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In this study, we consider the buoyancy-driven flow of a non-Newtonian fluid over an
inclined flat plate immersed in a thermally stratified medium. Using the Carreau model,
we determine the base flow profiles and associated linear stability results for both pseudo-
plastic and dilatant fluids. For steady basic flow, the shear-thinning behavior enhances the
convection and heat transfer characteristics while it is opposite for shear-thickening flow.
Based on linear stability analysis, the effects of Prandtl number, tile angle, and power-law
index on the transverse traveling Tolmien-Schlichting waves, the stationary longitudinal
rolls and the oblique rolls are investigated. Different from the Newtonian fluids, under
appropriate parameters, a new oblique rolls mode appears in dilatant fluids. Furthermore,
it is shown that both the TS mode and OR mode are destabilized and stabilized for
shear-thinning and shear-thickening fluids, respectively. However, non-Newtonian effects
always stabilize the SL mode. These results reveal that the nature of the stability depends
on the rheological properties significantly.

DOI: 10.1103/PhysRevFluids.8.073904

I. INTRODUCTION

Natural convection in thermally stratified fluids is very common in many industrial processes and
nature. The buoyancy-driven boundary layer (also known as buoyancy layer) flow will be generated
when an inclined plate is heated in a stably stratified fluid. The inclined buoyancy layer is first
introduced by Prandtl [1] to simulate the flows over valleys and mountains in stratified air. Based
on a vertical buoyancy layer solution [2], Gill and Davey [3] investigated the linear stability of
such a buoyancy layer at a vertical wall, and the inclined case was first analyzed by Iyer [4]. Two
types of instabilities is identified: the transverse traveling Tolmien-Schlichting (TS) waves and the
stationary longitudinal rolls (SL). Moreover, the nonlinear stability of inclined buoyancy layer with
uniform-heat-flux wall is studied by Iyer and Kelly [5]. It is obtained that the bifurcation of inclined
buoyancy layer can only be supercritical. Substantial progress has been made in many theoretical
and numerical studies of Prandtl buoyancy layers [6–11]. Most of these studies are mainly focused
on the transverse TS waves. Based on the three-dimensional stability analysis, Tao and Busse [12]
demonstrated that the oblique roll (OR) mode will be more unstable than the transverse TS wave
mode at some inclination angles and Prandtl numbers in ambient thermal stratification. In the
inviscid frame, Candelier et al. [13] studied the three-dimensional stability of boundary layer flow
in stable stratification. Besides, there are also some studies on convective and absolute instabilities.
For example, the instabilities of free convection buoyancy layer for an isothermal vertical flat
plate is studied by Krizhevsky et al. [14]. For the situation of the wall and the ambient fluid with
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different temperature gradients, Tao et al. [15,16] studied the temporal and spatial instability of
the vertical buoyancy-driven flow from both theoretical and numerical aspects. More recently, the
critical and spatiotemporal instability of the buoyancy-driven boundary layer on a vertical cylinder
is investigated by Xiao et al. [17].

The above-mentioned objects of studies are all Newtonian fluids. In fact, buoyancy-induced flows
with non-Newtonian behavior has also attracted considerable attention because it is very important
in industrial applications, where it is common to deal with fluids such as molten plastics, mud, paint,
blood and so on. In these problems, the most common fluids are pseudoplastic (shear-thinning)
and dilatant (shear-thickening). For a review of the fundamental works, we refer to the paper by
Siginer [18]. Generally, power-law model is the most commonly used to simulate the rheological
behavior of non-Newtonian fluids. The model parameters usually have significant effects on the
heat and mass transfer and stability of the flow. For example, the nature convection confined in an
enclosure with non-Newtonian fluids is study by Ozoe and Churchill [19]. The rheological behavior
is simulated by power-law model and it is observed that the critical Rayleigh number increases with
the flow behavior index. Molla and Yao [20] investigated the natural convection of modified power-
law viscosity model along a vertical flat plate. Their numerical results demonstrated that a similarity
solution for natural convection exists near the leading edge. Kaddiri et al. studied the Rayleigh-
Bénard convection of non-Newtonian power-law fluids with temperature dependent viscosity [21].
The numerical and analytical study of the onset of convection generated in a shallow cavity filled
with power-law fluids is carried out by Alloui et al. [22]. They concluded that the onset of convection
is subcritical for shear-thinning fluids and convection is found to occur at a supercritical Rayleigh
number equals to zero for shear-thickening fluids.

Although power-law fluid has the advantage of simple use, it can not avoid the disadvantage
of large viscosity when the shear rate is small. In 1972, Carreau model [23] was proposed to get
around this problem. Subsequently, many theoretical and numerical studies based on the Carreau
model have made substantial progress. Griffiths et al. [24] considered the stability of the non-
Newtonian boundary layer flow over a flat plate with Carreau constitutive viscosity relationship.
The results indicated that an increase in shear-thinning has the effect of significantly reducing
the value of the critical Reynolds number. For the boundary layer flow over an inclined flat plate,
Griffiths [25] presented the energy calculations to gain the mechanisms affecting the destabilization
of the disturbances, and the results suggested that the effect of shear-thinning will act to stabilize
the boundary-layer flow. Rousset et al. investigated the temporal stability of a Carreau fluid flow
down an inclined plane [26]. It demonstrated that the critical parameter is lower for shear-thinning
fluids than for Newtonian fluids and the shear dependency can change the nature of instability.
Rayleigh-Bénard thermosolutal convection instabilities in an enclosure is numerically investigated
by Rebhi [27]. A bistability convective phenomenon is discovered by performing the nonlinear
asymptotic analysis.

Up to now, there is little research on the natural convection immersed in thermally stratified
medium with non-Newtonian rheological behavior, although these are at the center of quite a few
industrial applications. More importantly, it is still unknown how the tile angle and Prandtl number
affect the instability in this buoyancy system, which is the main motivation of this paper. Different
from the previous study, in this paper we will investigate the instability of an inclined buoyancy-
driven flow with Carreau fluid in thermally stratified medium. The remainder of this investigation
is outlined as follows. Section II describes the mathematical formulation of the fluid problem and
the governing equations of linear stability analysis. The theoretical results of critical properties for
three modes (TS waves, OR mode and SL mode) are described in Sec. III. Finally, conclusions and
an outlook on further work are presented in Sec. IV.

II. MATHEMATICAL FORMULATION

Consider an inclined plate immersed in a quiescent ambient non-Newtonian fluid. A sketch of
the geometry and the reference frame is shown in Fig. 1, where the plate is inclined at an angle
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FIG. 1. Schematic geometry of an inclined plate immersed in thermally stratified fluid.

χ with respect to the horizontal. The coordinates x∗ and z∗ are parallel to the wall, which are the
streamwise and spanwise directions of the plate. y∗ is the coordinate in the wall-normal direction.
The fluid in the far field is stably stratified and its temperature varies linearly in the vertical direction

T ∗
∞(s∗) = T ∗

∞(0) + N∗
∞s∗, (1)

where T ∗
∞(0) is the reference temperature, N∗

∞ is the temperature gradient in the medium, and s∗
is the coordinate opposite to the direction of gravity g. The subscript “∞” and the hyperscript
“∗” denote the ambient condition and dimensional quantities, respectively. The wall temperature is
assumed to be T ∗

w (s∗) = T ∗
∞(s∗) + �T ∗, where �T ∗ > 0 is a constant temperature difference, i.e.,

the wall temperature is raised by a fixed amount �T ∗ above that of the fluid at the same height
outside the buoyancy layer.

The governing equations with the Boussinesq approximation are

∂u∗

∂t∗ + u∗ · ∇u∗ = −∇
(

P∗

ρr

)
− gγ (T ∗ − T ∗

∞) + ∇ · τ ∗,

∂T ∗

∂t∗ + u∗ · ∇T ∗ = κ∇2T ∗,

∇ · u∗ = 0,

(2)

where ρr is the reference density, γ is the coefficient of thermal expansion, κ is the thermal
diffusivity, and τ ∗ is the stress tensor which is defined as

τ ∗
i j = 2

μ∗
a(S∗)

ρr
D∗

i j . (3)

Here, μ∗
a is the non-Newtonian viscosity, D∗

i j and S∗ are the rate-of-strain tensor and the second
invariant of the strain rate tensor, respectively, are given by

D∗
i j = 1

2

(
∂u∗

i

∂x∗
j

+ ∂u∗
j

∂x∗
i

)
, S∗ =

√
2D∗

i jD
∗
i j . (4)

The non-Newtonian behavior of the fluid is described by the Carreau model. The constitutive
equation is given by

μ∗
a − μ∗

∞ = (μ∗
0 − μ∗

∞)[1 + (λ∗S∗)2]
(n−1)/2

, (5)

with μ∗
0 the zero-shear-rate viscosity, μ∗

∞ the infinite-shear-rate viscosity, λ∗ the material time
constant (relaxation time) and n the dimensionless power-law index. For many concentrated polymer
solutions and melts, the infinite-shear-rate viscosity μ∗

∞ is always associated with inviscid flows and
is considered to be negligible (Bird et al. [28]) compared to the zero-shear rate viscosity μ∗

0. The
fluid behavior is determined by λ∗ and n. When n = 1, the Carreau model will degenerate into
Newtonian fluid. For shear-thinning nature, we have 0 < n < 1 and the fluid as a pseudoplastic
fluid. And n > 1 indicates the fluid as a dilatant fluid.
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We shall use dimensionless velocity, length, time, and temperature as defined by

u0 = ρrd2gγ�T ∗ sin χ

μ∗
0

, d =
(

μ∗
0κ

gρrγ sin2 χN∞

) 1
4

, u = u∗

u0
,

(x, y, z) = (x∗, y∗, z∗)

d
, t = μ∗

0

ρrd2
t∗, T = T ∗ − T ∗

∞
�T ∗ .

The nondimensional parameters of the problem are the Grashof number Gr, the Prandtl number Pr,
and the dimensionless relaxation time λ:

Gr = gγ�T ∗d3ρ2
r

μ∗2
0

, Pr = μ∗
0

ρrκ
, λ = u0

d
λ∗.

The nondimensional variables are ux = Ux + ũx, uy = Uy + ũy, uz = Uz + ũz, μa = μb + μ̃a and
T = 
 + θ̃ , where ũx, ũy, ũz, μ̃a, and θ̃ are perturbations and Ux, Uy, Uz, μb, and 
 constitute the
undisturbed basic flow solution.

Now, we will first derive the basic flow within the boundary layer induced by buoyancy. The
flow is assumed to be steady and parallel in the following analysis. There must be Uy ≡ Uz ≡ 0, the
velocity Ux(y) and the temperature 
(y) is directed in the x direction. The steady basic flow can be
described by the following ordinary differential equations


 + D(μbDUx ) = 0, (6a)

Ux − D2
 = 0, (6b)

where D = d
dy and μb = [1 + (λ|DUx|)2]

n−1
2 . The corresponding boundary conditions are

Ux(0) = Ux(∞) = T (0) − 1 = T (∞) = 0. (7)

The above boundary value problem Eqs. (6) and (7) is solved by the built-in function bvp4c in
MATLAB. It is worth noting that there are no explicit parameters of Grashof number, Prandtl
number and tile angle in Eqs. (6) and (7), which means the steady basic flow is not relevant on
Gr, Pr, and χ .

The velocity Ux(y) and temperature 
(y) profiles for different value of relaxation time λ and
power-law index n are shown in Fig. 2. It is observed that the velocity and temperature variations for
typical parameters are confined to the boundary layer at the wall. The flow reversals and temperature
defects exist for both pseudoplastic fluid (0 < n < 1) and dilatant fluid (n > 1). The effects of
power-law index n on basic flow are plotted in Figs. 2(a) and 2(b) for λ = 4. Larger n decreases
the absolute values of the maximum and the minimum vertical velocity, and also decreases the
temperature defect. The gradients of velocity and temperature profiles near the wall increases with
the decreases of n, which indicates a thinning of the buoyancy boundary layer. This is to be expected
physically, as the non-Newtonian viscosity becomes smaller, the flow will be more concentrated on
the wall. Thus, compared to the Newtonian case (n = 1), the shear-thinning behavior (0 < n < 1)
enhances the convection and heat transfer characteristics. The effects of material time constant λ on
basic flow are plotted in Figs. 2(c) and 2(d) for shear-thinning flow n = 0.8. It is shown that large λ

increases both the values of the maximum streamwise velocities and the temperature gradients near
the wall. It is worth mentioning that the basic flow decays exponentially in the far-field, which can
be obtained by logarithm of the absolute value of Ux(y) or 
(y). Theoretically, we can obtain the
asymptotic analytical expression of velocity in the far-field. Considering that the velocity gradient in
the far-field is very small, i.e., μb ≈ 1, Eqs. (6) become a system of linear equations. The analytical
solution of the far-field velocity is Ux(y) ∼ e− y√

2 sin( y√
2

), and the decay rate is −1/
√

2, which is
consistent with the numerical solution.

Besides, the variation of the viscosity across the boundary layer is also presented in Figs. 2(e)
and 2(f). It can be seen that the viscosity of shear-thinning fluid is lower than that of Newtonian
fluid due to the velocity gradient in the boundary layer, but the viscosity of shear-thickening fluid
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FIG. 2. The velocity profiles [(a),(c)] and the temperature profiles [(b),(d)] for different power index n and
dimensionless relaxation time λ with fixing λ = 4 or n = 0.8. The black arrow indicates the direction in which
the parameter increases. The variation of the viscosity across the boundary layer are presented in panels (e)
and (f).

shows the opposite property. For shear thinning fluid (n = 0.8), the increase of relaxation time will
promote the further reduction of viscosity. The flow field outside the boundary layer has almost no
velocity gradient, and the viscosity is about 1.

In the following stability analysis, the general three-dimensional infinitesimal disturbances
q̃(x, y, z, t ) on the base flow are decomposed into the form

q̃(x, y, z, t ) = q̂(y) exp [i(αx + βy − ωt )], (8)

where α and β are the wave number in streamwise and spanwise directions, respectively. ω = ωr +
iωi is the complex frequency. For linear stability analysis, μ̃a is expanded by using the generalized

073904-5



ZHANG, ZHAO, XIAO, AND WANG

binomial theorem and neglecting the high order nonlinear terms

μ̃a = [1 + (λ|DUx|)2]
n−3

2 [(n − 1)λ2DUx]

(
∂ ũx

∂y
+ ∂ ũy

∂x

)
. (9)

The perturbation equations governing the stability of basic state are

iαûx + Dûy + iβûz = 0, (10a)

L1ûx + GrDUxûy + iα p̂ = θ̂ + μ2DUx(D2ûx + iαDûy) + (2μ2D2Ux + Dμ2DUx )(Dûx + iαûy),

(10b)

L1ûy + D p̂ = cot χθ̂ + 2μ2D2Uxûy + μ2DUxiα(Dûx + iαûy), (10c)

L1ûz + iβ p̂ = μ2D2Uxûy(Dûz + iβûy), (10d)

L2θ̂ + GrD
ûy + 1

Pr
(ûx + cot χ ûy) = 0, (10e)

where L1, L2, μ1 and μ2 are defined as follows:

L1 = −μ1(D2 − α2 − β2) + iαGrUx − iω, (11a)

L2 = −μ1

Pr
(D2 − α2 − β2) + iαGrUx − iω, (11b)

μ1 = [1 + (λ|DUx|)2]
n−1

2 , (11c)

μ2 = [1 + (λ|DUx|)2]
n−3

2 [(n − 1)λ2DUx]. (11d)

And the boundary conditions are given by

ûx(0) = ûy(0) = ûz(0) = θ̂ (0) = 0, (12a)

ûx(∞) = ûy(∞) = ûz(∞) = θ̂ (∞) = 0. (12b)

The stability of the steady-flow solutions with the boundary condition, Eqs. (10) and (12),
constitute a generalized eigenvalue problem, given by the dispersion relationship

F (α, β, ω; Gr, Pr, n, λ) = 0, (13)

which are solved by a Chebyshev spectral collocation method. For the temporal linear stability
analysis, we need to solve the problem of Eq. (13) for the given wave number α and β, while
the frequency ω is complex and the imaginal part of ω represents the growth rate. Considering
that all the variables are defined in the semi-infinite physical domain y ∈ [0,∞), so we map
the computational Chebyshev domain η ∈ [−1,+1] onto the physical domain via the coordinate
transformation

y = Lmax

2
(η + 1), (14)

where Lmax is the distance from the wall surface. Then, the eigenfunctions expanded in Chebyshev
series are substituted into Eq. (13), which are applied at the Gauss-Lobatto points and solved by
the QZ-method. For more details on numerical calculation, we refer the reader to Schmid and
Henningson [29]. We take Several tests have for different Chebyshev points and computational
domains to ensure numerical convergence, and the results are shown in Table I. Note that the
results of Newtonian fluid (n = 1) are also listed in Table I, which is in good agreement with the
results obtained by Xiao et al. [11] when using the same dimensionless parameters. The number of
Chebyshev points N = 100 and the value of Lmax = 30 are found to be sufficiently accurate for all
unstable modes discussed in this paper.
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TABLE I. Numerical values of the frequency at different Chebyshev points and computational domains
for four sets of typical parameters with Pr = 0.72 and χ = 40◦. The number of Chebyshev points 100 and
Lmax = 30 are used in the following calculations, which is marked in bold.

n = 0.6, λ = 1 n = 0.6, λ = 4 n = 1 n = 1.2, λ = 8
(Gr, α, β) (50, 0.2, 0.2) (40, 0.4, 0.1) (41.26, 0.3578, 0) (60, 0.2, 0.8)

(Lmax, N) ω ω ω ω

(15, 50) 3.0086–0.0255i 4.1099+0.2185i 3.6699+0.0633i 2.8853–0.0692i
(25, 50) 3.0127–0.0213i 4.1100+0.2187i 3.6704+0.0640i 2.8865–0.0695i
(30, 100) 3.0127–0.0213i 4.1101+0.2187i 3.6704+0.0640i 2.8852–0.0692i
(30, 200) 3.0127–0.0213i 4.1101+0.2187i 3.6704+0.0640i 2.8852–0.0692i
(50, 200) 3.0127–0.0213i 4.1101+0.2187i 3.6704+0.0640i 2.8852–0.0692i

III. RESULTS AND DISCUSSION

Since the linear instability problems play a significant role in the early stages of laminar-turbulent
transition, a temporal stability analysis is carried out to predict the fastest growing perturbations in
this section. The parametric study is mainly focused on the critical mode of the linear problem, and
the following analysis in this part is focused mainly on the neutral curve by setting the complex-
valued frequency ωi = 0. Temporal instabilities analysis of the dispersion relationship are based on
the Grashof number Gr, streamwise and spanwise wave number α, β, Prandtl number Pr, tile angle
χ , relaxation time λ, and power-law index n. Considering that it is extremely time-consuming and
complicated to calculate in all parameter spaces, a typical value of λ is selected. However, some
other values of λ are also calculated and no qualitative changes are found. The parametric study has
been performed within the ranges 5◦ < χ < 90◦, 10−2 < Pr < 102 and n = 0.6, 0.8, 1, 1.2, 1.4,
with fixed λ = 4.

It should be noted that Eq. (10) have the following symmetry properties,

(α, β, ω) → (α,−β, ω), (15a)

(α, β, ω) → (−α, β,−ω), (15b)

where ω is the complex conjugate of ω. Considering those two symmetry properties, only cases
with α > 0 and β > 0 are calculated. For linear instability analysis, we show that in some parameter
spaces several instability exchanges are noteworthy.

As mentioned in the Introduction, the instability of boundary layer may be dominated by three
different modes, namely the transverse traveling Tolmien-Schlichting waves with β = 0 (TS mode),
the stationary longitudinal rolls with α = 0, ωr = 0 (SL mode) and the oblique roll with α �= 0,
β �= 0 (OR mode). To understand the influence of power law index n on different modes, we first
select three typical values of n = 0.6, 1, and 1.4. The isocontours of Grashof number for different
value of n with λ = 4, χ = 50◦ and Pr = 0.72 are illustrated in Fig. 3. Three typical modes, i.e.,
SL mode, OR mode and TS mode, are all reflected in isocontours. The stationary longitudinal rolls
with zero frequency correspond to saddle points in α-β planes, which are not correspond to the
local minimum. The descent from the saddle points always leads to a minimum of Gr related to
OR mode or TS mode. In the case of shear-thinning fluid (n = 0.6) and Newtonian fluid (n = 1),
the isocontours show similar characteristics, and the difference is only in quantity. As shown in
Fig. 3(c), by browsing the isocontour, we find two local minimum of Gr correspond to OR mode
for n = 1.4. It is worth mentioning that the coexistence of two OR modes is also mentioned in
Tao’s work [12] with Newtonian fluid and isoflux boundary condition. According to the value of
streamwise wave number α, those two OR modes are referred to OR-1 and OR-2 in the following.
The OR-1 mode with critical parameters (Gr, α, β, ω) = (43.428, 0.042, 0.343, 1.580) is nearly
aligned with the streamwise direction, as α is about one order smaller than β. However, the critical
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FIG. 3. Isocontours of the Gr for different value of power law index n, (a) n = 0.6, (b) n = 1, (c) n = 1.4,
with λ = 4, χ = 50◦, and Pr = 0.72. Higher Grashof numbers of neutral states are not shown, which are more
stable modes and of lesser interest.

parameters for OR-2 are (Gr, α, β, ω) = (52.935, 0.335, 0.221, 3.665), which does not exist under
the same tile angle and Prandtl number for Newtonian fluid and not reported before.

For dilatant fluid, the dependence on the Prandtl number of the critical parameter values for SL
rolls, oblique rolls and TS waves are shown in Fig. 4 for n = 1.4 and χ = 60◦. The critical Grashof
numbers of all three modes decrease with increasing Prandtl number. The TS mode is the most
stable mode until the Prandtl number increases to 0.33. TS mode has the smallest wave number
near Pr = 1, and seems to have a asymptotic value when Prandtl number approaches zero. With
the increase of Pr, the OR-2 and OR-1 modes become the most unstable modes in turn. The OR-2
mode exits in the range 0.33 < Pr < 1, and it is the most unstable mode only in a very small range

FIG. 4. The critical parameters (a) Grashof number, (b) wave number, and (c) frequency as functions of the
Prandtl number Pr for n = 1.4 and χ = 60◦. The critical wave numbers are given by the solid line (α) and the
dotted line (β).

073904-8



INSTABILITIES OF THE BUOYANCY LAYER FOR THE …

FIG. 5. The critical parameters (a) Grashof number, (b) wave number, and (c) frequency as functions of
the tile angle χ for n = 1.4 and Pr = 0.72. The critical wave numbers are given by the solid line (α) and the
dotted line (β).

0.33 < Pr < 0.47 [see the inset in Fig. 4(a)]. Until Pr is increased to 1.1, the most unstable mode
changes back to TS wave, and the corresponding wave number increases with the increase of Pr,
but the frequency decreases. The TS wave is characterized by the highest critical frequency except
for Pr < 0.02. For Pr > 3.9, the critical oblique roll mode can no longer be found. With the further
increase in Pr, for Pr > 48, SL mode is the most unstable mode. However, the longitudinal roll has
the largest critical wave number among the four modes and it decreases with increasing Prandtl
number. It is interesting to note that when Pr ≈ 2, the local minimum corresponding to OR-1 mode
moves rapidly in the α-β plane and disappear finally with increasing the Prandtl number.

For the inclined buoyancy layer, the tile angle χ should always be an important factor. Its
influence on instability is discussed for n = 1.4 and Pr = 0.72. As shown in Fig. 5(a), the critical
Grashof numbers of SL rolls and TS wave first decrease and then increase, and each curve has a
single minimum. When the tile angle is very small (χ < 7.2◦), the plate is almost horizontal and
the stationary convection rolls are dominant. Similar phenomenon has been reported by Tao [12]
in Newtonian fluid. As the tile angle increases, TS waves are the most unstable mode when
7.2◦ < χ < 30◦. In the range of 30◦ < χ < 66◦, the critical mode changes to OR-1 mode. In

FIG. 6. The critical parameters (a) Grashof number, (b) wave number, and (c) frequency as functions of the
Prandtl number Pr for n = 0.6 and χ = 60◦. The critical wave numbers are given by the solid line (α) and the
dotted line (β).
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FIG. 7. The critical parameters (a) Grashof number, (b) wave number, and (c) frequency as functions of
the tile angle χ for n = 0.6 and Pr = 0.72. The critical wave numbers are given by the solid line (α) and the
dotted line (β).

addition, OR-2 mode appears when χ > 42◦, and with the further increase in tile angle, the Grashof
number also increases gradually. Until χ is increased to 66◦, the most unstable mode becomes OR-2
mode. The critical frequency and wave number are shown in Figs. 5(b) and 5(c), respectively. Under
the same tile angle and Prandtl number, the frequency of OR-2 mode is higher than that of OR-1
mode.

For pseudoplastic fluid, the influence of the Prandtl number Pr on the properties of the most
unstable mode for n = 0.6 and χ = 60◦ is shown in Fig. 6. The similarity with the result of n = 1.4
is that the critical Grashof numbers of all three modes decrease with increasing Prandtl number. An
important result obtained is that the curve for the oblique rolls mode does not intersect with that of
the TS waves, and TS waves always become unstable first [see Fig. 6(a)]. Besides, the existence of
OR-2 mode is not found at this tile angle, which is quite different from the result of dilatant fluids,
and we have shown this feature in the isocontour of Fig. 3. Figures 6(b) and 6(c) plot the critical
frequency and wave number, respectively. The dependence of instability on the tile angle in the case
Pr = 0.72 is illustrated in Fig. 7. The OR-2 mode is still not found in all the tile angles. TS waves set
in first at most inclined angles except for 35◦ < χ < 56◦ where the oblique roll is the most unstable
mode. More importantly, the curves representing TS modes are discontinuous at χ = 15◦, which is
not obvious in Fig. 7(a), but the wave number curve in Fig. 7(b) clearly depicts this feature. This

FIG. 8. The neutral curves for Pr = 0.72 and χ = 60◦ (a) TS mode, (b) OR mode, and (c) SL mode. For
the oblique rolls mode, total wave number k = (α2 + β2)

1
2 is used in abscissa. The OR-1 and OR-2 mode in

panel (b) are represented by solid lines and dotted lines, respectively.
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TABLE II. Critical values of Grashof number for different modes with Pr = 0.72 and χ = 60◦.

Mode n = 0.6 n = 0.8 n = 1.0 n = 1.2 n = 1.4

TS 38.08 45.14 51.57 57.46 62.89
OR-1 40.13 44.44 47.98 51.03 53.68
OR-2 – – – 57.52 60.37
SL 145.59 144.15 143.94 144.25 144.81

phenomenon is not found in Newtonian fluid and dilatant fluid. In addition, as can be seen from the
frequency curve shown in Fig. 7(c), the frequency corresponding to TS mode is always greater than
that of OR mode. The longitudinal rolls mode represented by the black curve is always standing
wave, so it is not shown.

The neutral stability curves obtained for TS mode, OR mode and SL mode are shown in Fig. 8. It
can be seen that with the increase of power-law index n, the critical values of Grashof number Grc

for TS waves increase, which means increasing n makes the basic flow more stable. However, the
critical wave number αc corresponding to Grc gradually decreases. For n = 1.4, the neutral curves
exhibit the common feature in the buoyancy-driven system, i.e. the neutral curves have higher-
and lower-wave-number parts. The nose-shaped piece are determined by thermal instability and
mechanical instability. This feature is not significant when n = 1 and χ = 60◦, but with the increase
of fluid viscosity, the higher-wave-number part controlled by mechanical instability [3] gradually
appears. For oblique rolls mode, the abscissa in Fig. 8(b) is expressed by the total wave number
k = (α2 + β2)

1
2 . The results show that the critical Gr of both OR-1 and OR-2 modes increases with

the increase of n, but there is no significant change in the critical wave number. Table II condenses
the critical values of Grashof number shown in Fig. 8. Due to the large Grc, the SL mode is usually
not the most unstable mode [see Fig. 8(c)]. Nevertheless, it is worth noting that both pseudoplastic
fluid and dilatant fluid correspond to higher Grc compared with the case of Newtonian fluid. It
suggests that the longitudinal rolls mode always becomes more stable regardless of the increase or
decrease of the value of n.

IV. CONCLUSION

In this work, we have studied the linear instability of a non-Newtonian buoyancy-driven flow on
an inclined heated plate in the stratified ambient fluid. The shear-thinning and shear-thickening
behaviors of non-Newtonian fluids are described by the Carreau model. For basics flow, either
increasing material time constant λ or decreasing power-law index n will promote convection. Based
on the linear instability analysis regime with the coupled Orr-Sommerfeld equation and energy
equation, the effects of Prandtl number Pr, tile angle χ and power-law index n are investigated. The
present parametric study is mainly focused on the critical modes (TS waves, OR mode and SL mode)
of the linear problem. For dilatant fluids (n > 1), a new oblique rolls mode appears under appropriate
parameter, which is different from the result of Newtonian fluids. Several instability exchanges
are identified for both dilatant fluid and pseudoplastic fluid. Depending on the tilt angle and the
Prandtl number, the most unstable mode of a non-Newtonian buoyancy layers can be transverse TS
waves, oblique rolls or stationary longitudinal rolls. Additionally, the neutral stability curves are
obtained with different power-law index. Results suggest that the effect of shear-thickening will act
to stabilize all the three modes, while the TS mode and OR mode are destabilized for shear-thinning.

However, for the parameter study in a large three-dimensional computational domain is rather
time-consuming, only typical parameters are considered for temporal evolution of disturbance. It is
conceivable that a situation where localized disturbance grows in both time and space. The present
configuration can also be extended to analyze the spatial-temporal instability in buoyancy layer.
For nonlinear instability, the effects of the nonlinear variation of the viscosity on the nature of the
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bifurcation are still an important subject. In addition, an inelastic non-Newtonian fluid is used in
this paper, and the influence of elasticity of viscoelastic fluids on the stability of the boundary layer
needs to be further studied. Despite this, we anticipate that the results may serve as a guide for future
research in understanding such a non-Newtonian buoyancy-driven flow system.
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