18]. It
has been shown [18] that the capillary charge representation fails to capture the interaction when
particles come close together, or when particles have quite different sizes or depths. The present
work aims to collect accurate data and to provide an elegant way to model those situations.

Our experimental setup, sketched in Fig. 1, is as following. Spherical beads of alloy AISI 52
100, a soft ferromagnetic alloy, are deposited on an air-water interface where they float thanks to
the surface tension. The density ρs of the particles is 7800 kg/m3. Three diameter sizes are used:
d = 400 µm, 500μm, and 800 µm. Due to their high volumic mass, the beads are more than 90%
submerged such that the radius of the contact line a ≈ d/4. More precisely, we have measured
the contact line radius to be approximately 80 µm, 180 µm, and 230 µm for the respective particle
diameters of 400 µm, 500 µm, and 800 µm. A picture of an 800 µm bead and its contact line is shown
in Fig. 2. The particles have an apparent magnetic susceptibility χ close to three. The water bath
is surrounded by one pair of Helmholtz coils creating a spatially uniform vertical magnetic field
Bz, inducing vertical magnetic moments inside the particles. In that case, the bead attraction can be
counterbalanced by magnetic dipole-dipole repulsion. This repulsion can be precisely tuned by the

2469-990X/2023/8(7)/074001(11) 074001-1 ©2023 American Physical Society

https://orcid.org/0000-0002-7180-9451
https://orcid.org/0000-0001-7302-0019
https://orcid.org/0000-0002-1824-2011
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.8.074001&domain=pdf&date_stamp=2023-07-25
https://doi.org/10.1103/PhysRevFluids.8.074001


M. DELENS, Y. COLLARD, AND N. VANDEWALLE

FIG. 1. (a) Picture of two 400 µm soft ferromagnetic beads floating on the water-air interface under a
vertical magnetic field Bz. (b) Sketch of the equilibrium situation for two identical beads. The contact line,
denoted in red, is pinned and has a radius a. Each particle is described by a capillary charge Q and dipolar
components ±q. (c) Picture of a 400 µm and an 800 µm bead at equilibrium. (d) Equilibrium distance ri j

between nonequivalent spheres involves a depth difference �z but also locally steeper slopes. Each particle i
is described by a central charge Qi and dipolar components ±qi at a distance ai from its center.

magnetic field, thanks to the soft ferromagnetic properties exhibited by the particles. When the field
Bz is larger than a threshold, typically of a few dozen of Gauss, the magnetocapillary binding leads to
an equilibrium distance r� larger than the bead diameters, avoiding contact [19,20]. Figure 1 shows
pictures of equilibrium situations for identical particles (a) and an asymmetric pair (c). Measuring
the equilibrium distance provides an elegant way to evaluate the capillary attraction between floating
spheres with high precision, as will be presented below.
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FIG. 2. Top view of an 800 µm bead floating on a water-air interface. A ring light highlights the contact
line, enabling accurate measurements. The bead diameter d and contact line radius a are depicted in white.

Considering a spherical floating particle, it has been shown that the elevation of the interface z, at a
distance r from a particle center, has the analytical form

z(r) = QK0

( r

λ

)
, (1)

where K0 is a modified Bessel function of the second kind and order zero [21–23]. The typical
distance over which the liquid surface is deformed is called the capillary length λ = √

γ /ρg and
λ = 2.7 mm for water. The characteristic deviation length Q, usually called capillary charge in the
literature, depends on various physical properties like the size of the particle, the surface tension γ ,
the liquid density ρ, or the wetting properties of the particle [21–23]. Capillary charge Q will be
positive for a convex meniscus and negative for a concave meniscus. With the meniscus around our
particles being concave, it is therefore represented by a negative capillary charge Q in this article.
As calculated by Vella and others, for a spherical bead of density ρs > ρw, Q is proportional to the
particle volume V and is given by

Q = R3

λ2

(
2ρs/ρw − 1

3
− cos(θ )

2
+ cos(θ )3

6

)
, (2)

where θ is the contact angle and we have measured θ ≈ 75◦ for our beads [21]. Capillary charges
of our particles can therefore be calculated using Eq. (2). We find −5 µm, −10 µm, and −42 µm for
the respective particle diameters 400 µm, 500 µm, and 800 µm.

When two particles i and j are placed on the interface with a separating distance ri j , each particle
feels the deformation created by the other one. Assuming that the superposition principle holds for
surface deformations [26], the particles interact according to the capillary interaction potential given
by

UQQ = −2πγ QiQjK0

( ri j

λ

)
(3)

[4,23,24]. Particles with similar wetting properties will therefore attract each other and form
floating aggregates [25]. This phenomenon is colloquially called the Cheerios effect, referring to
the cereals aggregating in a milk bowl [21]. This approach using monopolar capillary charge has
been extensively used in the case of spherical particles. However, when particles are coming close
together, the superposition principle does not hold anymore [26]. This can be understood in the
sketch of Figs. 1(b) and 1(d). The contact lines pinned on the particles, which are horizontal when
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far from each other, start to tilt more and more when particles come closer [27]. This effect is more
present for asymmetric cases, i.e., when different particle sizes are used, as sketched in Fig. 1(d).
Please note that the contact lines can only tilt when they are pinned on the spherical particles. Indeed,
if the contact angle is fixed, the spheres would rotate to keep a horizontal contact line until they are
very close and where the contact line would undulate [28]. Inclined pinned contact lines have been
numerically studied by Cooray et al. [29] only for identical spheres. They calculated up to 30% extra
attraction when beads come close together. Another nice experiment using magnetic disks resting
at a fluid interface has demonstrated a spontaneous tilting of the disks at short distances and extra
attraction has also been measured [17]. Many anisotropic objects such as cylinders, tilted magnetic
ellipsoids, as well as planar particles with hydrophilic and hydrophobic faces tilt on fluid-fluid
interfaces and thus also present a tilted contact line [30–34]. Analytical models or experiments
to study the tilt of the contact line between two spheres are still lacking.

The magnetocapillary interaction potential between two soft-ferromagnetic beads i and j sepa-
rated by a distance ri j is therefore given by

UMc = −2πγ QiQjK0

( ri j

λ

)
+ μ0

4π

μiμ j

r3
i j

, (4)

where one recognizes the capillary attraction UQQ in the first term of the right hand. The second term
is the magnetic repulsion UM induced by a vertical magnetic field Bz. The magnetic moment μi is
directly proportional to the field strength Bz and to the volume Vi of particle i. As a consequence,
both terms in Eq. (4) are proportional to the product of particle volumes. The interaction potential
can be rewritten in dimensionless units such that

uMc = −K0(xi j ) + Mc

x3
i j

, (5)

where xi j is the distance ri j normalized by the capillary length and

Mc = κB2
z = χ2ViVj

8π2μ0γ QiQjλ3
B2

z = 2χ2λ

9γμ0
( 2ρs/ρw−1

3 − cos(θ )
2 + cos(θ )3

6

)2 B2
z (6)

is the magnetocapillary number capturing the competition between capillary and magnetic effects
and already defined in other studies [20,35–38]. The factor κ is independent of particle sizes, mean-
ing that the interaction potential is also independent. For θ = 75◦, we found κ = 2.62 10−5 G−2.
The potential uMc has a minimum corresponding to the equilibrium distance r� = λx�. The only
control parameter remaining in Eq.(5) is the field strength Bz via Mc. This nice property allows us
to build many different floating crystals varying the lattice spacing [19,20,39].

We first realized series of accurate measurements for the equilibrium distance r� between two
particles where different particle diameters are considered; di = {400, 500, 800} µm. In Fig. 3,
the resulting center-to-center distances r� as a function of Bz are drawn for all pairs of particles.
Horizontal dashed lines are drawn to define the center-to-center distance at which the beads come
into contact. In all cases, the equilibrium distances show a monotonic behavior as a function of
Bz. However, the data do not overlap on a single black curve as expected with the dimensionless
potential uMc described in Eq. (5).

Considering symmetrical cases, one observes an increase of the capillary attraction, i.e., a slight
decrease of r�, when d grows. For asymmetrical cases, the deviation from the model presented
in Eq. (5) is even more pronounced. In both cases (symmetric and asymmetric), the experimental
equilibrium distance r� is always smaller than the one predicted by the model.

In order to tackle the complex dispersion of data points reported above, one should identify the
different origins of the deviation of the equilibrium distance r� from the model presented in Eq. (5).
In fact, two physical effects are taking place: (i) an additional capillary effect due to tilted contact
lines as sketched in Figs. 1(b) and 1(d), increasing the capillary attraction; and (ii) a small reduction
of magnetic repulsion only in asymmetric systems due to a difference �z of particle depths as
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FIG. 3. Experimental data of equilibrium distances r� as a function of Bz for (a): pairs of d = 400 µm,
and d = 800 µm, and the asymmetrical case d1 = 400 µm and d2 = 800 µm and (b): pairs of d = 500 µm
and d = 800 µm, and the asymmetrical case d1 = 500 µm and d2 = 800 µm. In most cases, the error bars
are smaller than the symbol size. At low field values, near the particle contact, the error bars are three times
the symbol size. The black upper curve is the equilibrium distance of the potential uMc described in Eq. (5).
Colored curves are equilibrium distances predicted by our model uMc+ described in Eq. (10).

sketched in Fig. 1(d). The increase in attraction between the beads combined with the reduction in
magnetic repulsion between them explains why the experimental values of r� are lower than those
predicted by the model.

Let us consider the following observation: when two particles come together, the contact line of
diameter 2a around each particle becomes tilted. This inclination of the contact line may induce
extra attraction between particles. In order to model this effect, we propose to add a positive and
a negative charge ±q around each particle, as shown in Figs. 1(b) and 1(d). Therefore, the total
capillary charge Q of each particle remains unchanged but a capillary dipole of size 2a has been
added. More precisely, the dipolar charges ±q j induced on particle j come from the slope ∂z

∂r
generated by the presence of the particle i. Taking the derivative of Eq. (1), this induced charge
is given by

q j = a jQi

λ
K1

( ri j

λ

)
. (7)

Those additional charges ±q j should be placed in the line joining the two-particle centers at distance
ri j ± a from particle i. A similar capillary dipole will appear on particle i as induced by the presence
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of particle j. In order to evaluate the total interaction potential between particles i and j, one has to
consider the interactions between all the capillary charges of particle i {Qi,+qi,−qi} and particle
j {Qj,+q j,−q j}. As a first approximation, the resulting capillary interaction potential between two
spheres should include the capillary potential UQQ, presented in Eq. (3), plus a charge-dipole UQd

potential. The capillary charge-dipole interaction UQd considers the interaction between a charge Q
and the induced dipolar charges ±q of the opposite particle. Each case has attractive and repulsive
components like

UQd = −2πγ Qiq jK0

(
ri j − a j

λ

)
+ 2πγ Qiq jK0

(
ri j + a j

λ

)
− 2πγ QjqiK0

(
ri j − ai

λ

)

+ 2πγ QjqiK0

(
ri j + ai

λ

)
. (8)

Taking into account Eq. (7), and by developing the Bessel functions K0 around r with a � r, one
obtains the leading terms,

UQd = −4πγ

[
Q2

i

a2
j

λ2
+ Q2

j

a2
i

λ2

]
K2

1

( ri j

λ

)
, (9)

which is always attractive. Using the same process, we determine that the interaction between the
capillary dipoles, denoted as Udd , scales as (1/r)K3

1 (r/λ). However, this interaction term becomes
negligible compared to UQQ and UQd when r < λ. Consequently, Udd and the subsequent terms
of the multipolar expansion are not significant and can be disregarded. Hence, the total capillary
interaction potential is given by UQQ + UQd , which can be made dimensionless by dividing by
the factor 2πγ QiQj representing the characteristic capillary energy in the system. Finally, the
dimensionless magnetocapillary interaction potential of Eq. (5) becomes

uMc+ = −
[

K0(xi j ) + 2

(
Q2

i a2
j + Q2

j a
2
i

λ2QiQj

)
K2

1 (xi j )

]
+ Mc

x3
i j

[
1 − 3

(
�z

λxi j

)2
]
, (10)

where only leading terms are considered. The capillary attraction, given in the first large brackets,
is seen to be modified since the K2

1 term has significant value with respect to K0 when r < λ.
When the ratio between contact line radii a and capillary length λ tends to zero, one recovers the
capillary attraction of the previous model. Please note that the factor (Q2

i a2
j + Q2

j a
2
i )/λ2QiQj in

the charge-dipole term is highly nonlinear and increases rapidly with the asymmetry of the system.
Moreover, in asymmetrical cases only, the depth difference �z of the particle centers impacts the
magnetic repulsion. Indeed, the magnetic potential, given by the last term of Eq. (10), is reduced by
a simple factor [1 − 3(�z/λxi j )2]. In the symmetrical cases, the depth difference equals zero, and
one recovers the dimensionless magnetic potential described by the second term in Eq. (5).

In Fig. 3, the equilibrium distances predicted by our induced dipoles model uMc+ are plotted
for beads with identical diameters (red, violet, and blue curves). We observe that the theoretical
predictions agree well with the experimental observations. The difference between these curves is
only due to the effect of induced capillary dipoles which grow with the size of the particles. The
fits of the asymmetric 800-400 pair and 800-500 pair, the green and turquoise curves respectively,
are obtained using �z as the only fitting parameter. Due to geometrical considerations, �z is
constrained between 0 µm and 330 µm, the height between the center of the 800 µm bead and its
contact line. We obtain �z = 270 µm for the 800-400 pair and �z = 300 µm for the 800-500 pair.
For a distance above 1000 μm between the two beads, the magnetic repulsion reduction factor
[1 − 3(�z/λxi j )2] � 0.7. Since the magnetic reduction has a weak effect, the deviations from the
model in Fig. 3 were therefore mostly due to induced capillary dipoles and nonlinear terms in
Eq. (10). For asymmetrical cases, it should be remarked that the fits using Eq. (10) capture very
well the threshold below which beads come into contact. This gives us the precise magnitude of
the magnetic field Bz at which capillary attraction overcomes magnetic repulsion, leading to contact
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FIG. 4. Dimensionless magnetocapillary interaction potential uMc+ as a function of normalized interdis-
tance x = r/λ for three different Bz values increasing as the black arrow. Dots indicate the minimum of each
potential corresponding to the equilibrium distance reported in Fig. 3(a). Vertical dashed lines are contact bead
situations.

between the beads. We can conclude that all data are wellfitted by the induced capillary dipole
model.

Figure 4 presents the dimensionless interaction potential uMc+ as a function of normalized
distance x for the three pairs studied in Fig. 3(a) and for three different vertical magnetic field
values Bz = {7, 23, 34} G. These values correspond to the magnetic field at which each pair of
beads come into contact. The minimum of each potential is given by the colored dots indicating
the dimensionless equilibrium distance x� between the two particles. For the symmetrical situations
(blue and red curves), one observes that larger objects, i.e., larger dipolar moments aQ, imply
shorter equilibrium distances. This difference between equilibrium distances is significant at short
distances, i.e., for low Bz values. For asymmetrical cases, the situation is more pronounced. A new
feature also appears: a second minimum may develop at contact due to some attractive magnetic
interaction instead of short-range repulsion. For a range of Bz values, contacting beads and separated
beads may coexist at equilibrium. On top of that, the potential uMc+ for asymmetric cases (in
green) is much lower than for symmetric cases, which means that asymmetric cases are more
cohesive situations. This is due to the induced capillary dipoles, which are enhanced in asymmetric
cases. An assembly of beads of different sizes could take advantage of these bonds and be more
functionalized [40].

Moreover, our nice experiment allows us to estimate the lateral capillary force Fc between parti-
cles directly by measuring the magnetic force counterbalancing it at equilibrium. This method has
also been used to measure the capillary forces between floating magnetic colloids under magnetic
field by Helseth and Fischer [41]. Experimental measurements of the dimensionless capillary force
for all pairs of particles are presented in Fig. 5. When the beads are far from each other, the contact
lines are horizontal, UQd = 0, such that the capillary force is only given by Fc = −∂ (UQQ)/∂r. For
the symmetrical pairs 400-400, 500-500, and 800-800, we can therefore define a subset of the data
with large values of r�, where the measurement of the force directly provides access to the capillary
charges by their product. We obtain capillary charges of −5 µm, −11 µm, and −42 µm for the
400 µm, 500 µm, and 800 µm beads, respectively, which aligns with the expected values from Eq. (2)
with a contact angle θ ≈ 75◦. The colored curves in Fig. 5 represent the dimensionless capillary
forces predicted by our model Fc = −∂ (UQQ + UQd )/∂r, while the black curve does not consider
the tilt of the contact line. Once again, we observe a good agreement between the experimental data
and our induced capillary dipoles model.
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FIG. 5. Experimental data of the dimensionless capillary force as a function of the normalized interdistance
r/λ for (a): pairs of d = 400 µm and d = 800 µm, and the asymmetrical case d1 = 400 µm and d2 = 800 µm
and (b): pairs of d = 500 µm and d = 800 µm, and the asymmetrical case d1 = 500 µm and d2 = 800 µm.
Colored curves are capillary forces derived from the potential UQQ + UQd . The black curve is the capillary
force derived from the potential UQQ from Eq. (3) only. Vertical dashed lines are contact bead situations.

At r�/λ = 0.45, we observe an extra attraction of 4% for the 400-400 pair, 19% for the 500-500
pair, and 30% for the 800-800 pair. For these identical pairs, such increases are consistent with the
numerical observations of Cooray et al. [29]. The asymmetrical 800-400 pair exhibits 16% of extra
attraction which is less than the 800-800 pair. However, when the 400 µm bead is replaced with a
500 µm bead, forming an 800-500 pair, an additional attraction of 41% is observed. Interestingly,
in the case of the asymmetrical pair 800-500, we observe a further increase in attraction compared
to the 800-800 pair, despite a smaller product of charges in the UQQ potential. This behavior can be
explained by induced dipoles and the resulting nonlinearity of the model described in Eq. (10).

The next relevant question is: can we visualize the effects of capillary dipoles on floating particle
assemblies? The answer is affirmative. Figure 6 shows various pictures of self-assemblies. The first
picture (a) shows an assembly of N = 9 equivalent beads (diameter 400 µm) which is compared to
(b), a similar assembly in which a small bead is replaced by a much larger one (diameter 800 µm).
The monodisperse assembly is a tiny floating crystal with sixfold symmetry as expected from an
isotropic interaction. Please remark that fivefold defects could be observed on larger assemblies but
it relies on local curvature effects [19]. However, when a large bead is present, one first observes that
other beads are surrounding this bead in order to favor as much as possible asymmetrical binding,
which has lower potential energy as shown in Fig. 4. Here the large central bead can have up to eight
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FIG. 6. Various typical pictures of magnetocapillary self-assemblies. (a) Floating crystal of N = 9 small
beads (400 µm in diameter). (b) Similar system having one bead being replaced by a large one (800 µm in
diameter): the crystal now has an octagonal symmetry. (c) Floating crystal of N = 13 beads. (d) Seven small
beads are replaced by one large and six medium ones leading to a perfect flowerlike self-assembly having a nice
crystal ordering (sixfold symmetry). (e) Large binary self-assembly of 400 µm and 500 µm floating particles.
The 500 µm beads (in red) have six or seven neighbors.

neighbors. From what we discussed above, this octagonal symmetry is quite surprising because the
asymmetrical binding is shorter than symmetrical bonds. In fact, the central bead is not polarized
because all dipoles are canceling. However, strong induced dipoles on peripheral beads are all
pointing to the central bead. One understands that in that case, the neighboring dipoles are forming
angles around 45◦, a configuration that provides a strong extra attraction in between peripheral beads
allowing for eight beads to surround the heavy central one. A similar situation is shown in Figs. 6(c)
and (d) for the N = 13 beads system. For that specific number, identical beads are always forming
a tiny floating assembly with few symmetrical features: a rhombus of four beads surrounded by
nine beads. However, by changing a small bead with a large one (800 µm) and six small beads with
medium ones (500 µm), a flower is formed. Again, large beads tend to be surrounded by a shell of
medium ones, themselves surrounded by small ones. This trick can be used to form a perfect floating
crystal at liquid interfaces. In much larger floating crystals of identical particles, the induced dipoles
in various directions may cancel. In that case, sixfold symmetry is expected and some fivefold
defects may appear depending on the curvature of the interface [19]. No sevenfold defect has ever
been observed for identical particles. When some particles are replaced by larger ones, as shown
in Fig. 6(e), one observes sevenfold defects induced by the larger particles. Binary floating systems
may therefore reach a higher degree of complexity. This is left for future works.

In summary, an extra attraction is observed between close floating objects due to the tilt of
their contact lines. In the capillary charge approach, this effect can be captured by considering
the apparition of induced capillary dipoles. This model is found to fit our experimental data
accurately. Moreover, we found that asymmetrical situations are enhancing this phenomenon, and
we discussed these effects in regard to real self-assemblies. Since capillary-driven self-assembly
is encountered in many applications, our findings contribute to reaching much higher degrees of
complexity. Exploiting such effects could be of high interest to create specific structures that can be
functionalized, for example, to obtain locomotion [42].

This work is financially supported by the University of Liège through the CESAM Research
Unit and the FNRS CDR project number J.0186.23 entitled “Magnetocapillary Interactions for
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