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We established an entropic lattice Boltzmann model to study surface tension effects on
quasiequilibrium liquid plug rupture in two- and three-dimensional channels. The surface
tension coefficient is supposed to be an increasing function of plug-gas density ratios,
and the contact angle is not uniquely determined by surface tension. The influence of
the surface tension coefficient on plug rupture is combined with the effects of viscosity
and inertia. The plug is more likely to rupture at a greater Ohnesorge number (the ratio
of viscous forces and the geometric mean of surface tension and inertial forces), which
positively correlates to the plug’s surface area-to-volume ratio and negatively to channel
thickness. With the increasing of the initial plug length (at the fixed density ratio and
surface tension), four patterns of plug rupture are observed in three-dimensional channels,
four holes, two holes, one hole, and no hole (i.e., no rupture). There exists minimum initial
plug length for a certain rupture pattern to appear. The four-hole rupture happens only in
thick channels (the aspect ratio of channel thickness to width between 0.6 and 1.0). No
two-hole rupture is available in square channels. Plug rupture in two-dimensional channels
is similar to that in the three-dimensional, but simpler without the definition of the channel
thickness and the four-hole rupture. The minimum plug lengths indicating two-dimensional
rupture patterns quadratically decrease with the contact angle and slightly increase with
surface tension. The results indicate not only the entropic lattice Blotzmann method’s great
potential in the study of multiphase fluid flows but also a clinical implication that increasing
wetting ability of mucus plugs might be an effective practice in lung airway reopening. A
final successful solution, however, depends on full understanding of all factors, especially
the forces of surface tension, viscosity, and inertia.

DOI: 10.1103/PhysRevFluids.8.073603

I. INTRODUCTION

Mucus plug rupture is of great interest in the study of lung airway closure and reopening, a
popular topic basically related to mucociliary clearance and epithelial cell damage [1–6]. The
challenges of studying the problem lie in not only mucus properties but also mucus-airway structure.
Lung airway mucus is a complex hydrogel mixed with proteins, salts, lipids, and water, and its
properties are still a fruitful and active research topic [7]. Current dynamic studies usually simplify
mucus properties as Newtonian [2,8], or more accurately, non-Newtonian with given shear-strain
relations, for example, shear-thinning/thickening, viscoplastic, and elastoviscoplastic [1,3,5,9–12].
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In mucus plug formation, viscoelasticity contributes to a second peak of wall shear stress, related to
elastic instability and equally severe as the first one due to Newtonian stresses [8,12]. Plug rupture
is favored as mucus is shearing-thinning, but hindered by the mucus yield stress [1,3].

Lung walls are coated by two liquid layers, serum and mucus. The two fluid interfaces from
the lung wall to the airway lumen, serum-mucus and mucus-air, introduce another significant
factor, surface tension, into the mucus dynamic study. Though models for both layers have been
available [2], the single layer of mucus is currently more concerned [5]. At small scales such as lower
airways with dimensions of millimeter, surface tension plays important roles in mucus dynamics
[1,2,5]. Surface tension-induced Plateau-Rayleigh instability is a major reason for mucus plugs to
form [2]. Reduced surface tension by surfactant also reduces stress and damage upon epithelial cells
as a mucus plug propagates in lung airways [13,14].

In the study of mucus plug dynamics, numerical computation, as a power tool in research, is
extensively used. A main effort is to solve mucus-air interface deformation and rupture, at which
numerical methods of interface tracking and capture are available: marker and cell, volume of fluid,
level set, immersed boundary, to name but a few [2,15–17]. For the Navier-Stokes equations-based
computational fluid dynamics (CFD), interface formulations of these methods are often arduous and
complicated.

The lattice Boltzmann method (LBM), directly solving the Boltzmann equation instead of
the Navier-Stokes equations, is an alternative to the conventional CFD, and burgeoning in nu-
merical studies of fluid dynamics. Particularly in the study of multiphase fluid flows, the LBM
has inherent rationales of physics by taking surface tension as an interaction force at a more
foundational level of kinetic molecular dynamics [18–22]. There are generally four LB models for
multiphase flows, pseudopotential [23,24], mean-field free-energy [25–27], lattice gas-based color
gradient [28–30], and a hybrid of LBM and conventional CFD [31,32]. Each multiphase LB model
has its own advantages and disadvantages. The pseudopotential model, completely based on kinetic
theory, is relatively simple and versatile, and has been the most widely used multiphase LB model
[20,24,29]. The later three, with a continuum quantity for interfaces between immiscible fluids, are
phenomenological [20,29].

The LBM still faces challenges. Fluid flows at high Mach numbers are difficult to simulate
[18]. The LBM is some problematic with thermodynamic consistency and Galilean invariance
[33–36]. Numerical instability may arise when the Reynolds number is high, spatial gradients of
flow become too large, and the distribution function turns negative [18,37,38]. Boundary condition
modeling is indirect, since the LBM solves a distribution function, rather than physical quantities
[18,39]. Poor representation of dynamic quantities on boundaries is another source of instability.

Efforts have been made to improve LBM’s numerical stability, for instance, using multiple
relaxation times instead of a single relaxation time of the standard LBM [40,41], and introducing
regularization or a precollision step prior to the collision step while maintaining simplicity of the
Bhatnagar-Gross-Krook operator [38,42,43]. These approaches usually need extra computational
time, and/or lack universal criteria on the choice of stable reliable relaxation times [38,42].
Another promising approach that can greatly boost LBM stability is the entropic LBM (ELBM)
by introducing Boltzmann’s entropy function to improve the nonequilibrium distribution function
[28,38,44,45]. Considerable computational cost is also required to solve entropy-related nonlinear
equations. Opinions on ELBM efficiency are divided [38,44]. Nonetheless the ELBM is “uncon-
ditionally” stable [44]. Boltzmann’s entropy function in the context of the classical continuous
Boltzmann equation is so far the only kinetic theory that ensures the second-order accuracy of
the Navier-Stokes equations after recovering the primitive variables [46].

In this study, we will therefore employ ELBM for unraveling the detailed deformation and
rupture of a mucus plug in a small lung airway. Thus, we study mainly surface tension effects
on quasiequilibrium mucus plug rupture in two- (2D) and three-dimensional (3D) channels. The
pseudopotential approach is used as the multiphase LB model, and the ELBM is employed to
improve numerical stability in spite of its computational cost.
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II. METHODS

A. Entropic lattice Boltzmann equation

The entropic lattice Boltzmann equation is formulated as [47,48]

fm(�xm + �cmδt, t + δt ) = fm(�x, t ) + αβ
[

f eq
m (ρ, �u) − fm(�x, t )

] + Sm. (1)

We use a three-dimensional 19-speed lattice scheme (i.e., D3Q19),

cx = [0, 1,−1, 0, 0, 0, 0, 1,−1, 1,−1, 1,−1, 1,−1, 0, 0, 0, 0],

cy = [0, 0, 0, 1,−1, 0, 0, 1, 1,−1,−1, 0, 0, 0, 0, 1,−1, 1,−1],

cz = [0, 0, 0, 0, 0, 1,−1, 0, 0, 0, 0, 1, 1,−1,−1, 1, 1,−1,−1].

That is, m = 0, · · · , b, and b = 18 in Eq. (1). The discrete distribution functions, fm(�x, t ), provide
the probability of finding a particle at the lattice location �x and time t with the discrete velocity �cm.
Thus, the density and momentum are constructed,

ρ =
b∑

m=0

fm, ρ�u =
b∑

m=1

fm�cm.

The discrete local equilibria, f eq
m (ρ, �u), are chosen as a third-order Mach-number expansion of

the continuum Maxwell-Boltzmann distribution [48],

f eq
m = ρwm

[
1 + cmλuλ

c2
s

+ uλuφ

2c4
s

(
cmλcmφ − c2

s δλφ

) + uλuφuγ

6c6
s

cmγ

(
cmλcmφ − 3c2

s δλφ

)]
, (2)

where γ , λ, φ = x, y, z, respectively, running on spatial dimensions, and δλφ is the Kronecker delta.
The weight factors, wm, are w0 = 1/3, w1-6 = 1/18, and w7-18 = 1/36 [20]. The lattice speed of
sound, cs = c/

√
3, is related to the universal gas constant through RT = c2

s [49]. Here the lattice
speed is c = δx/δt = 1 by taking the lattice size and time step as δx = δt = 1, and therefore cs =
1/

√
3 (units in lattice are omitted if not specified). The equilibria, f eq

m , also act as the minimizer of
the discrete entropy function of Boltzmann, i.e., the H-function [47],

H =
b∑

m=0

fm ln

(
fm

wm

)
.

The parameter product, αβ, indicates a characteristic collision frequency of fluid molecules. The
parameter, β (0 < β < 1), is related to the kinematic viscosity,

ν = c2
s δt

2

(
1

β
− 1

)
,

where β = 1
2τ

is expressed in terms of the single relaxation time approximation, τ .
The maximum over-relaxation parameter, α, maintains entropy balance in a relaxation step at

each node, and secures compliance with the second law of thermodynamics. It is the nontrivial root
of the entropy estimate of the H-function [47],

H[ f + α( f eq − f )] = H ( f ).

The H-function is solved after the total force balance is applied,

H[ f ′ + α( f eq(�u + δ�u) − f ′)] = H ( f ′), (3)
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in which f ′ = f + [ f eq(�u + δ�u) − f eq(�u)]. The velocity difference, δ�u, is defined by using the
force, �F ,

δ�u = �F
ρ

δt .

We use the Newton-Raphson method to find α. Equation (1) is reduced to the standard LB
equation (with single τ ) as α = 2 [48].

The source terms, Sm, are calculated using the exact difference approach [20,50],

Sm = f eq
m (ρ, �u + δ�u) − f eq

m (ρ, �u). (4)

B. Forces

The total force, �F , usually includes the interaction force within the fluid, �Ff , the interaction force
between the fluid and solid, �Fs, and the gravitational force, �Fg = ρ�g,

�F = �Ff + �Fs + �Fg.

The former two, �Ff and �Fs, are calculated using the pseudopotential multiphase LB
scheme [20,47,48],

�Ff (�x, t ) = −Gψ (�x, t )
b∑

m=0

wmψ (�x + �cmδt, t )�cm, (5)

�Fs(�x, t ) = ψw(�x, t )
b∑

m=0

wms(�x + �cmδt, t )�cm. (6)

In the above equations, the coupling constant, G, indicates interaction strength of the fluid. The
indicator functions, s(�x + �cmδt ), equal to 1 for solid nodes and 0 otherwise [47]. The function,
ψ (�x, t ), is generalized density (i.e., effective mass), and ψw(�xwall ) = kwψ (�xfluid) at wall. The
parameter kw, positive and varying in the neighborhood of 1.0, is adjustable to simulate fluid-solid
surface interaction. Approximately, kw > 1.0 denotes a wetting (hydrophilic) liquid at wall and
kw < 1.0 nonwetting (hydrophobic) [48].

C. Peng-Robinson equation of state

We use the Peng-Robinson equation of state [51],

p = ρRgT

1 − bρ
− a�ρ2

1 + 2bρ − b2ρ2
, (7)

in which p is thermodynamic pressure, a = 0.45724R2
gT 2

c /pc, b = 0.0778RgTc/pc, Rg = 1.0, ζ =
0.344, and

√
� = 1 + (0.37464 + 1.54226ζ − 0.26992ζ 2)(1 − √

T/Tc) [52]. Suitable for both
liquid and gas states, the Peng-Robinson state equation allows a density ratio up to O(103) in
multiphase fluid flow. Large pressure or density gradients may indicate liquid-gas interfaces, whose
thickness can be as thin as the size about five lattice grids in the current study. We take a = 0.005 and
b = 0.0952 [48]. Thus, Tc = 0.0778a

0.45724bRg
= 0.0729. According to the Maxwell construction [20], we

select three density ratios of liquid and gas, χρ = ρl/ρg = 6.36/0.424 = 15.0, 7.29/0.181 = 40.2,
and 7.90/0.0784 = 100.7, at which T/Tc = 0.870, 0.792, and 0.724, respectively.

The generalized density, ψ , in the force expression (5) is written as the function of pressure and
density,

ψ =
√

2
(
p − c2

s ρ
)

c2
s G

(
i.e., p = c2

s ρ + 1

2
c2

s Gψ2

)
.

073603-4



ENTROPIC LATTICE BOLTZMANN MODEL FOR SURFACE …

The coupling constant, G, is calculated through G = sgn(p − c2
s ρ), a sign function ensuring math-

ematical applicability of ψ [48,52,53].

D. Boundary and initial conditions

Periodic conditions are extension of the streaming process. We use i, j, k (i = 0, . . . , i0, j =
0, . . . , j0, and k = 0, . . . , k0) to indicate the integer coordinates of a lattice in the x, y, z-coordinate
system. The periodic conditions at i = 0 and i = i0 are written as

i = 0:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f1,0, j,k = f1,i0, j,k

f7,0, j,k = f7,i0, j−1,k

f9,0, j,k = f9,i0, j+1,k

f11,0, j,k = f11,i0, j,k−1

f13,0, j,k = f13,i0, j,k+1

, i = i0:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f2,i0, j,k = f2,0, j,k

f8,i0, j,k = f8,0, j−1,k

f10,i0, j,k = f10,0, j+1,k

f12,i0, j,k = f12,0, j,k−1

f14,i0, j,k = f14,0, j,k+1

.

Standard direct bounceback is used as no-slip wall conditions [48,54]. Walls set at k = 0 and
k = k0 yield

k = 0:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f5,i, j,0 = f6,i, j,1

f11,i, j,0 = f14,i+1, j,1

f12,i, j,0 = f13,i−1, j,1

f15,i, j,0 = f18,i, j+1,1

f16,i, j,0 = f17,i, j−1,1

, k = k0:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f6,i, j,k0 = f5,i, j,k0−1

f14,i, j,k0 = f11,i−1, j,k0−1

f13,i, j,k0 = f12,i+1, j,k0−1

f18,i, j,k0 = f15,i, j−1,k0−1

f17,i, j,k0 = f16,i, j+1,k0−1

.

Initially, the liquid and gas are at rest. We use Expression (2) to calculate f eq and let f = f eq

with preset densities of the two fluids. The parameter α is initialized to α = 2.0.

E. Surface tension

1. Coefficient of surface tension

We use a spherical liquid droplet in a still gas field to estimate surface tension between the droplet
liquid and the surrounding gas. Periodic conditions are applied on all boundaries. For a round liquid
droplet in equilibrium, the Young-Laplace law gives

�p = 2γ

R
,

in which �p is the pressure difference between the inside and outside of the droplet, R the droplet
radius, and γ the coefficient of surface tension. Three density ratios, χρ = 15.0, 40.2, 100.7, are
used to determine the corresponding surface tension, as shown in Fig. 1. The linear relations of �p
with R−1 are curve-fitted as

χρ = 15.0: �p = 0.2317R−1
(
R2

s = 0.9994
)
,

χρ = 40.2: �p = 0.4598R−1
(
R2

s = 0.9996
)
,

χρ = 100.7: �p = 0.6695R−1
(
R2

s = 0.9995
)
.

The coefficients of determination, R2
s , varying between 0.9994 and 0.9996, indicate good lin-

earity between �p and R−1. The coefficients of surface tension at the density ratios of χρ =
15.0, 40.2, 100.7 are γ15 = 0.1159, γ40 = 0.2299, and γ100 = 0.3348, respectively, which increase
with χρ , and are used in this study.

2. Contact angle

We use a liquid column centered in an h-by-h cross-sectioned channel in equilibrium to determine
the contact angle at a given surface tension. The liquid column length is half of the channel, i.e.,
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FIG. 1. The pressure difference, �p, between the inside and outside of the droplet in terms of R−1 at the
density ratios of χρ = 15.0, 40.2, and 100.7.

8h/2. The periodic boundary conditions are set at x = 0, 8h, and the standard bounceback nonslip
wall conditions at y = 0, h and z = 0, h.

Figure 2 shows the contact angle, θ , is a function of kw. The θimg-value (marked by the diamond
symbol in Fig. 2) is manually measured from image results using ImageJ, θelbm (by circle) is
calculated through the Young-Laplace law,

�p = 2γ cos θ

h
,

and θfit (by solid line-cross symbol), used in the following study, is the average of the former two.
The good agreements of the results from both the numerical ELBM and the Young-Laplace

law shown in Fig. 2, together with Fig. 1, verify the effectiveness of the ELBM proposed in this
study [47,55].

F. Parameters of plug rupture

We deal with the forces of surface tension and viscosity in the study, and formulate the plug
rupture problem as

func(ρl , ρg, ν, γ , θ, lp, a, h) = 0,

where lp, a, h are initial plug length, channel width, and channel thickness, respectively. The kine-
matic viscosity here is the same for both the plug and gas, ν = 0.133. It yields five dimensionless
parameters,

ρl

ρg
(= χρ ), ν

√
ρl

lpγ
, θ,

lp

a
,

h

a
.

The dimensionless parameter, ν
√

ρl

lpγ
, is the Ohnesorge number, Oh, indicating the ratio of the

viscous force to the geometric mean of the inertial and surface tension forces. The channel thickness
is scaled by a, i.e., H = h/a. So is the plug length in a 2D channel, Lp = lp/a. For the plug in
a 3D channel, we scale its length by Vol/SA (the reciprocal of the ratio of plug surface area,
SA, to volume, Vol), instead of a. We also replace lp with Vol/SA to calculate Oh in 3D. In
this study, a = 100 ∼ 1000 lu (mostly a = 100 and 200 lu; lu is the lattice length unit used
to distinguish lattice length dimensions from the scaled ones), Lp = 0.03 ∼ 0.185 (scaled by a
here), χρ = 15.0, 40.2, 100.7 as aforementioned, and Oh = 0.28 ∼ 0.40. For a mucus plug in
the ninth-generation of lung airways, it is estimated ν ∼ O(10−5) m2/s, ρl ∼ O(103) kg/m3,
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FIG. 2. The contact angle, θ , as a function of kw at (a) γ15, (b) γ40, and (c) γ100.

lp ∼ O(10−3) mm, and γ ∼ O(10−2) N/m [3]. So, Oh ∼ O(10−1), comparable with the Oh-range
in the current study.

III. RESULTS

This study focuses on topological features of plug rupture and the related physics as well. We
suppose a cuboidal plug is initially at rest and located in the middle of the L-long channel, as shown
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FIG. 3. Geometry of the plug and channel. Y = H/2 and Z = 1/2: two cross-sections centered in the
channel.

in Fig. 3 (where a is used to scale the coordinates, and the dimensions of the channel and the
plug). Thus, the process of plug deformation and/or rupture is driven by surface tension only and
of quasiequilibrium. In 2D plug rupture, standard bounceback wall conditions are set at Z = 0, 1,
and periodic conditions at both X = 0, L and Y = 0, H (0.1 � H � 1.0), in which Y -dependent
values, for example, H , are physically insignificant. The boundary conditions in 3D plug rupture
are similar to those in the 2D above, except that the boundaries Y = 0, H are taken as standard
bounceback walls instead of the periodic boundaries in 2D.

A. 2D plug rupture

1. Wetting plugs

Initially a rectangular plug blocks the channel, as shown in Fig. 4(a). The plug is displayed
in density contour levels from 0.02 to 7.90 with the color spectrum from the cool of blue to the
warm of red (the same with the plug shapes in the following figures). With the initial plug length,
Lp, increasing at a given contact angle and given surface tension appear two minimum initial plug
lengths, Lp1, at which rupture develops from the plug center instead of two central-symmetrical
necks of the plug, and Lp0 (> Lp1), at which no rupture takes place. Three rupture patterns are
observed:

(1) Satellite-droplet-rupture: As Lp < Lp1, the plug deforms into a spindle attached to walls,
then breaks at the two necks, and finally generates a satellite droplet in the channel middle and two
films attached to walls, as shown in Fig. 4(b).

FIG. 4. Plug rupture patterns at χρ = 100.7, γ100 = 0.3348, and θ = 1.20 rad. (a) A rectangular plug at
the initial. (b) Satellite-droplet-rupture: three images of the plug (Lp = 0.045) from shortly before and after
rupture equilibrium. (c) Film-rupture: two images of the plug (Lp = 0.05) shortly after rupture and finally in
equilibrium. (d) No-rupture: one image of the plug equilibrium (Lp = 0.085).
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FIG. 5. The minimum initial plug lengths, Lp1 and Lp0, for the possibilities of film-rupture and no-rupture,
respectively, in terms of the contact angle, θ2, at γ15, γ40, and γ100. (Symbols: the numerical results; lines: the
linear curve-fitting results of Lp1 and Lp0 in terms of θ2 with the determination coefficients between 0.9907 and
0.9995.)

(2) Film-rupture: As Lp1 � Lp < Lp0, rupture starts from the plug center with a single hole (O1,
without droplet) till two films are attached to walls, as shown in Fig. 4(c).

(2) No-rupture: As Lp � Lp0, there is no rupture, as shown in Fig. 4(d).
Figure 5 shows plug rupture patterns, indicated by Lp1 and Lp0, are decreasing linear functions

of the squared contact angle at given surface tension. The smaller contact angle (more wetting) and
the larger surface tension, the larger Lp1 and Lp0, say, more likely for the plug to rupture. With
the contact angle increasing and the wetting ability of the plug being weakened, both Lp1 and Lp0

decline from their maxima at θ = 0 around 0.110 ∼ 0.145 and 0.178 ∼ 0.197, respectively, to zero
at the limit of low wetting ability, θ = π/2 (θ2 = 2.47 rad2). The zero-collapsing of Lp1 and Lp0

at θ = π/2 makes surface tension’s effects on plug rupture recognizable only as θ is safely less
than π/2 and the contact angle appear more influential in plug rupture than surface tension as
a whole.

2. Nonwetting plugs

Figure 6 shows a nonwetting rectangular plug deforms before and after equilibrium at Lp = 0.05,
χρ = 100.7, γ100 = 0.3348, and θ = 2.46 rad. The plug undergoes a series of amoebic deformation

FIG. 6. A nonwetting plug deforms from the initial rectangular shape to the final round droplet in equilib-
rium. The initial plug is set at Lp = 0.05, χρ = 100.7, γ100 = 0.3348, and θ = 2.46 rad.
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FIG. 7. Two plug rupture patterns, (a) O2 at lp = 6 lu, and (b) O2 at lp = 12 lu, in the thin channel, H = 0.2.

from a slender-dumbbell shape to a squad dumbbell, a vertical rod, a flying saucer, a horizontal rod,
and a football, before becoming round equilibrium. The final round droplet is a self-evidence of
surface tension effects of nonwetting liquids.

B. 3D plug rupture

In 3D, wetting plug rupture is studied only at the density ratio, χρ = 100.7, surface tension,
γ100 = 0.3348, and contact angle, θ = 1.20 rad.

With one more pair of paralleled walls (at Y = 0, H in Fig. 3) than 2D plug rupture, 3D plugs
deform and rupture in more varieties. Based on rupture development at incipience, we define four
rupture patterns:

O4: Four holes symmetric about two middle cross-sections, Y = H/2 and Z = 1/2;
O2: Two holes symmetric about the cross-section, Z = 1/2;
O1: One hole co-axial with the channel center line;
O0: No hole, i.e., no rupture.
According to rupture patterns, we specify three types of channels, thin channels as 0 < H � 0.4,

moderate as 0.4 < H � 0.6, and thick as 0.6 < H � 1.0. The square channel with H = 1.0 is a
special thick channel. Figures 7–10 show the plug deformation and rupture in the thin, moderate,
thick, and square channels, respectively.

1. Thin channel

Take H = 0.2 as an example to show plug rupture in thin channels. Plugs rupture in two patterns
(here excluding no rupture, O0, and the same in the following without specification), O2 and O1, as
shown in Figs. 7(a) and 7(b), respectively. They end up similarly with two plug films attached to the
walls, Z = 0, 1, except that O1 has one column left in the middle of the channel [in Fig. 7(a)].

2. Moderate channel

The channel thickness, H = 0.5, is used to display plug rupture in moderate channels. Similar
to plug rupture in thin channels in Fig. 7, two rupture patterns, O2 and O1, happen. But more de-
formation configurations appear as larger space is available in the thickness dimension of moderate
channels, as shown in Fig. 8. For O2-rupture in Fig. 8(a), the plug column in the middle, initially
separating the two holes, is long enough so that it later breaks itself from the wall-attached plug
mass and a droplet suspends at the center of the channel. But the droplet may disappear when its
volume is small. The deformation and rupture of the plug mass attached to walls are similar to 2D
plug rupture in Fig. 4, for example, separated round films at walls, though vanishing finally.

3. Thick channel

We use the channel thickness, H = 0.8, to study plug rupture in thick channels. With even larger
space in the thick dimension, plug rupture displays much richer patterns in thick channels than in
the moderate.
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FIG. 8. Two rupture patterns, (a) O2 at lp = 6 lu, and (b) O1 at lp = 8 lu, in the moderate channel, H = 0.5.

At small initial plug length, Fig. 9(a) shows rupture is initiated with four holes, instead of two
in the thin and moderate channels in Figs. 7(a) and 8(a), respectively. Similar to O2 in Fig. 8(a),
however, the plug mass in the thick dimension that separates four holes can also break itself from
the surrounding mass and generate a suspending droplet in the middle of the channel, as shown by
the top-row images in Fig. 9(a).

Both the O2- and O1-ruptures are observed in thick channels, too, as initial plug lengths are
relatively large, for example, lp = 8 and 12 lu in Figs. 9(b) and 9(c), respectively.

FIG. 9. Three rupture patterns, (a) O4 at lp = 6 lu, (b) O2 at lp = 8 lu, and (c) O1 at lp = 12 lu, in the thick
channel, H = 0.8.
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FIG. 10. Two rupture patterns, (a) O4 at lp = 6 lu and (b) O1 at lp = 12 lu, in the square channel, H = 1.0.

4. Square channel

At H = 1.0, the square channel renders a rotational symmetry of 90 degrees, i.e., a symmetry
order of four, two orders higher than the rectangular but nonsquare channel, and thus is worthy of
special concern. Figure 10 shows the plug deforms and ruptures in good 90◦-rotational symmetry,
which simplifies deformation and rupture configuration of the plug, compared with that in thick
nonsquare channels, as shown in Fig. 9 at H = 0.8.

As the plug is small, say, lp = 6 lu, the O4-rupture appears like that in a generic thick channel
in Fig. 9(a). The four holes are also symmetrical about the two diagonals of the square cross
section. The holes grow, the plug ribs between two adjacent holes continuously attenuate until
break from the surrounding plug mass, and a single droplet suspends at the center of the plug
configuration. The plug film ring on walls continues deformation until finally breaks into four
pieces.

As the plug is relatively long, for example, lp = 12 lu, the rupture pattern turns to O1 in Fig. 10(b).
Table I summarizes the rupture patterns, O4, O2, O1, and O0, in terms of channel thickness, H ,

and initial plug length, Lp (scaled by Vol/SA). The O4-rupture is observed only for short plugs
in thick channels; O2 does not appear in square channels; O1 and O0 are possible in channels
of any thickness. That is, O2, O1, and O0 are available in both thin and moderate channels; all
four patterns are possible in thick nonsquare channels; in square channels appear O4, O1, and
O0. The thicker the channel is, the more holes the rupture yields. The three critical plug lengths,
Lc2(H ), Lc1(H ), Lc0(H ) (scaled by Vol/SA), increasing orderly, are the minimum initial plug

TABLE I. Rupture patterns of plugs in terms of channel thickness, H , and initial plug length, Lp.

Rupture patterns Initial plug length, Lp(Lc2(H ) < Lc1(H ) < Lc0(H ))

Thin channel Moderate channel Thick channel

H � 0.4 0.4 < H � 0.6 0.6 < H < 1.0 H = 1.0

O4 N/A Lp < Lc2(H ) Lp < Lc1(H )

O2 Lp < Lc1(H ) Lc2(H ) � Lp < Lc1(H ) N/A

O1 Lc1(H ) � Lp < Lc0(H )

O0 Lp � Lc0(H )
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FIG. 11. (a) The critical plug lengths, Lc2, Lc1, Lc0 (scaled by Vol/SA), and (b) the Ohnesorge number,
Oh, and the surface area-to-volume ratio, SA/Vol, in terms of H . (The dashed lines are for eye-guide. The
dash-dot line and cross symbols in panel (a): extrapolated till H is close to 1. The solid lines in panel (b): linear
curve-fitting.)

lengths, at which O2 appears in thick channels, O1 in channels of any thickness (or O4 in square
channels), and O0 in channels of any thickness, respectively.

Figure 11(a) further shows the increasing order of the critical plug lengths, Lc2, Lc1, Lc0, at a
channel thickness, H . At a given channel thickness, the shorter the plug, the more holes (two or four
if applicable) at rupture incipience; the longer the plug, the less possible the rupture. Regarding the
effects of channel thickness, more rupture patterns happen in the thicker channels. The plug is more
likely to rupture in thin channels, where the critical plug length of no rupture, Lc0, is larger than that
in moderate and thick channels.

Figure 11(b) gives the relations of the Ohnesorge number, Oh, and the surface area-to-volume
ratio of the plug, SA/Vol, with H at Lc2, Lc1, Lc0, respectively. Both Oh and SA/Vol roughly
decrease with H increasing. That is, the plug has the larger SA/Vol and Oh in the thinner channel,
where the plug is easier to rupture.

IV. DISCUSSION

A. 2D plugs

The contact angle, a measure of wetting ability of a plug, plays dominant roles in the quasiequi-
librium plug rupture. The contact angle of π/2 is critical to tell wetting from nonwetting, and
therefore potential rupture of a wetting plug from no rupture of a nonwetting plug in this study
(Fig. 5). The rupture pattern indicators, Lp1 and Lp0, quadratically decrease with the contact angle
increasing, and both collapse to zero at the contact angle of π/2. That is, the possibility of plug
rupture grows with wetting, which might imply a favorable medical practice that mucus clearance
may be improved by increasing wetting of mucus.

Without perturbation embedded in the current ELBM, no droplets of more than two are expected,
even though the plug has been as slender as Lp = 0.004, for which still one satellite drop appears
with rupture [similar to that in Fig. 4(b)]. Such plug rupture of quasiequilibrium basically differs
from the breakage of continuous flow into droplet strings, for example, attenuating running water
from a faucet, where perturbation-induced instability gets involved. In a wider scope, the plug
rupture shares similarity with film rupture, a classic topic in fluid mechanics, which is usually also
understood as a result of instability from some disturbance [56–58].

With the assumption of a quasiequilibrium process, the rupture here is triggered by surface
tension. A plug deforms its surfaces in a channel for the minimum free-surface energy, but it will
have to break its geometry wholeness, i.e., rupture, if its limited volume in one piece fails to maintain
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FIG. 12. Deformation and rupture of a spindle plug. (χρ = 100.7, γ100 = 0.3348, and θ = 1.20 rad).

the required surface shapes. It should be pointed out, however, to understand rupture of a liquid
droplet or film in reality, besides surface tension and instability as aforementioned, we might need
to consider more factors, for example, thermal phenomena of heat transfer and structure of contact
surfaces in the micro-/nanoscope [59].

The initial shape of a wetting plug does not influence the effects of surface tension on plug
rupture, as shown in Fig. 12, where a spindle plug ruptures like the rectangular one in Figs. 4(a) and
4(d). The self-correction of initial deviations from physics gives a good example of the ELBM’s
robustness and rationality in multiphase studies.

B. 3D plugs

For plug rupture in a rectangular-cross-sectioned channel in 3D, besides initial plug length, the
channel thickness is another impact factor that determines plug deformation and rupture (Fig. 11).
Plugs are less likely to rupture in the moderate channel than in the thin. Rupture patterns, however,
are somewhat similar, except that films deform more variously on walls of moderate channels than
on those of the thin.

Rupture in thick channels shows the most varieties of configurations not only within the channel
but also on channel walls (Fig. 9). Plugs in square channels (Fig. 10) rupture similarly as those
in the generic thick channels (Fig. 9), but in 90◦-rotational symmetry due to the squareness of the
channels. A droplet may be left and suspend in the middle of the channel after rupture [Fig. 9(a)],
which might be annoying for mucus clearance in large airways. Droplets left after rupture were
also observed in plug rupture experiments [60]. Though further study is needed, plug rupture in
the nonsquare channels would help with understanding of mucus plug rupture in collapsed lung
airways.

The channel thickness-dependence implies the influence of the plug’s surface area-to-volume
ratio, SA/Vol. The plug in the thinner channel has the larger SA/Vol, i.e., the smaller length
dimension characterized by Vol/SA. Plug rupture is the result of the combined effects of the viscous,
surface tension, and inertial forces. The viscous force [∼O(μul )], proportional to Vol/SA, tends to
dissipate plug energy as to deform the plug, and thus favors rupture. The inertial force [∼O(uρ2l2)],
proportional to (Vol/SA)2 and maintaining the status quo of the plug, is potentially against such
change as deformation and/or rupture. Surface tension has the tendency to minimize the plug surface
area, i.e., decreasing SA/Vol, to a minimum Gibbs free energy. Such SA/Vol-reducing efforts for
smallest free energy make the plug more likely to deform, even rupture, at the larger SA/Vol. The
plug in the thinner channel, often yielding the larger SA/Vol and Oh, thus is easier to rupture. The
larger Ohnesorge number in the thinner channel in Fig. 11 justifies the combined effects of the three
forces of viscosity, surface tension and inertia. The results imply complexity in mucus clearance that
multiple influential factors, for example, mucus plug’s properties (e.g., viscosity, surface tension and
density), and airway’s geometry (e.g., size and shape), should be considered together.
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V. CONCLUSIONS

We established an entropic lattice Boltzmann model to study deformation and rupture of plugs,
surface tension, and dimensions of plugs and channels in two and three dimensions.

Plug rupture is basically the combined outcome of surface tension, viscous and inertial forces,
which may be indicated by the Ohnesorge number, the ratio of the viscous force and the geometric
mean of the other two. The chance of plug rupture rises with the Ohnesorge number increasing,
i.e., relatively small surface tension, small inertial, and great viscous forces. The Ohnesorge number
is correlated positively to the surface area-to-volume ratio of the plug but negatively to channel
thickness.

The contact angle, indicating wetting (hydrophilic) or nonwetting (hydrophobic) properties of
liquids at solid walls, is a significant factor in plug rupture. The plug is easier to rupture as it is more
wetting with the smaller contact angle. A nonwetting plug does not rupture and ends up forming a
round droplet in equilibrium.

A (wetting) plug tends to rupture as its initial length is less than a minimum (critical) length,
which depends on fluid properties (density ratio, surface tension coefficient, and contact angle), and
channel dimensions [channel width and thickness (for 3D only)]. In a 2D channel are observed two
patterns of plug rupture, satellite-droplet-rupture (starting from two holes and ending up a droplet
suspending in the channel plus films attached to walls) at small initial plug length, and film-rupture
(with only one hole and wall-attached films but no suspending droplet) at the large. The minimum
plug lengths for the two rupture patterns quadratically decrease with the contact angle increasing,
and slightly increase with surface tension.

For 3D rupture, the minimum plug length of no rupture decreases with channel thickness
increasing (at given density ratio and surface tension), i.e., more likely for a plug to rupture in the
thinner channel. The patterns of rupture incipience in thin (H � 0.4) and moderate (0.4 < H � 0.6)
channels are similar to those in 2D channels. A new pattern of rupture incipience, four holes, may
happen, but in thick channels only (H > 0.6) and at relatively small initial plug length. No two-hole
rupture appears in square channels due to 90◦-rotational symmetry. With the initial plug length
increasing, the rupture pattern turns from four-hole (applicable to thick channels only), to two-hole
(inapplicable to square channels), then one-hole, and finally no-hole (no rupture), for each pattern
of which to happen there exists a minimum initial plug length.

In general, results show great potential of ELBM in the study of multiphase fluid flows. As mucus
clearance in lung airways is concerned, we might expect an effective practice through increasing
the wetting ability of mucus. Further and full consideration on mucus clearance should include the
combined effects of the three forces of viscosity, surface tension and inertia, plus dimensions of
both mucus plugs and lung airways. The current finding suggests that mucus clearance be favored
as the viscous force is greater than the geometrical mean of the surface tension and inertial forces.
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