
PHYSICAL REVIEW FLUIDS 8, 073604 (2023)

Bubble breakup and effects of soluble surfactants on bubble dynamics
in a solid-body rotating flow

Majid Rodgar, Hélène Scolan , Jean-Louis Marié , Delphine Doppler,
and Jean-Philippe Matas *

Univ Lyon, Ecole Centrale de Lyon, CNRS, Univ Claude Bernard Lyon 1, INSA Lyon, LMFA, UMR5509,
69130, Ecully, France

(Received 30 January 2023; accepted 21 June 2023; published 17 July 2023)

We present experimental results describing the behavior of a bubble placed within a
horizontal high-speed solid-body rotating flow. We focus on the stretching and breakup of
the bubble that happens in this situation and on the effect that a surfactant introduced in the
liquid has on this. In order to explore the effects of surfactants on the bubble we have used
two solutions of tetradecyltrimethylammoniumbromide (TTAB), one whose concentration
is lower than the critical micelle concentration (0.33 CMC) and one with a concentration
larger than the CMC (2 CMC). The results show that, as expected, the deformation of the
bubble is larger in both surfactant solutions than in water and can be modeled by the model
of Rosenthal 1962 in the case of both solutions. In the case of the 0.33 CMC solution, the
bubble behaves as if it were seeing an effective surface tension equal to that in the saturated
solution. We observed that the bubble could break up at certain rotational speeds for large
bubble sizes. We show that this breakup occurs through a resonance mechanism when the
rotational velocity of the tank becomes of the order of the eigenfrequency of the bubble.

DOI: 10.1103/PhysRevFluids.8.073604

I. INTRODUCTION

A. Bubbles in vortices

When a bubble enters a flow with locally high-vorticity regions, it most often remains trapped
inside. This is observed in numerous flow situations where these high-vorticity regions exist like
mixing layers, turbulence, recirculating flows, and body or propeller wakes [1]. The reason is that
the flow inside high-vorticity regions is nonhomogeneous with low-pressure minimums at their
center, which induces forces driving bubbles towards the vortex core, as reported in many studies
[1–6]. At the laboratory scale, Naciri [7] proposed measurements of these forces in a horizontal
solid-body rotating flow, which can be representative of these vortex regions. He found that bubbles
released in this type of flow experience, like in shear flows [8–14], a lift force that, adding to
the other radial forces (pressure and added mass), make them spiraling towards an equilibrium
position located close to the rotation axis, according to the rotation speed. The coordinates of this
equilibrium position were used to measure the drag and lift coefficients. Several subsequent studies
contributed to determining these forces more precisely, either numerically [15,16] or experimentally
[16–20]. All were limited to moderate rotation speeds, a condition for the bubble to be at equilibrium
reasonably far from the rotation axis so that it does not disturb the solid-body rotating flow. The
property of the interface and its consequences on the bubble dynamics, its deformation, as on its
wake were examined considering various cases: clean interface [silicone oils (Rastello et al. [19])],
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interface partially covered with impurities [demineralized water (Rastello et al. [18,20], Rastello and
Marié [21])], or solid interface [spheres in glycerin mixtures or water (Bluemink et al. [15,16])].

B. Bubble behavior in a high-speed solid-body rotational flow

In Rodgar et al. [22] we investigated the behavior of a bubble released in a solid-body rotating
flow of demineralized water at higher rotation speeds (up to 900 rpm) and for larger bubble diameter
than in studies mentioned in the preceding paragraph. At these relatively high velocities, the bubble
stabilizes close to the rotation axis, most of the time straddling the axis, thus mimicking the bubbles
trapped in a vortex core. We studied the stretching of the bubble as a function of its size and of
the rotation of the cell. We showed that the bubble aspect ratio could be well reproduced by the
analytical model of Rosenthal [23], provided that the Weber number is corrected to account for
the real pressure field seen by the bubble. Indeed, in a horizontal solid-body rotating flow the
bubble is slightly shifted from the rotation axis by buoyancy, while the original model assumes
an axisymmetry of the bubble around this axis. The drag and lift coefficients were also determined
from the bubble position. For large Reynolds numbers, we observed that the bubble became very
unstable in position and shape, even leading in some cases to its breakup. The mechanism causing
the breakup was suspected to be a resonance.

C. Goal of the present study

Our first objective is to investigate the effect of a surfactant on the bubble stretching and breakup
and on the forces acting on the bubble. It has long been known that the presence of contaminants
(surfactant or impurities) at the surface could modify the forces acting on the bubble in a spectacular
way [20,24,25]. The inclusion of surfactants in the liquid can increase the drag force, hence reducing
the bubble rising velocity, and modify the lift force that bubbles experience in shear flows, which
may influence their lateral motion in such flows. These changes in behavior are linked to the
distribution of surfactant at the surface and the impact this has on the boundary conditions at
the interface. This distribution depends on the relative magnitude of the characteristic times of
adsorption, desorption, diffusion, and advection of the surfactant at the surface and on the nature
of the surfactant as well, solid or soluble [26,27]. For bubbles rising in a quiescent liquid, the
contaminants adsorbed are generally convected to the downstream cap of the bubble where they
accumulate, thus creating a gradient of surface tension. This gradient generates an interfacial shear
stress in the opposite direction, the Marangoni effect [28,29], which slows down the flow at the
rear of the bubble and induces an interfacial flow opposing that due to the bubble motion. The
consequence is that the upstream cap free from adsorbed contaminant behaves as a mobile surface
with vanishing stress, while the downstream cap covered by contaminant is immobile with no
slip-condition applying. Small amounts of contaminants may have a significant effect. For example,
Lakshmanan and Ehrhard [27] numerically found that surface tension variations of less than 2%
could generate Marangoni stresses strong enough to change the rising characteristic of a bubble to
that of a solid sphere with the same diameter.

The second objective of the present study is to characterize more precisely the conditions for
which bubble breakup happens and confirm that it is actually caused by a resonance phenomenon.
As will be presented below, for a given range of rotational velocities, breakup can be observed for
a wider range of conditions in the presence of surfactant: The mechanism responsible for bubble
instability can then be described more precisely in these conditions than with our previous water
experiments [22].

We will introduce the experimental setup in Sec. II, show the results for bubble deformation in
the presence of surfactants in Sec. III, and describe breakup conditions in Sec. IV.
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FIG. 1. Left: Configuration of the present problem, showing an approximately axisymmetric bubble close
to the axis of rotation z. Right: The experimental setup showing the positioning of the cameras relative to the
rotating tank.

II. EXPERIMENT

A. Experimental setup

The experimental setup is shown in Fig. 1 and is identical to the one previously used in Rodgar
et al. [22]. A Plexiglas tank with a diameter of 11 cm and a length of 10 cm is spun along its
horizontal axis z. Three holes on the body of the cylindrical tank are used to either fill in the liquid
or inject an air bubble. The range of tank rotation speed ω is [600–900] rpm, i.e., from 63 to 94
rad s−1. Two cameras are used to capture bubble shape and position: a Phantom 4.3 V360 is
positioned perpendicular to the axis of rotation (side view in Fig. 1) and records in particular the
stretching of the bubble along the axis of rotation. A second camera, Basler acA800, is placed
parallel to the cross-section x-y plane, along the axis of rotation (front view in Fig. 1). Two LED
panels are used for backlight imaging to facilitate our image processing techniques. The cameras
are synced to capture the bubble at the same time at a frame rate of F = 200 Hz. The resolution is
adjusted at 600 × 800 pixels for both cameras. For each injected bubble volume and fixed ω, 255
synchronized images are recorded. After suitable calibration accounting for bubble location and
refraction due to the cylindrical walls of the tank, the recorded images are processed to extract the
contour of the bubble on both side and front views (same setup and method as described in Rodgar
et al. [22]).

The experiment was performed with water in which a controlled quantity of surfactant is
introduced. The water used here is demineralized, similarly to the water used in Rastello et al. [18].
Its resistivity is 0.3 M� cm. We have used a chemical compound called tetradecyltrimethylammo-
niumbromide (TTAB), whose molecule is displayed in Fig. 2. The critical micelle concentration
(CMC) of TTAB is CCMC = 1.5 g/l. Below the CMC value, we expect the bubble interface to be not
entirely saturated. In order to explore the effects of TTAB on bubble dynamics, we have tested two
separate TTAB concentrations in demineralized water. One solution of TTAB surfactant lower than
CCMC and the other higher than CCMC.

tetradecyltrimethylammonium bromide

FIG. 2. Structure of the TTAB surfactant molecule. The carbon chain is the hydrophobic side of the
surfactant while the N+ side is the hydrophilic head.
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TABLE I. TTAB concentration and surface tension at rest for both solutions used in this study.

Solution name TTAB concentration (g/l) Ratio to CMC Surface tension

C′ 0.5 0.33 CMC σ0.33CMC = 51.5 ± 1.0 mN/m
C′′ 3 2 CMC σ2CMC = 37 ± 1.0 mN/m

First, the solution below the CMC condition has been investigated. This solution, which we
will call C′, has a concentration of 0.5 g/l, corresponding to 0.33 CMC. For the second solution,
we chose a concentration of 3 g/l, which is twice the CMC concentration. We call this solution
C′′. The objective is to test the effect of surfactants for both the unsaturated (lower than CMC,
C′ solution) and saturated (higher than CMC, C′′ solution) interface. A summary of our solutions
(C′ and C′′) concentrations is illustrated in Table I. The surface tension value of each solution,
shown in the third column of Table I, has been measured with two different tensiometers. First
a pendant drop tensiometer (Attension Theta Flex, Biolin Scientic AB) and a second pendant drop
tensiometer (Tracker Standard drop tensiometer). The value of the surface tension measured by both
tensiometers are consistent to 1 mN/m.

For performing experiments to analyze the bubble stretching in these two TTAB solutions,
we have explicitly chosen bubble volumes that do not lead to rupturing during the experiments.
Therefore, in order to understand the dynamics of the bubble in the presence of TTAB surfactant
(C′ and C′′) and compare them with the case of demineralized water, we are limited to a range of
volumes not larger than V = 0.16 cm3 for ω in the range [63,94] rad s−1 (see Tables II and III).

All the quantities introduced in the following sections related to the bubble size and position
are measured for each image and then averaged over the total number of images recorded by each
camera. The standard deviation around these averaged values will be indicated by the error bars. We
will assume in the modeling that the bubble is axisymmetric, of characteristic lengths L and D (Fig. 1
right). By increasing the rotation speed, the large bubble close to the axis of rotation becomes more
axisymmetric, as discussed by Rodgar et al. [22] and as will be shown in the following section.
For each front view image the equivalent bubble diameter D for a given injected volume and ω

is defined as the mean value between minor axis and major axis dimensions, as measured with
the Matlab regionprops function. As explained in Rodgar et al. [22], the bubble does not strictly
converge towards an equilibrium position but rather describes a limit cycle around a given position,
as illustrated in Fig. 3 for three different rotation rates. Given that the amplitude of the limit cycle
is small compared to the bubble size, in the following we call the “equilibrium position” the mean
bubble position. We retrieved the distance of the bubble to the axis of the cell, re, by measuring from
the images the distance from the center of the cell (using the circular shape of the wall of the tank)
to the center of the bubble, output by the regionprops Matlab function which detects the centroid of

TABLE II. Characteristics of the bubbles in solution C′ (0.33 CMC):
Mean volume V and radius Req of a spherical bubble of equivalent volume.

Mean volume V (cm3) Mean equivalent radius Req (cm)

0.001 0.072
0.004 0.098
0.013 0.146
0.05 0.228
0.069 0.254
0.078 0.266
0.117 0.303
0.127 0.311
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TABLE III. Characteristics of the bubbles in solution C′′ (2 CMC):
Mean volume V and radius Req of a spherical bubble of equivalent volume.

Mean volume V (cm3) Mean equivalent radius Req (cm)

0.003 0.09
0.014 0.15
0.025 0.183
0.04 0.21
0.055 0.23
0.083 0.27
0.123 0.308
0.138 0.32
0.141 0.322

the bubble front view projection. The length L is directly measured as the major axis from the side
view projection, with the same Matlab function.

B. Dimensionless parameters

We discuss in this section the parameters and corresponding dimensionless numbers needed to
describe the position and shape of a bubble of volume V placed in a solid-body rotating flow. As
mentioned before we characterize the bubble shape with two lengths: a length L corresponding to
the dimension of the bubble along the axis of rotation z and the (supposedly) smaller length scale
D, corresponding to the diameter of the bubble projection in a plane normal to the axis of rotation.
Two dimensionless numbers are introduced to quantify the shape of the bubble: the aspect ratio
X = L/D, which determines the stretching of the bubble along the axis, and the aspect ratio XF ,
defined as the ratio of major to minor axis as measured on the front view. The physical parameters
in this problem are the acceleration of gravity, g; the liquid density, ρl ; the rotational velocity of
the tank, ω; the gas-liquid surface tension, σ ; and the dynamic viscosity of the liquid, μ. We add
to these quantities the distance of the bubble to the axis of the cell, re, which controls the pressure
difference seen by the bubble.

We group the above parameters into four independent dimensionless numbers, namely the
Rossby number Ro = re/D, the Reynolds number Re = ρlωreD/μ, the Froude number Fr =
ω2re/g, and the Weber number We = ρlω

2D3/8σ . We have chosen here to introduce a Reynolds
number based on the mean velocity seen by the bubble. An alternative choice could be to introduce

(a) (b) (c)

FIG. 3. Limit cycles described by bubble, for C′ solution, V = 0.078 cm3 and (a) ω = 62.6 rad s, (b) ω =
78.5 rad s, and (c) ω = 94.2 rad s. The red cross corresponds to the center of the tank.
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(a) (b)

FIG. 4. Variation of the Rossby number Ro as a function of g/(D ω2). (a) Bubbles in C′ solution. (b) Bub-
bles in C′′ solution. The black line corresponds to re = g/ω2.

a shear Reynolds number based on the velocity difference across the bubble:

Reshear = ρlωD2

μ
= Re/Ro. (1)

As shown in Rodgar et al. [22], and as will be detailed in the following section, the main control
parameter driving the stretching of the bubble is We, but a correction in Ro has to be introduced.

III. BUBBLE DEFORMATION IN THE PRESENCE OF SURFACTANTS

A. Position of the bubble

We first present measurements of re, the distance of the bubble center to the cell axis. We show
in Fig. 4 that this distance is approximately proportional to g/ω2 for both C′ and C′′ solutions. More
precisely, it can be approximated by re = 0.8g/ω2 or equivalently Ro ∼ 0.8g/Dω2. This behavior
has already been observed in experiments carried out without surfactant. It can be understood
by considering a simple balance of forces, wherein the dominant forces acting on the bubble
are buoyancy and the drag force, which in this regime scales as ρlω

2re times the volume of the
bubble [22].

B. Bubble interface configuration

As already observed in Rodgar et al. [22], when the rotation rate is increased, the bubble stretches,
as illustrated in Fig. 5 (right column). In order to study the deformation of the bubble in the two
different chosen solutions (C′ and C′′), we first plot the variations of the longitudinal aspect ratio
X as a function of the rotational speed. As illustrated in Fig. 6, the aspect ratio X for the case of
surfactant solutions is higher than for demineralized water for given volume and ω values. The
symbols © (data of C′ solution) and ♦ (data of C′′ solution) have been shifted up in comparison
with symbols × (data of demineralized water) for the same range of volumes (0.004 cm3 < V <

0.13 cm3), which shows that the bubble is much more stretched along the horizontal axis in presence
of surfactants. This aspect ratio increases when ω is increased, as expected due to the steepening
of the centrifugal pressure field around the bubble. Note, however, that a maximum in aspect ratio
is observed for larger bubble volumes of both surfactant solutions. A similar maximum had been
observed for the larger bubbles investigated in Rodgar et al. [22]. This maximum is associated with
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(a)

(b)

(c)

FIG. 5. Instantaneous snapshots of front view (left column) and side view (right column) of the bubble
in C′ solution for V = 0.078 cm3 and (a) ω = 62.6 rad s, (b) ω = 78.5 rad s, and (c) ω = 94.2 rad s. The red
cross corresponds to the center of the tank.

increased fluctuations in bubble shape, and we believe it is related to the nearing of the conditions
for breakup (see Sec. IV below).

Since the bubble is close to the axis of rotation, the aspect ratio of the bubble should be predicted
by the model of Rosenthal [23], provided the bubble Weber number is replaced by a corrected Weber
number We′ defined as [22]:

We′ = We(1 + 4Ro2), (2)

such that the associated We′ captures the pressure difference seen by the off-centered bubble and
We = ρlω

2D3/8σ is the Weber number of the centered bubble defined in Sec. II B. We plot in Fig. 7
the aspect ratio X as a function of this corrected Weber We′, taking into account the surface tension
values measured by the tensiometers. The data for the C′ (0.33 CMC) solution (surface tension
lower than CMC) are collapsed but not with the Rosenthal [23] prediction, and the deformation of
the bubble is larger than that predicted by the model. However, the data for the C′′ (2 CMC) are well
fitted with the solid curve of the model (Fig. 7 right), as was the case for demineralized water [22].
Note that the error bars are large for large We: Large fluctuations in aspect ratio are observed when
the bubble approaches breakup conditions, see the following section.
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(a) (b)

(c)

FIG. 6. Aspect ratio of the bubble X = L/D as a function of rotation speed ω (a) for C′ solution
(0.33 CMC), (b) for C′′ solution (2CMC), and (c) for demineralized water; data taken from Ref. [22].

The underprediction of bubble deformation in the C′ case suggests that the bubble sees an
effective surface tension which is different than the surface tension at rest of the C′ solution. Figure 8
shows that if the Weber number for this solution is computed with a surface tension of 37 mN/m
(which is the CMC value), a good agreement is found with the Rosenthal model. Our interpretation
is that in the C′ case, there may be an accumulation or inhomogeneous distribution of surfactant on
the different regions of the bubble interface, in particular close to the axis of rotation of the tank.
This could explain that the effective surface tension seen by the bubble is the CMC concentration
even though we are at 0.33 CMC.
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FIG. 7. Bubble aspect ratio X = L/D as a function of corrected Weber number. Left: Bubbles in C′

solution. Right: Bubbles in C′′ solution. The model works well for the C′′ case but underpredicts bubble
deformation in the C′ case.

More generally, a nonhomogeneous distribution of surfactant is expected to generate Marangoni
flow from regions of low surface tension (high concentration in surfactant) to regions of high surface
tension (zones depleted in surfactant). Depending on where the surfactant will accumulate, both
opposite tendencies can be a priori considered: If one assumes that the concentration in surfactant
is lower at the tips than at the middle plane, then this will induce a flow towards the tips of the
bubble which will enhance the stretching. On the contrary, if the surfactant is mainly accumulated
at the tips, then Marangoni stresses will moderate the stretching instead of promoting it. At this
stage, we are not able to discriminate between the two hypotheses.

Maps of the average bubble front view contours for three different rotation rates and for the three
types of solutions are shown in Fig. 9. While the water and C′′ bubbles look very similar for a
given ω, the bubble in the C′ case exhibits a slightly different orientation. This may be the signature

FIG. 8. Bubble aspect ratio X = L/D as a function of the corrected Weber number for the case of the
C′ solution: When the Weber number is computed with an effective surface tension of σ = 37 mN/m (CMC
surface tension), the model is in agreement with the experimental aspect ratio.
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(a) (b) (c)

FIG. 9. Average contour of the boundary of the bubble at (a) ω = 62.6 rad s, (b) ω = 78.5 rad s, and (c)
ω = 94.2 rad s; first row from top: for water solution V = 0.06 cm3, second row C′ solution V = 0.05 cm3,
and third row C′′ solution V = 0.05 cm3. The red cross corresponds to the associated mean position of the
center of the bubble. The green cross corresponds to the center of the tank.

of possible additional Marangoni interfacial flow, due to a nonhomogeneous concentration of the
surfactant for this specific case.

The other dimensionless number representing the shape of the bubble is the front view aspect ratio
XF , the aspect ratio in the (r̂, θ̂ ) plane. Figures 5 and 9 illustrate that as ω is increased, the bubble
becomes more axisymmetric. This is confirmed in Fig. 10 where XF decreases with ω except for
smaller bubbles for which XF is already close to 1 for the lowest ω. For both our surfactant solutions
the values of the front view aspect ratio (symbols � and ◦) are generally slightly higher than that
for demineralized water (×) for the same volume range. The values of XF reach up to 1.6 for C′
and C′′ but remain close to 1.1 for smaller bubbles (lighter symbols): These bubbles correspond to
larger Rossby bubbles which do not straddle the axis of rotation (Ro > 0.5). Note that in spite of
relatively large XF values, the axisymmetry assumption turns out to efficiently capture the stretching
of the bubble as predicted by the modified Rosenthal’s model once the off-centered bubble position
is taken into account (as seen in Fig. 7 for the C′′ solution).

The deformation in the cross section is expected to be controlled by the mean velocity seen by
the bubble, namely ωre. Therefore, the relevant dimensionless number controlling this deformation
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(a) (b)

(c)

FIG. 10. Variations of the aspect ratio XF (aspect ratio seen on front view) as a function of the rotation
speed ω: (a) Bubbles in C′ solution (©), (b) bubbles in C′′ solution (♦), and (c) bubbles in demineralized water
(×). Same caption as in Fig. 6.

should be the Weber number built with this mean velocity: Were = ρl (reω)2R/σ = 4WeRo2. We
test this assumption in Fig. 11, which shows the variations of XF as a function of Were for C′, C′′,
and demineralized water data. The figure shows a clear increase of XF when Were is increased. The
front view aspect ratio for the smaller bubbles (lighter symbols) seems indeed to be controlled by
this Weber number. However, for larger bubbles, and larger Were, the data are scattered and do not
exhibit the same behavior. This Weber number is expected to be most relevant when the bubble is
far from the axis of rotation or at least when it is not straddling it. This condition corresponds to
Ro > 0.5. We plot in Fig. 11 (right) the front view aspect ratio of the subset of data for which the
Ro > 0.5 condition is fulfilled: As expected, the data are relatively well aligned. Regarding bubbles
located closer to the axis of rotation, such that Ro < 0.5, the aspect ratio in the cross section is
probably controlled by the wake expected to envelop the bubble for these conditions. The precise
description of this dynamics in the very low Ro limit, and its impact on bubble shape, is left for
future work.

073604-11



MAJID RODGAR et al.

FIG. 11. Left: The front view aspect ratio XF as a function of Were. ©, C′ solution; ♦, C′′ solution; ×,
demineralized water. Right: Same plot, only for bubbles such that Ro > 0.5.

IV. BREAK-UP

A. Rupturing without surfactants

As illustrated in the previous section, when ω is increased, the longitudinal aspect ratio of the
bubble X increases. This stretching of the bubble can lead to rupturing. We studied this breakup
with the following protocol: Starting from rest, the rotation frequency is increased by 5 rad s−1

steps, and we wait for 120 s between each step in ω to ensure a stationary regime is reached. The
experiment stops when the bubble breaks up. Two different types of breakups have been observed
during experiments with this protocol. One is the situation where the bubble splits into two bubbles
from the middle. Figure 12 (left) shows the variations of the aspect ratio X of the bubble as a
function of time for a bubble of volume V = 0.3 cm3 at ω = 89 rad s−1 in demineralized water
(without surfactant). After T = 4.5 s the bubble becomes distorted and experiences its highest value
of X almost up to 5 (twice the average value until T = 4.5 s). Rupturing almost simultaneously
occurs and the bubble splits into two bubbles of nearly the same size. The sequence associated with
this dynamics is illustrated in Fig. 13.

In certain cases, bubble breakup leads to the formation of two bubbles of very different sizes
[Figs. 12 (right) and Fig. 14]. When this type of breakup happens, we observe that the longitudinal
bubble aspect ratio X increases and reaches a peak, but the bubble does not rupture at this moment:

FIG. 12. Bubble aspect ratio X as a function of time. The signal ends when the bubble breaks. Left: Bubble
of volume V = 0.31 cm3 at ω = 89 rad s−1. The bubble breaks into two equal size bubbles (corresponding to
the sequence of Fig. 13), breakup occurs when maximum aspect ratio is reached. Right: Bubble of volume
V = 0.40 cm3 at ω = 73 rad s−1. Breakup does not coincide with the moment of maximum stretching. This
results in breakup into two different size bubbles, as illustrated in Fig. 14.

073604-12



BUBBLE BREAKUP AND EFFECTS OF SOLUBLE …

FIG. 13. Example of breakup for a bubble of volume 0.31 cm3 splitting into two nearly equal size bubbles,
at ω = 89 rad s (side view).

Breakup is delayed and occurs at a lower X . This leads to the formation of two dissimilar fragments.
Figure 14 illustrates that the decrease of the aspect ratio observed after the peak in aspect ratio,
and just before breakup [Fig. 12 (right)], is actually not caused by a longitudinal contraction but
by the increase in the cross-sectional size of the bubble just before breakup (images 2 to 5). This
could be caused by the drainage of the smaller bubble cavity into the larger cavity, analogously to
the emptying of a small bubble into a large one because of Laplace’s law. This type of breakup
configuration is less frequent than the previous quasisymmetric one. We believe the type of final
configuration, with equal or unequal bubbles, is of a stochastic nature and depends on the velocity

FIG. 14. Example of breakup for a bubble of volume 0.40 cm3 splitting into a small and a large bubble at
ω = 73 rad s (side view).
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FIG. 15. Volume as a function of ω for the bubbles which experienced breakup. The circles indicate the ω

of breakup.

fluctuations in the liquid and on the magnitude of the initial dissymmetry of the bubble when the
breakup process is initiated.

Figure 15 illustrates the conditions for which breakup is observed for bubbles in the volume
range of [0.31, 0.4] cm3, when ω is increased step by step. A circle is plotted around the symbol
when breakup could be observed. In all the cases of this figure, the bubble breaks above a given ω.
The smallest bubble which we were able to break ruptured at ω � 89 rad s−1, which is close to the
maximum rotation rate our experiment can reach. When bubbles larger than 0.4 cm3 are injected into
the cell, they break during the transient spiraling regime which is observed at startup, and therefore
such bubbles cannot be stabilized close to the axis of the cell.

Rosenthal [23] investigated the stability of the bubble to axisymmetric disturbances in his work in
order to clarify if the stretching of the bubble could result in a capillary instability as in the classical
Rayleigh-Plateau instability [30]. He showed that for large rotation rates, the destabilizing effect of
capillarity on the stretched bubble could be balanced by the stabilizing effect of the centrifugal force.
More precisely, he proposed a necessary and sufficient condition for stability to such disturbances,
in the form:

k2D2/4 + (ρl − ρg)D3ω2/8σ > 1, (3)

where k is the wave number of the considered axisymmetric perturbation, ρl the liquid density, and
ρg the gas density. Note that condition (3) predicts instability below a given rotation rate, which
is not what we observe experimentally. We plot in Fig. 16 the location of our experimental data

points in the [ω
√

D3(ρl −ρg)
8σ

, kD/2] plane. We consider perturbations of wave number k = 4π/L,
corresponding to perturbations of wavelength λ = L/2: All data points fall largely into the stable
region, even those for which breakup is observed. Note that given the distance to the instability
region, this would also be the case for perturbations such that λ = L.

As can be seen on the signals of Fig. 12, the uncentered bubble undergoes shape oscillations
due to the rotation of the cell and therefore a periodic forcing at ω. The bubble itself has an
eigenfrequency which depends on its size. The eigenfrequency of a spherical bubble of radius R
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k

l g

FIG. 16. Stability criterion proposed by Rosenthal [23] in the case of a bubble aligned with the axis
of rotation. Here k is the wave number as 2π/λ, and λ is the wavelength of the considered perturbation.
Experimental data points were plotted for perturbations such that λ = L/2. All the experimental demineralized
water data lie in the stable part of the diagram.

for mode n can be approximated by Rayleigh’s formula [31]:

ωn =
√

(n − 1) (n + 1) (n + 2)

ρl

σ

R3
. (4)

In our case, the bubble is not spherical but elongated: We assume that the above expression can
be used to estimate the eigenfrequency with a characteristic size R ∼ L/2. The frequency of mode
n = 2 will therefore be

ω0 =
√

96

ρl

σ

L3
. (5)

This frequency will decrease when ω is increased and the bubble stretches. Figure 17 illustrates
the variations of the eigenfrequency of a bubble of volume V � 0.35 cm3 for modes 2, 3, and
4: The eigenfrequency is predicted with the model of Rosenthal [23], which has been shown to
predict correctly the stretching of a bubble as a function of ω provided an appropriate correction
is included to account for buoyancy [22]. As expected these frequencies decrease as a function of
ω when ω is increased, due to the stretching of the bubble. This figure shows that a coincidence
of the frequency of the tank (red line) with the frequency of the bubble occurs in the range of
investigated rotation rates for modes n = 2 and 3. On the other hand, images of the bubble at the
moment of breakup (Fig. 13) suggest that the shape mode of the bubble is consistent with mode
n = 2. Figure 17 shows that the match between cell rotation rate and n = 2 eigenfrequency for the
V � 0.35 cm3 bubble occurs at ω � 66 rad s−1. Breakup in the experimental data for bubbles of
similar volumes is observed between 68 and 73 rad s−1, which is consistent with this value. This
suggests that a resonance mechanism is likely responsible for the observed breakup.
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FIG. 17. Predicted eigenfrequencies of a bubble of V � 0.35 cm3 as a function of ω. The red line is the
rotational velocity of the tank ω. The dashed magenta curve is the predicted value of the oscillated bubble
frequency at shape mode n = 2, computed from the model of Rosenthal [23]. Black and blue curves are the
calculated frequency of the oscillated bubble in modes n = 3 and 4. The circle indicates the moment where the
frequency of the bubble coincides with the frequency of the tank at shape mode n = 2 (ω = 66 rad s−1).

We plot in Fig. 18 the data of Fig. 15, where we have nondimensionalized ω by ω0R defined as:

ω0R =
√

12

ρl

σ

Req
3
. (6)

FIG. 18. Volume of the bubble as a function of ratio ω/ω0R, ratio between tank rotation frequency, and
eigenfrequency of the equivalent spherical bubble for all experimental series experiencing breakup in water.
Circles identify the conditions for which rupturing occurred. Same symbols as in Fig. 15.
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(a) (b)

(c)

FIG. 19. (a) Experimental conditions of series for which breakup is observed in the (V, ω) plane. Color
circles indicate for each series the rotation rate at which breakup occurs (red circles for C′ solution; blue
circles for C′′ solution; black circles for demineralized water). With surfactant (C′, ◦; C′′, ♦) breakup occurs for
bubbles with a volume V lower than 0.2 cm3. Without surfactant (same symbols as in Fig. 15) breakup could
only be observed for bubbles with a volume V larger than V = 0.31 cm3. (b) Volume of the broken bubble as a
function of ratio ω/ω0R for all experimental series experiencing breakup. (c) Breakup conditions as a function
of ω/ω0R fo C′ solution, with eigenfrequency computed using surface tension at rest (σ = 52 mN/m).

In this expression, the eigenfrequency is estimated from the (constant) characteristic size of the
bubble Req, which is the radius of the sphere having the same volume. This reference is chosen,
instead of the measured L (bubble major axis) as in Eq. (5), because experimental values of L
experience very strong fluctuations close to resonance and because breakup itself tends to introduce
a bias towards larger L and hence lower eigenfrequencies. The data of Fig. 18 shows that the values
of ω/ω0R for all series are in a range between 0.66 to 0.83. These values are smaller than one: This
is consistent with the fact that the eigenfrequency estimated via Req, which underestimates bubble
size, is expected to be larger than the actual bubble eigenfrequency.

B. Rupturing in presence of TTAB surfactant

We now study how breakup of the bubble is impacted by the addition of surfactant to the solution.
As for water, we have plotted in Fig. 19(a) the bubble volumes for which rupture is observed and
indicated by a color circle the rotation speed ω where breakup occurs for each of these volumes.
Results show that bubble breakup occurs in the volume range [0.1, 0.17] cm3 which is smaller than
that without surfactant. This result is expected: Adding surfactant decreases the value of surface
tension so that the bubble experiences larger longitudinal stretching and therefore breaks at a smaller
volume for a constant ω range.

We have also observed that this breakup occurs like in water, either causing the bubble to break
into two fragments of similar sizes or in two markedly unequal sizes following the same scenario
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FIG. 20. Left: Volume of the bubble as a function of rotation speed: reverse breakup, i.e., breakup obtained
by decreasing ω, is observed in C′′ (2 CMC) solution. Circles identify the rotation speed ω for which rupturing
occurred. Right: Volume of the broken bubble as a function of ratio ω/ω0R.

as that described in Fig. 12. Figure 19(b) shows the values of ω/ω0R when breakup is observed
for the various bubble volumes concerned by the rupture. The rupture occurs within a rotational
frequency window with ratios located in the range between 0.62 and 0.83. This is similar to what is
found in Fig. 18 for water and is thus consistent with the idea that breakup is driven by a resonance
mechanism: Bubbles in the presence of surfactant should break when the eigenfrequency of mode
2 of the stretched oscillated bubble is of the same order of magnitude as the rotation tank frequency
ω. Note that Fig. 19(b) was obtained with the CMC surface tension for the C′ series, 37 mN/n:
If, on the contrary, we compute ω0R with the value of surface tension at rest for this solution (i.e.,
52 mN/m), then dimensionless frequencies are shifted to lower values, around 0.5; see Fig. 19(c).
This suggests, as already mentioned in Sec. III B, that bubbles in this C′ solution see an effective
surface tension close to the CMC value.

In order to consolidate our assumption that resonance causes breakup, we carried out some
additional experiments in which the starting rotation speed is 94 rad s−1 and is decreased down to
ω = 62 rad s−1. This reverse breakup experiment has been performed for the C′′ (2 CMC) solution
in a range of volumes V = [0.14, 0.21] cm3 (the same range of volume for which the breakup
occurred by increasing ω in the previous experiments). Note that in order to reach the rotation
speed of 94 rad s−1 without breaking the bubble, we proceed differently than for the experiments
of Figs. 18 and 19: Rotation frequency is increased by larger steps of 20 rad s−1 instead of 5
rad s−1, and instead of waiting for 120 s between each increase, we only wait for a maximum
of 10 s. The flow regime around the bubble is therefore a priori always in a transient regime before
reaching the aimed rotation frequency of 94 rad s−1. The aim of this technique is to reach 94 rad s−1

without breaking the bubble. Once this frequency is reached, we start measurements: We decrease
frequency with smaller 5 rad s−1 steps and wait for 120 s between each step, symmetrically to what
has been done for the data of Fig. 19.

Figure 20 represents the bubble breakup when we reversely vary the rotational velocity of the
tank. Circles indicate the conditions for which breakup occurred. We see the breakup of the bubbles
with similar volume sizes as the bubbles in previous experiments of increasing ω but this time
happening below a given rotational velocities. The values of the ratio ω/ω0R are plotted in Fig. 20
(right): They are between 0.62 and 0.83, which is consistent with our previous experiments (gray
zone in Fig. 19 right) and corresponds to the same dimensionless frequency window as in the
experiments in Fig. 18. This is another indicator that resonance is the likely reason for bubble
breakup in this flow situation.
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V. CONCLUSION

We have investigated in this study the behavior of a bubble in a horizontal high-speed solid-body
rotating flow with a soluble surfactant (TTAB). We discussed the bubble shape, position, and the
nature of the mechanism responsible for bubble rupture. We have compared the behavior of the
bubble in two different TTAB solutions: one with a concentration below the CMC (0.33 CMC) and
the other one at twice the CMC concentration. Results were compared with those obtained with
demineralized water [22].

In the same range of volume sizes, we found that the longitudinal aspect ratio of the bubble in
both TTAB solutions is higher than in the demineralized water case, with a bubble more stretched
along the axis of rotation. We found a good agreement between the experimentally measured aspect
ratio and the prediction of our model based on the Rosenthal [23] prediction for the 2 CMC case
when the interface is saturated. However, the model underpredicts the experimental results for the
0.33 CMC solution (wherein the interface is not entirely saturated). We observe that in this case, the
bubble stretches as if the surface tension was that of the CMC, i.e., lower than the surface tension
measured for this solution at rest: This behavior is probably caused by a nonuniform distribution of
surfactant around the bubble.

Finally, we discussed in Sec. IV the conditions for which breakup of the bubble could be ob-
served. When the flow rotation frequency is increased this breakup occurs above a given frequency.
In surfactant solutions, it can be observed for smaller bubble volumes than in water for the same
range of ω. We showed that the rotation rates for which breakup is observed coincide with an
estimate of the eigenfrequency of the bubble ω0R. Moreover, we presented a series of experiments
in which we were able to jump above resonance and breakup the bubble by decreasing the rotation
frequency. The values of ω/ω0R at breakup for this series are in the same range as for the previous
series for which ω was increased. This is a strong argument in favor of a resonance mechanism.

The dimensionless parameter controlling this resonance is ω/ω0R: Even though this parameter
is not explicitly mentioned in Sec. II B addressing the dimensional analysis of this problem, it can
actually be directly related to the Weber number of the bubble as ω/ω0R = √

2We/3(Req/D)3/2.
The question of the effective surface tension value seen by the bubble when the interface is not
saturated with surfactants, and hence of its effective Weber number, is a crucial issue to determine
bubble shape and stability: Numerical simulations in which surfactant exchange between interface
and bulk is modeled [32] could yield insight into the surfactant distribution around the bubble and
in its wake.
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