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In confined rotating convection, a strong zonal flow can develop close to the side wall
with a modal structure that precesses anticyclonically (counter to the applied rotation)
along the side wall. It is surmised that this is a robust nonlinear evolution of the wall
modes observed before the onset of bulk convection. Here, we perform direct numerical
simulations of cylindrically confined rotating convection at high rotation rates and strong
turbulent forcing. Through comparison with earlier work, we find a fit-parameter-free
relation that links the angular drift frequency of the robust wall mode observed far into
the turbulent regime with the critical wall mode frequency at onset, firmly substantiating
the connection between the observed boundary zonal flow and the wall modes. Deviations
from this relation at stronger turbulent forcing suggest early signs of the bulk turbulence
starting to hamper the development of the wall mode. Furthermore, by studying the
interactive flow between the robust wall mode and the bulk turbulence, we identify radial
jets penetrating from the wall mode into the bulk. These jets induce a large-scale multipolar
vortex structure in the bulk turbulence, dependent on the wave number of the wall mode. In
a narrow cylinder the entire bulk flow is dominated by a quadrupolar vortex driven by the
radial jets, while in a wider cylinder the jets are found to have a finite penetration length
and the vortices do not cover the entire bulk. We also identify the role of Reynolds stresses
in the generation of zonal flows in the region near the sidewall.

DOI: 10.1103/PhysRevFluids.8.073501

I. INTRODUCTION

Rotating Rayleigh-Bénard convection is the principal source of motion underlying the majority
of geophysical and astrophysical flows [1–3]. There, a turbulent flow is driven by buoyancy and is
simultaneously affected by background rotation, typically the celestial rotation. It is fundamental to
many oceanic and atmospheric flows as well as for example solar convection, flows in the Earth’s
liquid metal core and on gas giant planets such as Jupiter and Saturn. This enticingly rudimentary
flow setup encompasses a rich phenomenology of different flow regimes [4,5]. Investigations are
continuing to advance to more extreme parameters of strong turbulent forcing and rotation to come
closer to the flows encountered in nature, pushing the boundaries for both laboratory investigations
[6–8] as well as numerical simulations [9–11].

While numerical simulations allow to study laterally unbounded convection by employing
periodic boundary conditions on the sides of the domain, laboratory investigations of rotating
Rayleigh-Bénard convection inevitably need to resort to confined domains, typically using a
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cylindrical tank. The consequences of this lateral confinement thus need to be well understood
to draw comparisons with the large-scale convective flows observed in nature. Recently, it has been
found that in confined rotating convection, a strong zonal flow can emerge in a region close to the
sidewall of the flow domain [12–19], which was termed the boundary zonal flow (BZF), sidewall
circulation, or wall mode. This flow structure is comprised of alternating sections of hot rising fluid
and cold sinking fluid, carrying a large convective heat flux, and it precesses anticyclonically along
the sidewall. It is conjectured that this flow structure is related to the wall modes observed before
the onset of bulk convection [14,20]. Surprisingly, this wall mode state seems to remain robust in
its nonlinear evolution well into the turbulent regime of the flow. Moreover, jetlike bursts emanating
from the wall mode have been observed [7,14,21], originating from the positions where hot rising
fluid and cold sinking fluid meet, that have a profound effect on the overall circulation in the
bulk.

In this work, we consider direct numerical simulations (DNSs) of cylindrically confined rotat-
ing Rayleigh-Bénard convection to further investigate the properties of these robust wall modes
and their interaction with the bulk turbulence. The numerical method as well as the employed
parameters and resolutions are provided in Sec. II. By relating our simulations to results in other
recent work, we find a scaling relation for the precession frequency of the robust wall mode that
firmly establishes the surmised relation between the BZF observed in the turbulent regime and
the wall mode state found before the onset of bulk convection as laid out in Sec. III. We then
show in Sec. IV how jets emerging from the wall mode can induce a large multipolar vortex in
the bulk. This large vortex shows morphological similarities with the large-scale vortices (LSVs)
observed in unconfined convection, originating from an upscale flux of kinetic energy in a similar
parameter range [9,22–27]. However, by considering a wider cylindrical geometry, we show that
this multipolar vortex is connected to the wave number of the wall mode, suggesting that this
vortex emerges predominantly as a consequence of the wall mode to bulk interaction rather than
originating from an upscale flux of turbulent kinetic energy. Finally, in Sec. V, we consider the
Reynolds-averaged properties of the wall modes by studying the full balance between different
terms in the Reynolds-average Navier Stokes (RANS) equations, revealing the source terms that
drive the observed mean zonal flow in the wall mode. The conclusions and outlook are provided in
Sec. VI.

II. NUMERICAL METHOD

Rotating Rayleigh-Bénard convection is governed by three independent dimensionless numbers,
quantifying the strength of the buoyant forcing, the fluid properties and (inverse) strength of rotation
as represented by, respectively, the Rayleigh number Ra, the Prandtl number Pr and the Ekman
number Ek as

Ra = gα�T H3

νκ
, Pr = ν

κ
, Ek = ν

2�H2
, (1)

where g is the gravitational acceleration, the fluid properties α, ν, and κ , respectively, represent
the thermal expansion coefficient, kinematic viscosity, and thermal diffusivity of the working fluid,
�T denotes the temperature difference between the hot bottom and cold top of the flow domain,
while H is the domain height and � is the angular velocity of the background rotation, assumed
antiparallel to gravity. In literature, also the convective Rossby number Ro = Ek(Ra/Pr)1/2 is often
used. Additionally, in confined rotating convection, the diameter-to-height aspect ratio � = 2R/H
of the domain plays a role.

The flow is governed by the Navier-Stokes and heat equations for an incompressible Boussinesq
fluid. In dimensionless form, this yields [28]

∂ũ
∂ t̃

+ (ũ · ∇̃)ũ + 1

Ro
ez × ũ = −∇̃ p̃ +

(
Pr

Ra

)1/2

∇̃2ũ + T̃ ez, (2a)
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TABLE I. Input parameters and resolutions that are used for the simulations in this work.

Ra Pr Ek Ro � Nr × Nθ × Nz

Small aspect ratio 5.0 × 1010 5.2 10−7 9.8 × 10−3 0.20 351 × 769 × 1025 a

7.0 × 1010 1.2 × 10−2 a

9.9 × 1010 1.4 × 10−2

1.4 × 1011 1.6 × 10−2 a

2.1 × 1011 2.0 × 10−2

3.2 × 1011 2.5 × 10−2 a

4.3 × 1011 2.9 × 10−2 a

6.0 × 1011 3.4 × 10−2 469 × 1025 × 1365
9.5 × 1011 4.3 × 10−2

1.5 × 1012 5.4 × 10−2

Larger aspect ratio 2.0 × 1011 2.0 × 10−2 0.72 513 × 2049 × 1025

acovered in de Wit et al. [12].

∂T̃

∂ t̃
+ (ũ · ∇̃)T̃ = 1

(RaPr)1/2 ∇̃2T̃ , (2b)

∇̃ · ũ = 0, (2c)

describing the evolution of the flow field u and temperature field T in time t , where p is the pressure
and ez is the vertical unit vector. Here, tildes denote nondimensionalization using the free-fall ve-
locity U = √

gα�T H as the velocity scale, H as the length scale, and �T as the temperature scale.
The governing equations are solved numerically in a cylindrical coordinate system (r, θ, z) using

a second order finite-difference code developed by Verzicco and Orlandi [29]. We employ no-slip
constant temperature boundary conditions on both top and bottom, while the sidewalls of the
cylinder are no-slip and fully insulating. Our simulations are carried out at constant Ek = 10−7 and
Pr = 5.2, representing water, extending our earlier set of simulations in Ref. [12] to larger Ra. We
use a slender cylinder with aspect ratio � = 0.20 for the series at varying Ra, while one simulation
is conducted in a wider cylinder at � = 0.72, such that it fits two full wavelengths of the wall mode,
see Sec III. The full set of input parameters as well as the employed resolutions (Nr × Nθ × Nz) are
provided in Table I.

The adequacy of the employed bulk resolution is validated a posteriori through comparison with
the local smallest dynamical length scale, i.e., the Batchelor scale ηT (since we treat Pr=5.2>1).
We ensure that in all directions, the grid spacing does not exceed 4ηT , in agreement with the
condition in Ref. [30], although for the highest Ra cases for both resolutions with � = 0.20, this
conditions needed to be relaxed to 5ηT . To properly resolve the boundary layers near the top and
bottom of the domain, we ensure that there are at least 10 grid cells in the Ekman boundary layers,
complying with Ref. [30].

III. WALL MODE: FROM ONSET TO GEOSTROPHIC TURBULENCE

In confined rotating Rayleigh-Bénard convection, before the onset of bulk convection, the wall
mode state emerges once a critical Rayleigh number Raw is surpassed. Directly at onset of the wall
mode, it starts to precess anticyclonically, i.e., counter to the direction of background rotation, at a
nonzero frequency ωdc . This critical point depends on Ek (and Pr in the case of ωdc ) and has been
obtained from stability analysis as [31–33]

Raw ≈ π2(6
√

3)1/2Ek−1 + 46.5 Ek−2/3, ωdc/� ≈ (4π2[3(2 +
√

3)]1/2Ek − 1465 Ek4/3)Pr−1.

(3)
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FIG. 1. Angle-time representation of the temperature of the wall mode, obtained at midheight and
r = 0.985R for the case with Ra = 2.0 × 1011 and � = 0.72. The slope of the dashed line depicts the average
angular drift velocity of the wall mode ωd .

The wall mode manifests as a wave adjacent to the sidewall of alternating hot rising fluid and cold
sinking fluid, where, in the limit Ek → 0, the azimuthal wave number m is found to be [32,33]

m =
[π

2
(2 +

√
3)1/2 − 17.49 Ek1/3

]
�. (4)

The recently observed BZF [12,13], encountered far beyond the onset of bulk convection, shows
great morphological similarity with the wall mode state and has been surmised to be a long-lived
nonlinear evolution of the wall mode itself [14,20].

The wall mode can be well appreciated from angle-time plots cross-sectioning the near wall
region. An example for our wider cylinder case is provided in Fig. 1. From the figure, some slight
defects are visible in the wall mode pattern, e.g., between t ∈ [100, 250]U −1H , deviating from a
purely precessing m = 2 mode. As we will argue later, we attribute this to the bulk turbulence
starting the hamper the evolution of the wall mode.

From such angle-time data, the angular drift velocity of the wall mode can be determined by
fitting the time series of azimuthal profiles of temperature (or vertical velocity) with sinusoids
and tracking its phase [12,14,16]. It has been shown that the onset of wall mode convection is
a Hopf bifurcation where the wall mode sets in supercritically as a drifting wave [34,35]. These
authors also show that the drift frequency ωd depends linearly on the reduced bifurcation parameter
ε = (Ra − Raw )/Raw with a finite intercept ωdc . In other words,

ωd − ωdc ∝ Ra − Raw. (5)

Remarkably, this relation has been found to hold not just close to onset, but even far beyond [14,20].
However, the prefactor, and hence also the functional dependence on the other parameters of the
system (Ek, Pr, and �), has thus far only been approximated empirically [16].

Here, we make an hypothesis for the prefactor by postulating that the same scaling of the critical
point itself continues super-critically, i.e., that ωdc/Raw = (ωd − ωdc )/(Ra − Raw ), yielding the
relation

ωd = ωdc

Raw

Ra, (6)

where Raw and ωdc are given by Eq. (3). Note that this is consistent with Eq. (5), indeed, it follows
equivalently from the hypothesis that both the scaling ωd − ωdc ∝ Ra − Raw as well as ωd ∝ Ra
hold simultaneously for all Ra. We emphasize that this relation is entirely fit-parameter-free: it has
no remaining free coefficients in its dependence on system parameters and/or prefactors, but it is
fully determined by the theoretical results from the asymptotic expansion, Eq. (3).

Comparing this relation Eq. (6) to our data and that of earlier works, Fig. 2, we find very
satisfactory agreement over ten decades in Ra. Nonetheless, deviations from this relation are also
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FIG. 2. Scaling of the angular drift velocity ωd of the wall mode as a function of Ra for our data and earlier
works [8,14,16,20,36], following the fit-parameter-free relation Eq. (6). For the data from Wedi et al. [8] and
Zhang et al. [16], data points with EkRa1/2 > 0.15 are plotted in a lighter shade. The inset shows a closeup of
our data including error bars.

evident. We argue that Eq. (6) represents the “rotation-dominated scaling” of the drift velocity,
where the wall mode remains fully developed. It is to be expected, however, that as the intensity
of the bulk turbulence keeps increasing, relative to the strength of the wall mode, it will start to
break down the wall mode at a certain stage as the flow loses rotational constraint. We interpret
the deviations from Eq. (6) as first signatures of this break down of the wall mode. As shown in
the figure in a lighter shade, based on the data from Wedi et al. [8], this break down starts when a
certain value of EkRa1/2 is exceeded (that is, similar to a convective Rossby number Ro) although
the dependence on Pr and � can not be determined from this data as these are kept constant. As
shown in the inset of Fig. 2, also our simulations show a first sign of this hypothesized break down,
with the drift velocity plateauing at the highest considered Ra cases. Moreover, our data suggests
that the point at which this break down of the wall mode commences also depends on the aspect
ratio �, since small but significant deviations from Eq. (6) can be observed in the simulation with
larger �. Qualitatively, one can argue that here, the spatially larger bulk turbulence hampers the wall
mode more strongly.

In the limit Ek → 0, to leading order in Ek, the relation Eq. (6) becomes

ωd/� = 2(1 + √
3)

31/4
Ek2Pr−1Ra, (7)

which is close to the exponents obtained empirically by Zhang et al. [16], who found
ωd/� ∝ Ek5/3Pr−4/3Ra. We compare the two scaling relations in some more detail in Appendix A.

IV. INTERACTION BETWEEN WALL MODE AND BULK

A. Small aspect ratio: The quadrupolar vortex

In this section, we study the flow patterns that emerge in the interaction between the wall mode
and the bulk turbulence. To that extent, we resort to orientation compensated averages of the flow.
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(a) (b)

FIG. 3. A snapshot of the instantaneous flow (a) and the orientation compensated mean flow (b) at
midheight for the case Ra = 9.5 × 1011 and � = 0.20, showing the emergence of jets and the quadrupolar
vortex in the bulk. Arrows indicate horizontal in-plane velocities and color depicts vertical velocity. Shaded
arrows are used in panel (a) to highlight the jets originating from the wall mode.

These are constructed by tracking the phase angle of the wall mode. Then each snapshot of the flow
is rotated back by this angle and the average is taken over time; see also Ref. [12].

A typical example of the instantaneous flow and the orientation compensated mean flow for one
of the cases with � = 0.20 is shown in Fig. 3, while individual velocity components and temperature
of the mean flow are provided in Appendix B 1. This reveals the formation of a domain-spanning
quadrupolar vortex in the bulk. This quadrupolar vortex is aligned with the orientation of the wall
mode, such that jets emerging from the wall mode where the hot rising section meets the cold
sinking section are feeding this quadrupolar vortex.

There is an evident asymmetry between the strength of the cyclonic and anticyclonic poles
of the vortex. The anticyclonic poles are relatively stronger, which we attribute to the Coriolis
effect deflecting the jets emerging from the wall region disproportionally to the right toward the
anticyclone.

The vortex structure observed here shares many characteristics with the large-scale vortices
(LSVs) observed in laterally unbounded rotating convection [9,22–27]. There, the LSVs emerge
as a result of the upscale kinetic energy transfer that feeds the largest available scales of the flow,
owing to the quasi-2D nature of rotating turbulence. Indeed, both the quadrupolar vortex observed
here and the LSVs are large-scale ordered structures imposed on a turbulent background and are
strongly vertically coherent (see also, e.g., Ref. [12]). Moreover, it resides purely in the horizontal
manifold of the flow, as is also clear from the experimentally obtained power spectra in Madonia
et al. [21]. This raises the question what is at the root of the formation of the quadrupolar vortex as
observed here: whether it is purely driven by the evolution of the wall mode and its interaction with
the bulk, or whether the flow structure is a consequence of upscale energy transport. Therefore, we
next resort to a case with a larger aspect ratio � = 0.72, which is predicted to give rise to a wall
mode with wave number m = 2 according to Eq. (4), to investigate whether or not this also gives
rise to a quadrupolar vortex.

B. Large aspect ratio: Decaying jets

In this wider cylinder � = 0.72, in accordance with the prediction from Eq. (4), we find a wall
mode with wave number m = 2; see Fig. 1. Consequently, since this yields four interfaces between
hot rising sections and cold sinking sections of the wall mode, we observe four inward jets coming
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VIDEO 1. Evolution of the temperature at midheight for the the case with Ra = 2.0 × 1011 and � = 0.72,
which shows the emergence of jets originating from the wall region that penetrate and decay into the bulk,
highlighted by the dashed boxes.

from the wall region, as opposed to the two jets observed in the smaller cylinder. These jets can best
be appreciated from Video 1.

Resorting to the orientation compensated average flow in Fig. 4(a) and Appendix B 2, we note
that there is no formation of a quadrupolar vortex. Instead, in the larger cylinder, we observe an
array of eight vortices with alternating sign of circulation in a region adjacent to the side wall, albeit
less pronounced than the quadrupolar vortex in the smaller cylinder. This structure is also evident
from the azimuthal energy spectrum û2

r (kθ ) of radial velocity as provided in Fig. 4(b), showing a
peak around azimuthal wave number kθ = 4 for the larger aspect ratio, while the smaller aspect
ratio peaks around kθ = 2, corresponding with, respectively, four inward jets for the 8-vortex and
two inward jets for the quadrupolar vortex. These results suggest that the observed average flow
is primarily due to the interaction of the wall mode with the bulk, rather than being driven by any
upscale energy transfer.

This raises the following picture of how the bulk turbulence is affected by the jets emerging
from the wall mode. In the smaller cylinder with m = 1, jets emerging from the wall mode travel
persistently to the center of the cylinder where they meet and recirculate into the quadrupolar vortex
structure. In the wider cylinder with m = 2, the jets penetrate into the bulk but decay before reaching
the center, forming an opposite vortex on either side of the decaying jet, giving rise to the observed
array of eight vortices.

The observation of the radial decay of the jets can be made quantitative by considering the
skewness of the radial velocity Sur = 〈[(ur − 〈ur〉)/σur ]

3〉 where σur = 〈u2
r − 〈ur〉2〉1/2 and 〈· · · 〉

denotes temporal and azimuthal averaging. The relatively strong inward radial jets emerging from
the wall mode manifest as negative skew in the PDF of radial velocity, see Figs. 4(c) and 4(d). We
can estimate the width WJ of the region affected by the decaying jets as the band that fits this array
of 4m vortices, yielding

2π (R − WJ/2)

4m
≈ WJ ⇒ WJ ≈ 2πR

4m + π
∼ λw, (8)
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(c) (d)

(a) (b)

FIG. 4. The orientation compensated mean flow (a) as well as azimuthal spectra (b), PDFs (c), and
skewness (d) of radial velocity for the case with Ra = 2.0 × 1011 and � = 0.72 at midheight. This depicts
how jets emerging from the wall mode form a pattern in the azimuthal direction. The jets manifest as negative
skewness in the radial velocity. They penetrate and decay into the bulk, thereby inducing an array of vortices
in a region of width WJ delineated by the purple dashed line in panels (a) and (d) as given by Eq. (8).
The dashed-dotted blue line in panel (a) denotes the radius R − WJ/2 as used in Eq. (8). The azimuthal
spectra in panel (b) are taken at r = 0.75R. The dotted green line in panel (c) depicts the standard Gaussian
distribution. Diamonds in panel (d) for the case � = 0.72 indicate the corresponding radial positions for
the PDFs in panel (c). In panels (b) and (d) the case with Ra = 2.1 × 1011 and � = 0.20 is also plotted for
comparison.

where we tacitly assumed that the vortices are as wide radially as azimuthally. Here, λw denotes
the wavelength λw = 2πR/m of the wall mode. The obtained WJ is depicted in Fig. 4 as the dashed
purple line, from which it is evident that it captures the knee in the radial velocity skewness well.

In general, we thus expect that the region that is affected by the penetrating jets of the
wall mode scales as the wavelength of the wall mode. This implies that to obtain bulk turbu-
lence that is largely unaffected by the wall mode, a high wave number of the wall mode is
needed, or indeed, equivalently, a large aspect ratio of the convective flow domain. An alterna-
tive pathway to diminishing the effect of the wall mode was recently put forward in Ref. [19],
suggesting to include narrow fins along the sidewall that suppress the development of the wall
mode.

The final point we remark about the jet structure is the asymmetry of the temperature of the jets.
As can be observed from Figs. 7(d) and 8(d) in Appendix B, jets that have the hot rising section of
the wall mode on their left and the cold sinking section on their right (facing inward) are primarily
hot jets and viceversa for primarily cold jets. This suggests that the jets originate predominantly
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from the trailing edge of each section of the wall mode, relative to its anticyclonic precession
direction.

V. REYNOLDS DECOMPOSITION: GENERATION OF ZONAL FLOW

As the wall mode evolves from its linear onset into the turbulent regime under the influence of
nonlinear interactions, also the morphology of the wall mode itself changes. One peculiar aspect of
the nonlinear evolution of the wall mode is the development of a nonzero mean flow in the azimuthal
direction as was emphasized in Ref. [13] and also observed before in Refs. [37,38]. This nonzero
mean azimuthal velocity in the wall region is observed when taking the ensemble average, even
though this means that the average is taken over the entire phase (or azimuthal extent) of the wall
mode. Refs. [14,39] put forward that Reynolds stresses can act as the source terms for this mean
zonal flow. It is therefore instructive to consider the full Reynolds averaged Navier-Stokes (RANS)
equations to understand how the nonlinear interactions drive the mean flow in the wall mode.

We start by decomposing the flow into an ensemble averaged component U and the perturbation
u′ thereof, such that

u = U + u′, 〈u〉 = U, 〈u′〉 = 0. (9)

The RANS equations are then readily obtained by substituting this decomposition into the Navier-
Stokes Eqs. (2a) and (2c) and taking the ensemble average. Due to the axial symmetry, any
derivatives ∂/∂θ vanish. We then find for the RANS r equation (in dimensionless form, tildes are
omitted for brevity)

∂Ur

∂t
+ Ur

∂Ur

∂r
+ Uz

∂Ur

∂z
− U2

θ

r︸ ︷︷ ︸
advection

+ ∂

∂r

〈
u′2

r

〉 + ∂

∂z
〈u′

ru′
z〉 −

〈
u′2

θ

〉
r

+
〈
u′2

r

〉
r︸ ︷︷ ︸

Reynolds stress

+ ∂〈p〉
∂r︸︷︷︸

pressure

− 1

Ro
Uθ︸ ︷︷ ︸

Coriolis

+
√

Pr

Ra

[
−1

r

∂

∂r

(
r
∂Ur

∂r

)
− ∂2Ur

∂z2
+ Ur

r2

]
︸ ︷︷ ︸

viscous

= 0, (10a)

and likewise for the θ equation

∂Uθ

∂t
+ Ur

∂Uθ

∂r
+ Uz

∂Uθ

∂z
+ Ur Uθ

r︸ ︷︷ ︸
advection

+ 1

r

∂

∂r
(r〈u′

ru′
θ 〉) + ∂

∂z
〈u′

θu′
z〉 + 1

r
〈u′

ru′
θ 〉︸ ︷︷ ︸

Reynolds stress

+ 1

Ro
Ur︸ ︷︷ ︸

Coriolis

+
√

Pr

Ra

[
−1

r

∂

∂r

(
r
∂Uθ

∂r

)
− ∂2Uθ

∂z2
+ Uθ

r2

]
︸ ︷︷ ︸

viscous

= 0. (10b)

In the statistically stationary state, the time derivatives ∂/∂t in the first terms vanish. Exploiting
ergodicity, we approximate the ensemble average by a temporal and azimuthal average.

The results for the different terms in the RANS equations in the wall region are provided in
Fig. 5. It reveals a two layer structure, approximately corresponding with the Stewartson boundary
layer thicknesses of Ek1/3 and Ek1/4 [37,38,40]. In the r equation, as shown in Fig. 5(a), the leading
order is the geostrophic balance ∂〈p〉/∂r − (1/Ro)Uθ = 0 [41]. This is also the dominant balance
that sustains the observed mean azimuthal flow, which is proportional to the Coriolis term in the
r equation. Considering the subleading balance in Fig. 5(b) by combining the pressure and Coriolis
terms, we find that while the inner layer (around Ek1/4) is indeed primarily geostrophic, the outer
layer (around Ek1/3) has a more significant ageostrophic contribution that is balanced by Reynolds
stresses in the r equation. For the θ equation in Fig. 5(c), the force balance is yet an order of
magnitude smaller. There, the balance in the outer layer is primarily between the Reynolds stresses
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FIG. 5. The different terms in the RANS r equation (a), (b) and θ equation (c) as given by Eqs. (10a) and
(10b) for the case with Ra = 2.0 × 1011 and � = 0.72 at midheight. The dashed vertical lines represent the
Stewartson sidewall boundary layer thicknesses Ek1/4 and Ek1/3. The geostrophic balance in the r equation be-
tween the Coriolis force and the pressure is shown in panel (a) as emphasized by the overlap between the
Coriolis term and the negative of the pressure term (dashed green line), while the subleading balance is shown
in the enlargement in panel (b) by combining the pressure and Coriolis terms. Note that the mean azimuthal
flow Uθ is directly proportional to the Coriolis term in panel (a).

and the viscous terms owing to gradients in the mean azimuthal flow, while the Coriolis force
becomes important in the inner sidewall layer. The latter results from the slight net circulation of
fluid being transported into the sidewall region near the top and bottom plates, which is transported
radially inward at moderate heights, due to secondary circulation being set up in the boundary layers
[38]. Reynolds stresses in the θ equation thus partly balance this radial flow through its Coriolis
force and also drive the mean azimuthal flow through its viscous forces, while this azimuthal flow
is largely amplified by geostrophic and ageostrophic forces in the r equation.

We have considered this RANS balance for different simulation cases covered in this work and
found qualitatively similar results for all considered Ra and � (not shown).

VI. CONCLUSIONS

In this work, we have numerically investigated the robust wall modes that exist in laterally
confined rotating Rayleigh-Bénard convection. These strong zonal flow structures carry a large
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heat flux and precess anticyclonically along the sidewall of the convection tank. Understanding
the characteristics of the wall mode and its interplay with the bulk rotating convective turbulence
is important to the interpretation of experiments in the context of large-scale geophysical and
astrophysical convective flows.

We have analyzed the angular drift velocity of the wall mode and, by comparing our findings with
earlier work, we have found a relation for the angular velocity that is entirely fit-parameter-free. It
links the angular velocity of the wall mode to the critical angular velocity and Ra at onset of the
wall mode state, thereby establishing very strongly the surmised connection between the wall mode
state that occurs before the onset of bulk convection and the boundary zonal flow in the turbulent
regime: they are two sides of the same coin.

However, deviations from the obtained relation are also evident, showing that the drift velocity of
the wall mode can decrease as the rotational constraint of the flow alleviates. We argue that this is a
first manifestation of the break down of the wall mode, which is to be expected once the flow starts
to move toward a buoyancy dominated regime and the stronger bulk turbulence starts to hamper the
development of the wall mode. While this work provides first indications on where this break down
can be expected, its exact functional dependence as well as its physical mechanism warrants further
investigation.

Studying the interactive flow between the wall mode and the bulk turbulence, we find that this
interaction is dominated by radial jets penetrating from the wall mode into the bulk. As these jets
decay into the bulk turbulence, they induce opposite vortices on either side of the jet. For the cylinder
with small aspect ratio, resulting in an m = 1 wall mode, this results in the formation of a large
quadrupolar vortex spanning the full domain. For the m = 2 wall mode in the wider cylinder, this
results in an array of eight (i.e., 4m) alternating vortices adjacent to the sidewall, suggesting that the
region affected by these penetrating jets scales as the wavelength of the wall mode.

The observations in the wider cylinder indicate that the vortex observed at the large scales in the
bulk turbulence originate predominantly from the interaction with the wall mode, rather than being
a result of an upscale flux of kinetic energy as is observed for unconfined rotating convection in
a similar parameter range. Whether a stable upscale transport can be set up in the confined flow
system remains to be explored in future work.

Finally, we consider the Reynolds averaged properties of the wall mode. There, we find that
Reynolds stresses indeed play an essential role in the formation of the observed mean flow in the
nonlinear development of the wall mode. We find that the Reynolds stresses are largely balanced by
Coriolis forces within the wall mode that dominate over viscous forces and advective forces, which
would be more prominent in a conventional boundary layer.

The robust wall modes are a remarkable feature of confined rotating convection. This work has
shown how properties of the wall mode at its onset propagate far into the turbulent regime for at
least ten decades in Ra. We have explored the structure of the wall mode in this nonlinear evolution
and its interaction with the bulk turbulence. While we also identify pathways to mitigate the effect
of the wall mode, indeed by resorting to a geometry that is wide compared to the wavelength of
the wall mode, understanding the impact of the wall mode on the morphology of confined rotating
convective turbulence will remain an important point of attention in current day and future research.
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FIG. 6. The angular drift velocity ωd of the wall mode as a function of Ra − Raw for our data and earlier
works [8,14,16,20,36], compared with the scaling ωd/� ∝ Ek5/3Pr−4/3Ra as put forward by Zhang et al. [16]
(dashed line). For the data from Wedi et al. [8] and Zhang et al. [16] data points with EkRa1/2 > 0.15 are
plotted in a lighter shade. The inset shows a closeup of our data including error bars. Compare with Fig. 2 in
the main text.

APPENDIX A: COMPARISON OF SCALING RELATION FOR WALL MODE FREQUENCY

Here we compare the relation Eq. (6) for the angular precession frequency of the wall mode that is
put forward in this work to the scaling relation ωd/� ∝ Ek5/3Pr−4/3Ra that is obtained empirically
by Zhang et al. [16]. As argued in the main text, in the limit Ek → 0, relation Eq. (6) yields scaling
exponents 2 and −1, respectively, for Ek and Pr, which differ only by a small amount from what
is obtained by Zhang et al. [16]. Since most data is obtained over a limited dynamic range in
Ek ∼ O(10−7–10−6) and Pr ∼ O(1), it is difficult to tell from the data alone which exponents
capture the correct scaling.

The scaling by Zhang et al. [16] is shown in Fig. 6 for comparison with Fig. 2 in the main text.
Indeed, it is hard to say which one yields the better fit, although the data by Wedi et al. [8] seems
to be captured a bit better by the relation Eq. (6) in the main text of this work. However, we would
argue that, based solely on the limited data available, one cannot tell which relation is correct. In
that light, we regard the comparison with the exponents obtained empirically by Zhang et al. [16]
as an approximate agreement, rather than an exact disagreement, given the limited data available at
this stage.

APPENDIX B: ORIENTATION COMPENSATED AVERAGE CROSS SECTION

The different velocity components and temperature of the orientation compensated averages are
provided for the small aspect ratio, Fig. 7, and large aspect ratio, Fig. 8.

1. Small aspect ratio

Mean flow in the small aspect ratio cylinder, giving rise to a principal m = 1 wall mode.
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FIG. 7. Orientation compensated mean flow in the radial (a), azimuthal (b), and vertical (c) direction as
well as the corresponding temperature (d) at midheight for the case Ra = 9.5 × 1011 and � = 0.20.

2. Large aspect ratio

Mean flow in the large aspect ratio cylinder, giving rise to an m = 2 wall mode.

FIG. 8. Orientation compensated mean flow in the radial (a), azimuthal (b), and vertical (c) direction as
well as the corresponding temperature (d) at midheight for the case Ra = 2.0 × 1011 and � = 0.72.
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