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Towards real-time reconstruction of velocity fluctuations
in turbulent channel flow
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We develop a framework for efficient streaming reconstructions of turbulent velocity
fluctuations from limited sensor measurements with the goal of enabling real-time ap-
plications. The reconstruction process is simplified by computing linear estimators using
flow statistics from an initial training period and evaluating their performance during a
subsequent testing period with data obtained from direct numerical simulation. We address
cases where (i) no, (ii) limited, and (iii) full-field training data are available using estimators
based on (i) resolvent modes, (ii) resolvent-based estimation, and (iii) spectral proper
orthogonal decomposition modes. During training, we introduce blockwise inversion to ac-
curately and efficiently compute the resolvent operator in an interpretable manner. During
testing, we enable efficient streaming reconstructions by using a temporal sliding discrete
Fourier transform to recursively update Fourier coefficients using incoming measurements.
We use this framework to reconstruct with minimal time delay the turbulent velocity
fluctuations in a minimal channel at Reτ ≈ 186 from sparse planar measurements. We
evaluate reconstruction accuracy in the context of the extent of data required and thereby
identify potential use cases for each estimator. The reconstructions capture large portions
of the dynamics from relatively few measurement planes when the linear estimators are
computed with sufficient fidelity. We also evaluate the efficiency of our reconstructions and
show that the present framework has the potential to help enable real-time reconstructions
of turbulent velocity fluctuations in an analogous experimental setting.

DOI: 10.1103/PhysRevFluids.8.064612

I. INTRODUCTION

A. Real-time estimation and control

Processing measurements generated by turbulent flows in real time is an increasingly important
problem in applications including flow estimation and control. As depicted in Fig. 1, estimates
can be used to inform control schemes in real-time applications. Flow estimation problems may
be further subdivided into smoothing, filtering, and prediction problems. These problems aim to
inform estimates of past, present, and future states (respectively) using incoming measurements that
are usually incomplete and noisy. Real-time predictions can be useful for active control, but they
are typically more challenging than (smoothing or filtering) reconstructions of turbulent flows due
to multiscale dynamics and sensitivity to initial conditions.

Real-time flow estimation tasks are often practically limited by low-fidelity measurements and
task-related time constraints, e.g., in the context of aviation meteorology [1]. Measurements can be
improved by optimizing the design [2] and configuration [3] of sensors. Computational processing
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FIG. 1. High-level block diagram depicting a framework in which a real-time control scheme is informed
by real-time estimates generated by noisy measurements. We focus on the real-time estimation problem (red)
in the context of flow reconstruction.

can be expedited by leveraging data-driven and physics-based methods [4] that often reduce the
dimensionality of the problem or introduce a simplifying model. In the context of turbulent jets,
Sasaki et al. [5] demonstrated that the parabolized stability equations can be used to estimate (in
real time) the pressure at downstream sensors using upstream pressure measurements.

Beyond estimation, real-time control schemes require yet further empirically or heuristically
prescribed simplifications to ensure in-time actuation. Maia et al. [6] used a reactive control scheme
to experimentally attenuate centerline velocity fluctuations in a forced jet (ReD = 50 000) by
generating wave packets that destructively interfere with stochastic disturbances generated at the
nozzle. Abbassi et al. [7] demonstrated that actuating an array of cross-flowing jets that penetrate
into the log region of a turbulent boundary layer (Reτ = 14 400) can influence the resulting skin
friction drag and turbulence intensity.

Previous real-time flow estimation and control schemes demonstrate that, by combining gov-
erning equations with measurements and simplifying models, hybrid methods allow for a tailored
balance between the efficacy and the speed of the scheme. One commonality of these methods is
that their simplifying assumptions are often not well justified from first principles. In the present in-
vestigation, we focus on the problem of real-time flow reconstruction in the context of wall-bounded
turbulence. Even for this relatively simple estimation problem, the task of efficiently and accurately
representing turbulent dynamics from first principles [i.e., the Navier-Stokes equations (NSE)] using
minimal assumptions has remained challenging.

B. Reconstruction techniques

Reduced-order models (ROMs) often provide efficient flow representations to reduce the com-
plexity of high-dimensional turbulent flows, e.g., using proper orthogonal decomposition (POD)
[8] and dynamic mode decomposition (DMD) [9]. For statistically stationary flows, spectral POD
(SPOD) provides an efficient means of identifying coherent structures that retains a direct relation-
ship to resolvent analysis and DMD [10]. Unless otherwise stated, the SPOD modes we refer to
are those of the velocity fluctuations. Truncated SPOD mode estimation (TSME) often provides
an efficient means of flow reconstruction since SPOD modes form an optimal orthogonal basis in
terms of the variance captured by a given subset of modes [11]. Data-driven methods like SPOD
are often limited in that they neglect the governing equations and require extensive postprocessing.
However, Ghate et al. [12] showed that supplementing SPOD-based truncations with physics-based
enrichment using Gabor modes enables representations of flows over a broad range of scales.
Moreover, SPOD is amenable to a streaming formulation [13] and convolution-based strategies
for time-domain analysis [14], thereby reducing its computational requirements.

Equation-based frameworks have been developed in conjunction with data-driven methods to
efficiently estimate turbulent flows. Techniques from control theory are often used for flow esti-
mation in the time domain (e.g., Kalman filters [15–17]) and the frequency domain (e.g., Wiener
filters [18]). Techniques like linear stochastic estimation (LSE) [19] and its spectral variant [20]
are rooted in conditional estimation. LSE-based techniques are often used with data-driven [21,22]
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and equation-based [23,24] models to augment flow reconstructions. Other methods use simplified
governing models to produce forward and backward estimates that augment reconstructions from
low-resolution and multiresolution temporal measurements [25,26]. One central challenge in these
estimation techniques is addressing the nonlinearity of the governing equations.

Resolvent analysis [27,28] provides a powerful framework for addressing the nonlinearity of
the NSE and identifying energetic linear amplification mechanisms using minimal assumptions. In
a manner related to the work of Farrell and Ioannou [29], the turbulent fluctuation dynamics are
recast as a linear system forced by their nonlinearity in the resolvent framework. The resolvent
operator often admits a low-rank representation, and it can be constructed using a base flow profile,
which can be modeled or learned from data, e.g., via data assimilation [30,31].

One flavor of flow reconstruction using resolvent analysis is truncated response mode estimation
(TRME). TRME revolves around the singular value decomposition (SVD) of the resolvent operator,
which produces orthonormal bases for the forcing and response that are related through correspond-
ing gains or singular values. Modal truncation is performed based on the (often) low-rank nature of
the resolvent operator, which occurs when the gains associated with a small number of leading
modes dominate those of the remaining (suboptimal) modes. Moarref et al. [32] demonstrated
that streamwise energy amplification in each half of a turbulent channel (Reτ = 2003) is well
captured by a rank-1 approximation of the resolvent operator. Moarref et al. [33] then used convex
optimization techniques to compute resolvent mode weights, which encode dynamical information,
using a similar low-rank approximation to capture the velocity spectra in a turbulent channel. In
similar fashions, TRME was used to approximate energetic structures in flow around a cylinder
[31] and in lid-driven cavity flow (Re = 1200) with a known (2D) mean flow [34]. In all of these
cases, the resolvent modes are weighted using spatially isolated velocity measurements in either
Fourier or physical space. In such setups, it is important that the measurements at least partially
capture the most energetic regions of the flow. For example, Symon [30] showed that tailoring probe
locations to capture energetic regions of both low-frequency wake modes and high-frequency shear
layer modes significantly improves reconstruction accuracy. Beneddine et al. [35] found a similar
result by separately capturing low-frequency and high-frequency regions in a backward-facing
step flow configuration. Recently, a quasisteady resolvent analysis has been used to reconstruct
high-frequency fluctuations using the phase of a lower-frequency periodic motion [36]. Resolvent
truncations have also recently been used to design H2-optimal estimators and controllers [37] and
select optimal sensor and actuator locations [38] in cylinder flows.

While TRME provides an efficient and informative approximation, the assumption of a
fixed-rank [39] truncation may not be appropriate across all frequencies. In contrast to TRME,
resolvent-based estimation (RBE) revolves around the SVD of an input-output operator that mod-
ifies the resolvent operator to reflect sensor locations. Since flow sensors are usually limited and
sparsely spaced, RBE has shown promise in producing reconstructions of both flow statistics [40]
and dynamics [41] from limited data without truncating the resolvent operator a priori. RBE [40]
relates response measurement statistics to observable forcing statistics via an input-output operator
and (typically) models the unobservable forcing as uncorrelated with the observable forcing. The
estimated forcing statistics then yield estimates of the response statistics via the resolvent operator.
Building from this approach, Martini et al. [41] derived optimal, noncausal transfer functions
relating the measurements to the full response when the second-order forcing statistics and resolvent
operator are known. Further, Morra et al. [42] showed that the statistics in a turbulent channel can
be reasonably modeled using a low-rank SPOD approximation of the forcing. These studies reveal
that the tradeoff between accurately capturing the forcing color and retaining a sparse measurement
configuration can be somewhat alleviated by modeling the structure of the nonlinearity. For example,
in turbulent channel flows, including an eddy-viscosity model [17] can improve the accuracy of RBE
techniques for the response [43] and its statistics [40,42,44] with minimal input data.

We primarily focus on noncausal forms of linear estimators, including that derived for optimal
resolvent-based estimation (ORBE) [41,43]. More recently, a causal resolvent-based formulation
for estimation and control [45] was developed via the Wiener-Hopf formalism. However, the
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numerical machinery for forming this causal estimator is typically more complex than that of the
noncausal estimator due to an additional term in the estimation problem. By instead applying the
noncausal formulation to the real-time reconstruction problem, we avoid these complex methods and
retain a relatively simple framework. Noncausal estimation techniques (including ORBE) are not
typically amenable to real-time applications [43], but we circumvent this limitation by continuously
updating the estimated temporal Fourier coefficients over a small window at every time step. Further,
using this sliding window enables efficient recursive techniques for updating the coefficients [46].
The implementation of this technique, which has linear algorithmic complexity, differs from the
streaming Fourier sums technique of Schmidt and Towne [13], which has quadratic algorithmic
complexity but a smaller memory footprint.

Nonlinear estimation techniques, especially those incorporating machine learning techniques,
can also reconstruct flows with competitive accuracy. For example, Fukami et al. [47] reported
relative errors of less than 15% for spatial superresolution of a channel flow using a coarse input with
six elements across each half of the channel. Although they achieve significant data compression,
the coarsened input for estimation, obtained via averaging, is not conducive to typical experimental
measurements. By contrast, our investigation focuses on practical considerations for experimental
implementation, including time delays, measurement configurations, scalability, and uncertainty
quantification. Working in the linear estimation setting is further advantageous in that it is amenable
to a wealth of estimation and control theory for linear systems. Further, in contrast to many
machine learning techniques, the present linear estimation techniques are interpretable in terms
of their optimality and through the basis and flow statistics imposed by the linear model. Finally,
whereas machine learning techniques can take significantly longer (e.g., multiple days [47]) to train
estimators on optimized hardware, we introduce estimators that can be constructed from training
data within an hour on a laptop.

C. Contributions

The goal of this study is to construct a method for reconstruction of turbulent velocity fluctuations
from sparse measurements, adding to the vast flow estimation literature. For this, we develop a new
framework to enable efficient streaming capabilities with the potential for real-time implementation.
In Sec. II we detail the governing equations and formulate the statistical framework, based on the
generalized Wiener filter, that we use to reconstruct the fluctuations. We also detail the application
of methods inspired by TRME, ORBE, and TSME to this more general framework. In Sec. III,
we introduce efficient methods that enable streaming flow reconstructions with minimal time delay
and improved scalability compared to standard techniques. When forming linear estimators from
training data, we introduce blockwise inversion to efficiently compute the resolvent operator.
When reconstructing the flow from testing data, we apply a recursive sliding discrete Fourier
transform (SDFT) to efficiently update the inputs to the estimators in a streaming fashion. In
Sec. IV we evaluate the performance of the reconstructions using each method. We specifically
address (i) the fidelity of the training data and the testing data, (ii) the validity of the models
underlying the estimators, (iii) the potential use cases for each reconstruction method, and (iv)
the reconstruction efficiency in the context of real-time applications. In doing so, we demonstrate
that practical reconstruction speeds can be achieved using modest computational resources while
retaining competitive accuracies with other linear estimation techniques. Finally, we summarize
our reconstruction methods, the performance of the estimators, and promising future prospects and
applications in Sec. V.

II. BACKGROUND METHODOLOGY

A. Governing equations

We focus on turbulent channel flow between two parallel walls, for which we denote the stream-
wise, wall-normal, and spanwise directions by x, y, and z and the corresponding velocities by U , V ,
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and W , respectively. This flow is governed by the nondimensional, incompressible Navier-Stokes
equations (NSE)

∂tU + (U · ∇)U + ∇P = 1

Reτ

∇2U , ∇ · U = 0, (1)

where U = [U ,V,W]T is the velocity vector, P is pressure, and t denotes time. For channel
flow, Reτ = uτ h/ν is defined in terms of the channel half-height h, the friction velocity uτ , and
the kinematic viscosity ν. Lengths, velocities, and pressures are normalized by h, uτ , and ρu2

τ ,
respectively, where ρ is the fluid density.

We combine the velocity and pressure into a single state variable, Q = [U ,V,W,P]T ,
whose evolution is governed by the NSE. The state fluctuations are expressed by (Reynolds)
decomposing the state vector as Q = Q + q, where Q and q represent the base flow and the
fluctuations, respectively. Here we specify the base flow as the mean state profile, Q(y) = Q(y) =
[U (y),V (y),W (y), P(y)]T , where V (y) = W (y) = 0 for channel flow [48]. The corresponding fluc-
tuations are Fourier transformed in time and in the spatially homogeneous and periodic directions
(x and z here), giving

q̂(y, k) =
[

û(y, k)
p̂(y, k)

]
= F {q(x, t )} = 1

8π3

∫∫∫ ∞

−∞
q(x, t )ei(ωt−kxx−kzz) dt dx dz, (2)

where i = √−1, x = [x, y, z]T and each triplet, k = [kx, kz, ω]T , contains the streamwise wave num-
bers, spanwise wave numbers, and (angular) temporal frequencies, respectively. The transformed
differential operators are given by ∇̂ = [ikx, ∂y, ikz]T and ∇̂2 = ∂yy − k2, where k2 = k2

x + k2
z .

Applying the Reynolds decomposition and the Fourier transform defined in (2), (1) can be used
to express the state fluctuation dynamics for each triplet via a linear subsystem that is externally
forced by the nonlinear advection terms. Correspondingly, each linear subsystem may be written as

L(k)q̂(y, k) =
[
LB(k) ∇̂
∇̂T

0

][
û(y, k)

p̂(y, k)

]
=

[
f̂ (y, k)

0

]
, (3)

where k �= [0, 0, 0]T . Here LB represents the “basic” terms in the unsteady momentum equations,
which are linear in the velocity fluctuations, and f̂ (y, k) = F {−(u · ∇)u + (u · ∇)u} represents the
nonlinear forcing. While the subsystem for each triplet is externally forced by velocity fluctuations
satisfying k′ �= k, the system is internally forced by its nonlinearity. In Sec. II B we discretize
this state-space formulation of the Navier-Stokes system and express the corresponding resolvent
operator in discrete form.

B. Discretized linear system

When formed directly from the continuous governing equations, the linear subsystems in (3)
are infinite-dimensional. However, by discretizing the equations onto a grid, they assume a finite-
dimensional representation based on the spatial resolution in the wall-normal direction. As depicted
in Fig. 2, the direct numerical simulation (DNS) data in the present case are staggered [49] on a
Cartesian grid. For a wall-normal domain discretized into Ny cells, the discrete representations of
û and q̂ are column vectors of sizes Nu = 3Ny + 1 and Nq = Nu + Ny, respectively. The numerical
quadrature (i.e., wall-normal integration) weights associated with center and edge quantities are �y j

and 0.5(�y j−1 + �y j ), respectively.
Since state variables are Fourier transformed in x and z, we accurately reference the cell-center

values for û and ŵ by shifting their Fourier transform origins by half a cell width in x and z,
respectively. To retain a direct analogy with the (discrete) governing equations used in simulating
the flow, we maintain v̂ and the mean shear, ∂yU , at the wall-normal edges, ye

j and ye
j+1, of each cell.

Correspondingly, we represent the mean shear using a bidiagonal matrix, ∂yU , that acts to average
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FIG. 2. Staggered state variable locations on an arbitrary cell in the computational domain. This diagram
is not drawn to scale since �x �= �z �= �y j , and �y j varies in the wall-normal direction. Velocities reside on
the faces of the cell and pressure resides at the cell center. The superscripts ·c and ·e represent the (wall-normal)
centers and edges of the cell, respectively.

the contributions of v̂∂yU at the cell edges to the cell centers. The diagonal matrices, Uc,e, represent
the mean profile at the cell centers and edges, respectively.

In discrete form, the linear operator, L, is a matrix, L ∈ CNq×Nq , of the form

L(k) =

⎡
⎢⎢⎢⎢⎣

Lc(k) ∂yU 0 ik∗
x Ic

0 Le(k) 0 ∂y

0 0 Lc(k) ik∗
z Ic

ik∗
x Ic ∂y ik∗

z Ic 0

⎤
⎥⎥⎥⎥⎦ =

[
LB ∇̂
∇̂T

0

]
, (4)

where the 0 matrices are conformable and LB is the basic subblock, analogous to LB in (3). The
diagonal subblocks take the form

Lc,e = −iωIc,e + ik∗
xUc,e − 1

Reτ

∇̂2
c,e, (5)

where ∇̂2
c,e and Ic,e are the Laplacian and identity matrices of appropriate size. The discrete

representations of ∂y and ∂yy are computed via central finite differences with modified boundary
terms to enforce the relevant boundary conditions at the walls. In each case, boundary values can
be determined by applying central finite differences on a ghost grid that symmetrically extends the
center grid about the wall (edge) locations. Further,

k∗
x = 2

�x
sin

(
kx�x

2

)
and k∗

z = 2

�z
sin

(
kz�z

2

)
(6)

are the modified wave numbers corresponding to central finite differences in the streamwise and
spanwise directions, respectively. The differences between k∗

x and kx induce differences in the
advection and Fourier phase speeds which grow as |kx| increases.

Correspondingly, the spatially discretized form of (3) is given by

L(k)

[
S(k) 0

0 Ic

]
q̂(k) = BS(k) f̂ (k), (7)

where we have assumed that the streamwise and spanwise components of q̂ and f̂ are unshifted.
Here S is a diagonal matrix that shifts the origin for staggered flow quantities (in x and z) to the cell
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center. As such, it may be expressed as

S(k) =

⎡
⎢⎣

Sx(k)Ic 0 0

0 Ie 0

0 0 Sz(k)Ic

⎤
⎥⎦, Sx = exp

(
ik∗

x �x

2

)
, Sz = exp

(
ik∗

z �z

2

)
, (8)

where S−1 = SH and (·)H is the conjugate transpose. The input matrix,

B =

⎡
⎢⎢⎢⎣

Ic 0 0

0 Ie 0

0 0 Ic

0 0 0

⎤
⎥⎥⎥⎦, (9)

is used to isolate the forcing to the momentum equations. For convenience, we also use it to extract
the velocity fluctuations from the state vector. For each triplet, the velocity fluctuations may then be
expressed as a linear response to their nonlinear forcing via

û(k) = BT q̂(k) = Ru(k) f̂ (k), (10)

where

Ru = (BS)H L−1(BS) (11)

is the one-dimensional resolvent [50] operator. We directly enforce the no-penetration boundary
condition in computing L−1BS.

C. Flow reconstruction

We formulate the flow reconstruction problems for TRME (Sec. II C 1), ORBE (Sec. II C 2), and
TSME (Sec. II C 3) in triplet space. Correspondingly, our goal is to reconstruct velocity fluctuations
in the turbulent channel using spatially sparse measurements in the wall-normal direction. We
therefore consider a collection of Nplane spatially isolated planar observations,

ŷn(k) = C(k)û(k) + n̂(k) = ŷ(k) + n̂(k), (12)

where C ∈ R3Nplane×Nu is the observation matrix, n̂ represents the measurement noise, and ŷ =
Cû isolates the noiseless component of the observations. For all triplets of interest, C isolates
collocated velocity fluctuation measurements at cell-centered wall-parallel planes by averaging
adjacent wall-normal velocities. The noise is assumed to represent a zero-mean random process
that is uncorrelated with the flow. In this formulation, n̂ captures errors resulting from employing a
discrete Fourier transform over a finite temporal window and any other sources of contamination.
In an experimental setting, observations of the form in (12) may be generated by (multiplane)
wall-parallel particle image velocimetry (PIV) measurements.

We formulate optimal linear transfer functions by operating under the generalized Wiener filter
formalism. For each reconstruction method, we consider generic linear models for the flow and
observations of the form

û = Hub, ŷn = Hyb + n̂, (13)

where Hy = CHu and b is a set of unknown coefficients. In weighted form, (13) may be written as

Wuû = Hw
u Wbb, Wyŷn = Hw

y Wbb + Wyn̂, (14)

where Hw
u = WuHuW −1

b , Hw
y = CwHw

u , and Cw = WyCW −1
u . Here we have assumed Wy, Wu, and Wb

are Hermitian, positive-definite weighting matrices such that the norms of the unweighted vectors
corresponding to their respective weighted inner products are equivalent to the Euclidean 2-norms
of the weighted vectors. Unless otherwise stated, all weightings in the present investigation are real,
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diagonal matrices that contain the square roots of the numerical quadrature weights to ensure that
the relevant norms reproduce energies integrated over the wall-normal direction.

Given a linear model, Hu, and an observation matrix, C, the generalized Wiener filter provides
an optimal linear estimate of the coefficients, b̃, assuming that the second-order statistics of the
coefficients, Sbb = E(bbH ), and the noise, Snn = E(n̂n̂H ), or models thereof are known. Optimality
is typically defined in terms of minimizing the mean-squared error of the estimated coefficients.
However, Martini et al. [41] showed (in the context of RBE) that the corresponding optimal esti-
mator is the stationary point of the entire coefficient error CSD, not just its trace. Furthermore, this
stationary point also applies to the velocity fluctuation error CSD, highlighting the correspondence
between optimal estimates of the coefficients and the flow. Hence, for each reconstruction method,
we express the estimator via a linear transfer function, Tu, that relates the noisy measurements to
the flow estimates as

b̃ = Tbŷn, ˜̂u = Tuŷn, (15)

where Tu = HuTb. Hereafter, unless otherwise stated, all quantities denoted as ˜(·) represent esti-
mates/models of true flow quantities or the building blocks thereof.

The transfer function may be explicitly written as

Tu = SuyS−1
yy,n = HuSbbHH

y

(
HySbbHH

y + Snn
)−1

, (16)

where Syy,n = E(ŷnŷH
n ) and we have used that the noise is uncorrelated with the flow such that

Sun = 0. Absent knowledge of the noise CSD, we model it as S̃nn = εI (for small ε) to ensure that
S−1

yy,n remains numerically well posed while approaching the zero-noise limit. The transfer function,
Tu, applies to both (13) and (14), demonstrating that it is independent of the weightings placed on
the response, coefficients, and measurements/noise. We hereafter refer to the linear models via (13),
but note that the weightings may still be incorporated implicitly in the models of Hu, Sbb, and/or
Snn.

Importantly, (13) is a model in the sense that Hub may be an ill-posed representation of the
flow. Therefore, in addition to the knowledge or models of Sbb and Snn, the well-posedness of
the assumed linear model, Hu, is also implicit to the optimality of the linear estimator produced
by the generalized Wiener filter. All methods we consider incorporate the estimated mean flow in
learning Hu from training data, and TSME and ORBE further incorporate the response and (thereby)
the nonlinear forcing CSDs, respectively. In what follows, we derive expressions for the transfer
functions corresponding to each reconstruction method. We discuss our methodology of efficiently
applying the transfer functions to streaming measurements in Sec. III.

1. Truncated response mode estimation

TRME is an equation-based reconstruction framework that requires prior knowledge of the mean
profile, but not of the second-order statistics. Therefore, TRME requires minimal data collection and
modeling to form an estimator, but it is founded on the assumptions that a low-rank approximation
of the resolvent operator can capture the relevant dynamics and that the corresponding forcing
(statistics) may be modeled from first principles.

The low-rank approximation of the weighted resolvent operator is expressed by truncating its
SVD as

Rw
u = (Wu�)�(Wf �)H ≈ (Wu�̃)�̃(Wf �̃)H = R̃w

u , (17)

where

�̃ = �M̃, �̃ = �M̃, �̃ = M̃
T
�M̃, M̃ = [Ĩ 0]T , (18)

and Ĩ is the identity matrix of size Nmode � Nu. Here the forcing (φ j ∈ CNu ) and response (ψ j ∈ CNu )
modes are the columns of � and �, respectively, and their weightings ensure that orthonormality
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enforces an energy norm. These pairs of modes are ranked according to their gains, σ j , which are
the diagonal elements of � and ordered such that σ j � σ j+1.

The approximation in (17) is founded on the premise that the gains for modes j � Nmode

dominate those for modes j > Nmode. However, response modes associated with relatively small
gains can remain important to the velocity fluctuations if the forcing has a large projection onto
the corresponding forcing modes. For each triplet, we collect the gain-scaled projections of the
nonlinear forcing onto the Nmode selected forcing modes into a column vector of mode weights,

c = �̃(Wf �̃)H (Wf f̂ ), (19)

that characterizes the contributions of the selected response modes to the response. The linear model
corresponding to the truncated flow representation is given by û ≈ �̃c.

The SVD of the resolvent operator does not provide information about Scc without further
assumptions. However, we may form a model of this CSD by recalling that resolvent modes and
SPOD modes are identical when the resolvent mode weights are uncorrelated [10]. To achieve this,

we assume an uncorrelated weighted forcing, WfE( f̂ f̂
H

)W H
f = I, for the present TRME-inspired

estimator. Noting the orthonormality of the forcing modes, the modeled mode weight CSD is
simply S̃cc = �̃�̃

H = �̃
2
. Since this statistical perspective implies that resolvent modes form an

approximation of SPOD modes, we expect that a truncated SPOD mode basis is more well posed to
fitting the response than a truncated (resolvent) response mode basis.

Assuming the resolvent response modes form a suitable basis for the linear model, we may form
the constituents of the estimation transfer function in (16) by taking

Hu = �̃, Hy = �̃y, and b = c, (20)

where �̃y = C�̃. With these definitions, the transfer function is expressed as

T TRME
u = �̃�̃2�̃

H
y

(
�̃y�̃

2�̃
H
y + S̃nn

)−1
. (21)

This estimation method contrasts slightly from the direct linear least-squares method of Gómez
et al. [34] in that we assume that the coefficient statistics are known (and uncorrelated). However,
since this method arises from the generalized Wiener filter formulation, employing a suitable model
on S̃cc can mitigate the instability of higher-order modal truncations associated with conventional
TRME [41]. Hence, this method provides an alternative to limiting modal truncations such that
Nmode < Nplane, which discards sensor information.

2. Optimal resolvent-based estimation

The TRME-based method in Sec. II C 1 uses an (unrealistic) uncorrelated forcing model to
produce estimators that only require a mean profile. ORBE [41] provides a practical means of
improving the forcing model by estimating its CSD using limited auxiliary data. In ORBE, the
constituents of the linear estimator are given by

Hu = Ru, Hy = Ry, and b = f̂ , (22)

where we refer to the input-output operator, Ry = CRu, distinctly from the resolvent operator.
Hence, the ORBE transfer function is given by

T ORBE
u = RuS̃ f f RH

y

(
RyS̃ f f RH

y + S̃nn
)−1

. (23)

Even though ORBE was originally formulated using an unweighted inner product [41], (23) and (14)
reinforce that the Wiener filter origins of the transfer function imply it is invariant to nondegenerate
weights imposed on the input-output formulation. We emphasize that (23) is an optimal noncausal
transfer function and that forming the optimal causal transfer functions derived via the Wiener-Hopf
formalism [45] requires more complex numerical methods.
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Instead of truncating a modal expansion of the dynamics a priori, ORBE identifies important
parts of the forcing even if they reside in linearly suboptimal resolvent modes, e.g., when their
projections onto the relevant forcing bases are large. Further, while the truncations associated with
TRME and TSME may result in an ill-posed basis for representing the full fluctuation dynamics,
ORBE retains a full-rank (and therefore well-posed) representation of the velocity fluctuations.
When all resolvent modes are retained, the TRME-based method discussed in Sec. II C 1 is equiv-
alent to ORBE under the assumption of an uncorrelated weighted forcing. It is well known that
this assumption is not typically valid for turbulent flows, including channel flow, since the forcing
color contributes significantly to the forcing structure, e.g., via destructive interference [42,51].
Correspondingly, the focus of ORBE is identifying a suitable ROM of the forcing statistics that
enables accurate reconstructions.

Following previous studies [40,41,45], we estimate the forcing statistics using an auxiliary set
of measurements, ŷ′

n, with corresponding CSD, S′
yy,n, observation matrix, C′, and input-output

operator, Ry′ = C′Ru. The forcing estimate is given by

S̃ f f = R†,n
y′ S′

yy

(
R†,n

y′
)H

, R†,n
y′ = RH

y′
(
Ry′ RH

y′ + S̃′
nn

)−1
, (24)

where R†,n
y′ maps the auxiliary observations to the smallest regularized least-squares forcing pro-

ducing them and reduces to a pseudoinverse in the limit of vanishing noise. We approach this limit
by using the same noise model, S̃′

nn = εI, as that used for the reconstruction observations. One
advantage of this estimation technique is that a limited set of measurements can produce a global
forcing estimate, whereas computing SPOD modes (see Sec. II C 3) typically requires knowledge of
the full-field response statistics.

When full-field statistics are available, the ORBE transfer function reduces to the generalized
Wiener filter transfer function, SuyS−1

yy,n, which is independent of the governing equations. With
noisy or incomplete statistics, ORBE implicitly assumes that the coefficients are the resolvent
forcing. This distinction is important since the forcing statistics may not be an optimal setting for
approximating SuyS−1

yy,n from limited data. Hence, while ORBE provides a forcing-based means of
flow reconstruction, determining the optimal coefficient coordinates for flow reconstruction remains
an open question.

3. Truncated SPOD mode estimation

TSME provides a framework for estimating velocity fluctuations by truncating the SPOD ba-
sis to efficiently represent coherent structures in the flow. TSME requires the mean profile and
second-order statistics of the velocity (response) fluctuations, but it does not consider the dynamics
associated with the governing equations. For each triplet, we form the response CSD [52], Suu,

using an ensemble of Nreal realizations of the flow. The corresponding SPOD modes, θ j ∈ CNu , are
given by the columns of 	 and computed via a direct eigenvalue problem,

Suu
(
W H

u Wu
)
	 = 	
. (25)

As before, the weighting matrix, Wu, ensures that orthonormality enforces an energy norm. This
formulation is typically employed when Nreal � Nu, whereas the method of snapshots is standard
when Nreal < Nu. Since it is often the case that Nreal � Nu when estimating turbulent flows, the
method of snapshots is often less computationally expensive than the direct eigenvalue problem.
However, since the CSD sizes are not prohibitive in the present investigation, we simply employ the
direct eigenvalue formulation in (25).

The matrix 
 contains the eigenvalues that rank the SPOD modes in terms of the variance they
capture in the response. Since a given subset of SPOD modes captures more energy than in any
other orthogonal basis [11], truncating the SPOD mode basis provides a natural means of efficiently
representing dominant coherent flow structures. The truncated representation of the flow is given by
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TABLE I. Relevant parameters for data sampled from the DNS, where nondimensional parameters with
superscripts (·)+ are normalized in viscous units (e.g., �t+ = Reτ�t). The values of uτ , ν, and h are
dimensional, but the dimensional units are arbitrary so long as they are consistent.

�x+ �z+ �y+
min �y+

max �t+ uτ ν h

10.3 5.16 0.172 7.58 0.532 0.0572 0.000308 1.00

û ≈ 	̃a, where

	̃ = 	M̃, 
̃ = M̃
T

M̃, (26)

and M̃ again selects the first Nmode modes of the expansion (for Nmode � Nreal).
The SPOD mode expansion is advantageous in that the coefficients are uncorrelated and the

relevant CSD is given by Saa = aaH = 
̃. As such, the elements of the transfer function in (16) are
given by

Hu = 	̃, Hy = 	̃y, and b = a, (27)

where 	̃y = C	̃. Correspondingly, the SPOD modes and energies suffice in providing both the
linear model and the coefficient statistics implicit to the optimality of the linear transfer function.
When all modes are retained, the TSME estimator converges to the generalized Wiener filter,
SuyS−1

yy,n. Even when no modal truncation is performed, it is important to capture sufficiently many
realizations to ensure the SPOD modes provide a well-posed basis for the flow.

For TSME, the transfer function is given by

T TSME
u = 	̃
̃	̃

H
y

(
	̃y
̃	̃

H
y + S̃nn

)−1
. (28)

If the weighted resolvent forcing were truly uncorrelated, such that �̃
2 = 
̃ and �̃ = 	̃, (21) and

(28) would be identical. As such, the TRME estimation method can be used to evaluate the validity
of the assumed forcing statistics and thereby the ability of the resolvent modes to approximate
SPOD modes for flow reconstruction.

III. METHODS AND APPROACH

As a prototypical real-time application of the estimation techniques discussed in Sec. II, we
reconstruct turbulent velocity fluctuations in a minimal channel by continuously incorporating
streaming measurements in a manner akin to time-frequency analysis. Within this streaming context,
we refer to the techniques in Secs. II C 1, II C 2, and II C 3 as streaming TRME (STRME), streaming
ORBE (SORBE), and streaming TSME (STSME), respectively. In what follows, we detail our
methods and highlight how we enable and evaluate efficient streaming flow reconstructions.

A. Numerical simulation details

We apply the flow reconstruction framework to reconstruct velocity fluctuations from a DNS [53]
of turbulent channel flow in a minimal flow unit [54] at Reτ ≈ 186, as discussed previously by Bae
et al. [55]. As depicted in Fig. 2, the simulation data exist on a staggered grid with (Nx, Ny, Nz ) =
(32, 129, 32) cells in each direction, excluding ghost cells. The grid resolution is uniform in x and z
and follows a hyperbolic tangent distribution in y. The governing equations are spatially discretized
using second-order central finite differences and time-marched using an explicit third-order Runge-
Kutta scheme in the simulation. Table I summarizes relevant spatiotemporal parameters associated
with the data we use from the DNS. While ν and h are fixed, uτ is estimated over a long time
series and assumed to be constant. In the present work, we subsample the DNS time steps such
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TABLE II. Measurement configurations for the testing period, including the number of
wall-parallel planes (Nplane) and the wall-normal locations (y+) in viscous units.

Case Nplane y+

A 1 14.7
B 2 14.7 (both sides)
C 4 14.7, 56.4 (both sides)
D 6 14.7, 56.4, 114 (both sides)
E 7 14.7, 56.4, 114 (both sides), 186 (centerline)

that �t+ > �t+
DNS to efficiently process snapshots without significantly affecting the resolution of

relevant temporal frequencies.

B. Measurement details

We reconstruct velocity fluctuations using triplet space measurements that may evolve over time
in a manner similar to time-frequency analysis. Measurements and reconstructions are restricted in
the present study to the smallest (Nkx , Nkz ) = (3, 5) nonnegative streamwise and spanwise wave
numbers and their complex conjugates. While this implies that we truncate more than 95% of
the Fourier modes corresponding to the spatial discretization scheme, these modes still contain a
dominant portion of the response energy. The temporal Fourier modes are computed by discretizing
a single eddy turnover time (i.e., �T = 1) and consist of Nω = 176 nonnegative frequencies and
their complex conjugates. These selections allow us to capture convection velocities more than 8×
larger than the centerline velocity, although most energetic motions propagate significantly slower.
Considerable energy is contained by modes with periods longer than �T = 1, but the present
configuration represents a balance of capturing energetic Fourier modes and retaining efficient
reconstructions. The zero values in each triplet are numerically set to O(10−10), and we verify that
the transfer functions are invariant to this threshold.

We use simple heuristic arguments to inform sensor placement. As summarized in Table II,
we consider a spectrum of measurement configurations ranging from relatively cheap (case A) to
relatively expensive (case E). Case A represents a single sensor plane coinciding with the peak
streamwise root-mean-square (rms) velocity fluctuations, urms. It is unique in that it evaluates the
efficacy of sensors localized to one half of the channel. Case B is similar but symmetrically extends
the configuration about the centerline. Case C extends the configuration of Case B to also consider
measurements near the peaks of vrms and wrms. Case D adds sensor planes between these peaks and
the centerline to better capture the outer structure of the fluctuations. Case E adds the centerline to
evaluate whether it significantly improves the quality of the reconstructions.

Using these restricted numerical data, we simulate the process of obtaining experimentally fea-
sible measurements. An analogous experimental configuration involves using standard multiplane
PIV techniques [56,57] to obtain velocity measurements in wall-parallel planes. Figure 3 shows a
diagram of this configuration in the context of real-time flow reconstructions. This configuration
contrasts slightly with standard x − y planar PIV setups, and inhomogeneities associated with
bounding walls may need to be modeled into the noise CSD. Experimental reconstructions would
require windowed spatial Fourier transforms in x and z since periodicity cannot be guaranteed,
but this complication may also be absorbed directly into the noise vector. When designing PIV
measurements, the relevant streamwise and spanwise scales of large-scale motions must be known
(or modeled) to accurately capture their Fourier space representations. However, since the measure-
ments consistently update the phase information of the estimated fluctuations, this restriction may
be mitigated by absorbing unresolved large-scale motions into the streamwise-constant modes at
each time step.
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FIG. 3. Analogous multiplane PIV experimental configuration that is amenable to real-time reconstructions
of velocity fluctuations under the present framework. The lines along each laser sheet represent orthogonal
polarizations that enable simultaneous measurements, and more than one camera may be needed to fully
capture all measurement planes [56,57]. The wall-normal sensor locations with superscripts (·)∗ are selected
from Table II and represent testing period measurements.

C. Training and testing periods

The reconstruction techniques we use require a priori knowledge of various linear models and
flow statistics to form linear estimators. To address this, we partition the DNS data into training and
testing periods of equal size such that �T ′ = �T ∗ = 80, where (·)′ and (·)∗ represent training and
testing period quantities, respectively. As summarized in Fig. 4, we form each estimator using flow
statistics from the training period and evaluate the performance of streaming flow reconstructions
during the subsequent testing period. While uτ is assumed to be known prior to training, the error in
uτ estimated over the training period with respect to its assumed constant value is 0.172%. Further,
all present flow estimators and their reconstruction accuracies are relatively insensitive to �T ′ and
�T ∗, respectively.

STRME, SORBE, and STSME require various degrees of training data to form the corresponding
estimators. STRME requires only a mean profile to compute the resolvent operator, which may be
efficiently estimated using ergodicity or modeled using scaling laws. As discussed in Sec. III C 1, we
introduce an efficient and accurate blockwise inversion technique to compute the resolvent operator
for STRME and SORBE. SORBE requires more detailed (second-order) statistics, S′

yy,n, for an
arbitrary number of auxiliary sensor planes. By limiting the number of sensor planes considered,
SORBE provides an efficient means of estimating global flow statistics from limited training data. At
the high end, STSME requires full-field second-order statistics, Suu, to compute SPOD modes and
energies. In this limit of complete statistical information, both (untruncated) STSME and SORBE
approach the generalized Wiener filter transfer function, SuyS−1

yy,n.
For SORBE and STSME, we assume 50% overlap between adjacent �T = 1 windows when

computing the relevant CSDs. This gives Nreal = 158 realizations of each measurement set over
the training period. We intentionally design these experiments such that Nreal < Nu to evaluate the
efficacy of our statistical methods under typical conditions for turbulence estimation problems. We
do not use windowing in computing the CSDs to preserve the relationships associated with the
forcing and response (CSDs) without considering a correction term [41,42,58].
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FIG. 4. Diagram depicting the methods used to estimate linear transfer functions for each reconstruction
method during training (top) and to reconstruct velocity fluctuations in real time from sparse measurements
during testing (bottom). Discrete Fourier transforms (DFTs) and inverse discrete Fourier transforms (IFTs) are
labeled by their dimensionality. SDFT refers to a (recursive) sliding temporal DFT applied every time step, as
discussed in Sec. III C 2.

For each measurement configuration in Table II, we consider estimators of varying fidelity based
on auxiliary measurements (SORBE) and modal truncations (STRME and STSME). We summarize
the fidelities of these estimators in Table III.

As depicted in Fig. 4, during training we consider various pairs of wall-normal coordinates,
(y′

i, y′
j ), associated with auxiliary measurements that are distinct from the fixed measurements used

for reconstruction. We may compute each element of S′
yy,n (for SORBE) or Suu (for STSME)

TABLE III. Subcases considered for each reconstruction method,
characterized by the extent of auxiliary sensors (SORBE) and the rank
of modal truncations (STRME and STSME). For each case, the subcases
are listed in order of increasing fidelity. For SORBE, the y+ inequalities
apply to both sides of the channel.

Method Parameter Values

SORBE y′ y∗ only
y∗ and y+ � 14.7
y∗ and y+ � 56.4
y∗ and y+ � 114
all y

STRME Nmode 2, 8, 40, 158, 388
STSME Nmode 2, 8, 40, 158
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in parallel for all k using two simultaneous planar (PIV) sensors. In experiments, this implies
that the length of the training period is dictated by the number of sensor pairs, Nyy, required to
sufficiently resolve the wall-normal structure of the second-order statistics. However, under the
assumption of statistical stationarity, we simultaneously collect all elements of the relevant CSDs
during the training period for the present (numerical) investigations. In effect, this parallelizes the
process of simulating two-plane PIV measurements for each sensor pair, which would be conducted
sequentially in experiments absent extra sensors. We emphasize that Nyy does not necessarily scale
as N2

y since an underlying model with sufficient fidelity can often capture the structure of the
statistics with relatively few spatial measurements [3,42].

During the subsequent testing period, we use the estimators from training to reconstruct the
flow with minimal time delay, as is required in real-time applications. One advantage of computing
the transfer functions during training is that the flow at each triplet is efficiently reconstructed
with a single application of the transfer function (via matrix multiplication). We further enable
fast reconstructions by applying this operation simultaneously for all selected triplets. Since no
sensitive computational techniques (e.g., inverses) are required after training, we truncate the
transfer functions to single precision to improve memory usage and temporal efficiency without
significantly impacting reconstruction quality.

Since an infinite time series is not available, we estimate the temporal Fourier coefficients
using a relatively small sliding window (�T = 1). We accommodate real-time estimation problems
by continuously updating the temporal Fourier coefficients using the incoming data stream. As
discussed in Sec. III C 2, we enable efficient streaming reconstructions by recursively updating
the coefficients using the SDFT as new measurements arrive. The errors associated with the finite
temporal window are implicitly accounted for in n̂, highlighting that the assumption that S̃nn = εI
[41,43] is indeed a simplified model in the present investigation. Appendix B shows that the
short-time (�T = 1) and long-time (�T ′ = 80) Fourier amplitude spectra are consistent with each
other for a selected wave-number pair. For all reconstructions, we assume that ε = 10−8 to approach
the zero-noise limit.

1. Blockwise inversion

In the present work, we invoke the resolvent operator when computing the STRME and SORBE
estimators during training. More generally, computing the resolvent operator and forming its modal
decomposition are central challenges in efficiently and accurately representing fluctuation dynam-
ics. Efficient randomized [59] and matrix-free [60] techniques for forming these equation-based
elements have been studied previously. Here we introduce the exact blockwise representation of the
linear dynamics to enable efficient and accurate computation of the channel flow resolvent operator
by means of blockwise inversion. This methodology takes advantage of the simple blockwise
structure associated with 1D resolvent analysis and expresses the inverse of the full linear dynamics
in terms of its smaller subblock constituents.

Conventionally, the resolvent operator in (11) is obtained by directly inverting L and requires a
large matrix inverse. However, the form of L in (4) lends itself to blockwise inversion. We begin by
blockwise inverting the basic subblock of L to give the basic resolvent operator,

RB
u = L−1

B =

⎡
⎢⎢⎣

L−1
c −L−1

c (∂yU )L−1
e 0

0 L−1
e 0

0 0 L−1
c

⎤
⎥⎥⎦, (29)

which is defined here between forcing and response quantities that are aligned in x and z for
convenience (see Sec. II B). The simple inverse defining the basic resolvent neglects the contribution
of the pressure gradient term and that only the solenoidal forcing and response are active in the
input-output formulation for velocity fluctuations [42,51]. Now, by blockwise inverting L and
applying the definition of the resolvent in (11), we express the resolvent operator in terms of the
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basic resolvent and the continuity subblock as

Ru = SH
[
RB

u − RB
u ∇̂(∇̂T

RB
u ∇̂)−1∇̂T

RB
u

]
S. (30)

This equation may be used to rewrite the resolvent formulation in (11) as

û = SH
[
I − RB

u ∇̂(∇̂T
RB

u ∇̂)−1∇̂T ]
RB

u S f̂ (31)

= SH RB
u

[
I − ∇̂(∇̂T

RB
u ∇̂)−1∇̂T

RB
u

]
S f̂ , (32)

where the terms in square brackets represent projection matrices since they satisfy the property
that P2 = P. These terms share a similar form with the Leray projection typically used to remove
p̂, except for the inclusion of the basic resolvent. Since this formulation also serves to enforce
continuity and eliminate pressure fluctuations [61], we refer to it as a “modified projection.” The
validity of applying the projection terms both before and after applying the basic resolvent highlights
the correspondence between the solenoidal forcing and response for velocity fluctuations. Similar
expressions are readily derived for the continuous linear system, (3), by expressing û in terms of f̂
and ∇ p̂ and enforcing continuity to eliminate the pressure term.

There are numerous advantages to computing the resolvent operator using blockwise inversion

as opposed to directly inverting L. First, the matrix inversions (of Lc, Le, and ∇̂T
RB

u ∇̂) required
using blockwise inversion are roughly 4 × 4 smaller than that of L. Further, if flow variables are
collocated (such that Lc = Le), computing the basic and full resolvent operators requires only one
and two small inverses, respectively. The advantage of these smaller matrix inverses is that the
smaller subblocks have smaller condition numbers than the full linear system. Therefore, blockwise
inversion is typically more computationally efficient and accurate than direct inversion of the entire
system. Further, the form of the correction term in (30) reveals a direct relationship between the
basic resolvent operator, where only the terms in the momentum equations that are linear in û are
inverted, and the full resolvent operator, which includes the continuity constraint and eliminates
the pressure fluctuations. Therefore, the present blockwise formulation of the resolvent operator
allows for a physical characterization of the influence of various subblocks (representing different
facets) of the linear dynamics. We apply this technique to the resolvent operator modified to include
an eddy-viscosity model [17,43] in Appendix A, but we do not employ that model in the present
computations.

2. Recursive sliding discrete Fourier transform

During the testing period, we employ the sliding discrete Fourier transform (SDFT) [46,62,63]
to recursively update the temporal Fourier coefficients of the measurements at every time step,
ti. We thereby enable efficient updates of our triplet space measurements as new data arrive. We
compute discrete Fourier coefficients using a sliding temporal window of fixed length (�T = 1)
that is discretized into Nt time steps. Given a (potentially complex) scalar function, φ(t ), we assume
that initial discrete Fourier coefficients, φ̂Nt (ωm) for m = 1, . . . , Nt , are computed using time steps
i = 1, . . . , Nt . The discrete frequencies are given by ωm = �ω(m − 1) for m � 
Nt/2� and ωm =
�ω(m − 1 − Nt ) for m > 
Nt/2�, where �ω = 2π/Nt�t is the frequency resolution. Using the
standard SDFT, the mth discrete Fourier coefficient at a time step i > Nt is computed recursively as

φ̂i(ωm) = exp(iωm�t )︸ ︷︷ ︸
Phase Update

[ φ̂i−1(ωm)︸ ︷︷ ︸
Previous Value

+ (φ(ti ) − φ(ti−Nt ))︸ ︷︷ ︸
Streaming Info

]. (33)

This process may be continuously applied as new time steps become available, thereby making it
amenable to real-time computation of Fourier coefficients over a sliding temporal window.

A primary advantage of the SDFT is that a complete Fourier transform need only be computed
over the initial window. Stepping forward in time, the coefficients at time step i are redundant with
respect to those at time step i − 1 except for the difference between the incoming measurement (at i)
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FIG. 5. Comparisons between the filtered and unfiltered flow statistics for the testing period. (Left) Com-
parison between the filtered rms profiles during the testing period (solid curves: square root of mean variance,
shading: 20th–80th percentiles) and the long-time unfiltered rms profiles (dotted curves). For the testing period,
the mean filtered cross-correlations (middle) are shown alongside their unfiltered counterparts (right).

and the outgoing measurement (at i − Nt ). As such, instead of reusing the fft algorithm, for all time
steps i > Nt we may use the SDFT to express the Fourier coefficients recursively in terms of (i) the
previous Fourier coefficients, (ii) the aforementioned difference, and (iii) a complex multiplicative
correction factor. Correspondingly, the number of required operations scales as O(Nt ) as opposed to
O(Nt log Nt ) for the standard fft. Further, since the frequency bins may be updated independently
of one another, this complexity is reduced to O(Nω ) when considering a limited subset of Fourier
modes (i.e., if Nω < Nt ).

The standard SDFT algorithm suffers from marginal stability, moderate accuracy, and time-
accumulating error (such that, eventually, the fft algorithm would need to be called to refresh the
error). The more recent modulated SDFT (mSDFT) [62] and observer-based SDFT (oSDFT) [63]
have more desirable stability, accuracy, and robustness to noise compared to the standard SDFT
and other variants [46]. However, we retain the standard SDFT due to its simple implementation
and since it remains accurate and stable over sufficiently large intervals for our purposes (see
Appendix B). The mSDFT, oSDFT, or some other robust method may be considered to mitigate
the propagation of noise over longer time intervals.

D. Error metrics

A primary objective of our methodology is to produce efficient flow reconstructions that ac-
curately capture the dynamics throughout the channel. Here we define error metrics that reflect
reconstruction accuracy at various levels of detail. These metrics are advantageous in that they
enable comparisons of spatially integrated errors and their wall-normal distributions across different
estimators. Whereas previous investigations [17,43] have considered similar metrics, they focus
more on errors at specific estimation planes and wave numbers.

Noting that we use only a subset of roughly 5% of the spatial Fourier modes in the channel,
we begin by characterizing how well the filtered dynamics associated with these modes capture
unfiltered (i.e., true) fluctuations. As shown in Fig. 5, the filtered dynamics excellently capture the
statistical features of the unfiltered dynamics. On average, the filtered fluctuations during the testing
period contain 91.1% of the turbulence kinetic energy (TKE) of the long-time unfiltered fluctuations.
Further, the (wall-normal) cross-correlations associated with filtered and unfiltered dynamics have
an excellent agreement over the testing period. These results justify our compressed triplet space
flow representation and motivate the definition of the following error metrics.

The error in TKE coarsely characterizes the accuracy of the reconstructed turbulence intensity.
Correspondingly, we evaluate the turbulence intensity error using the square root of the relative TKE
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error, given by

εTKE(t ) =
(∫ 2

0 |urms(y, t )|2dy − ∫ 2
0 |ũrms(y, t )|2dy∫ 2

0 |urms(y, t )|2dy

)1/2

, (34)

where rms fluctuations are computed using the sliding temporal window (�T = 1). This sliding
window allows all error metrics to take into account time-varying flow statistics in streaming
applications, thereby enabling quantification of temporal uncertainties.

Beyond reconstructing flow statistics, we are primarily interested in the accuracy of the re-
constructed dynamics. We consider two error profiles, εfilt (y, t ) and εfull (y, t ), that capture the
wall-normal distributions of the reconstruction errors with respect to the filtered and unfiltered
snapshots, respectively. These error profiles are given by

εfilt (y, t ) =
(

1

NxNz
||ufilt (x, t ) − ũ(x, t )||2x,z

)1/2

, (35)

εfull (y, t ) =
(

1

NxNz
||u(x, t ) − ũ(x, t )||2x,z

)1/2

, (36)

where ufilt represents the filtered snapshots and || · ||x,z represents the L2 norm computed over the
streamwise and spanwise directions.

We also evaluate time-varying full-field errors by integrating the error variance profiles over the
wall-normal direction. The corresponding integrated error metrics, which are given by

εfilt (t ) =
( ∫ 2

0 |εfilt (y, t )|2dy∫ 2
0 |urms(y, t )|2dy

)1/2

, εfull (t ) =
( ∫ 2

0 |εfull (y, t )|2dy∫ 2
0 |urms(y, t )|2dy

)1/2

, (37)

evaluate (under the square root) the error energies with respect to the TKE. Importantly, we use the
same (unfiltered) TKE in both εfilt (t ) and εfull (t ) to simplify the visual comparisons between both
metrics, but using the filtered TKE for εfilt (t ) also provides a useful metric.

Since we primarily reconstruct the flow using a small number of sparsely sampled measurements,
it may not be reasonable to expect highly accurate reconstructions far from the measurement planes.
This premise is especially true for flow structures that are localized in the wall-normal direction. To
address this issue, we introduce truncated error metrics, ε∗

TKE(t ), ε∗
filt (t ), and ε∗

full(t ), that evaluate
the errors in regions localized about the measurement planes. These metrics are given by

ε∗
TKE(t ) =

(∫
ylocal

|urms(y, t )|2dy − ∫
ylocal

|ũrms(y, t )|2dy∫
ylocal

|urms(y, t )|2dy

)1/2

, (38)

ε∗
filt (t ) =

( ∫
ylocal

|εfilt (y, t )|2dy∫
ylocal

|urms(y, t )|2dy

)1/2

, ε∗
full(t ) =

( ∫
ylocal

|εfull(y, t )|2dy∫
ylocal

|urms(y, t )|2dy

)1/2

, (39)

where ylocal includes all cells within Nlocal cells from each measurement plane. These definitions
allow us to balance reconstruction accuracy with the fraction of the channel captured. Moreover,
since �y j is smaller close to the walls and larger close to the centerline, these metrics provide a
simple means of adapting the extent over which the errors are integrated based on the expected
scale of the corresponding flow structures.

One unique advantage of the εTKE metrics in (34) and (38) is that they have the potential to be
evaluated in experimental settings. By contrast, the εfilt and εfull metrics in (37) and (39) require
access to instantaneous 3D flow fields, which are typically not available in experiments. However,
one disadvantage of the εTKE metrics in isolation is that their values do not reflect the wall-normal
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distribution of TKE. Nevertheless, the TKE-based error metrics remain useful when supplemented
with the dynamics-based error metrics since, together, they encode information regarding the
spatially integrated correlations between the reconstructions and the DNS.

IV. RESULTS

In this section we evaluate the accuracy and efficiency of flow reconstructions using STRME,
SORBE, and STSME.

A. Equation-based estimation: STRME

Using no training data except a mean profile, STRME forms a simple, informative framework for
flow reconstruction. However, its accuracy relies on an unrealistic model of an uncorrelated forcing.
Figures 6 and 7 summarize the accuracy of the STRME estimators for each modal truncation. Due
to the unrealistic uncorrelated forcing model, the global errors are relatively large for all modal
truncations.

For Nplane � 6, the Nmode = 8 ROM produces the most accurate full-field reconstructions in
a relatively economical fashion. However, for Nplane � 6 the Nmode = 2 ROM outperforms all
higher-order truncations considered. These results suggest that the uncorrelated forcing assumption
is most valid for the gain-dominant resolvent modes, for which the gains are likely to contribute
significantly to the mode weight statistics. Since the validity of the forcing assumption underlies
correspondence between resolvent modes and SPOD modes, our results are consistent with previous
observations [10] that this correspondence is most appropriate for dominant resolvent modes. The
low-rank truncations for STRME and STSME are qualitatively similar in the present investigation,
but the STSME estimators are more accurate as they are derived from higher-fidelity training data
(see Sec. IV C).

The higher-order truncations are nearly identical visually (e.g., for Nmode = 158 and 388) since
the corresponding gains are too small to impact the estimator. Especially for truncations with
Nmode > Nplane, we expect that improved models of the mode weight statistics are likely to improve
estimator performance. Further, in the limit of including all Nu = 388 modes, STRME represents a
form of SORBE under the uncorrelated forcing assumption. One natural, data-driven extension of
STRME involves estimating the mode weight statistics using limited training data (as is done for
the forcing in SORBE). However, as shown in Appendix C, the forcing-based SORBE estimator
empirically outperforms the mode weight-based estimator inspired by STRME in the present
investigation. In the context of the open question of optimal coefficients for flow reconstruction,
this justifies our use of the forcing over the mode weights in the SORBE formulation.

Despite relatively poor full-field accuracy, the STRME estimators are more accurate in the
vicinity of the measurement planes. This effect is especially pronounced for Nplane � 2, although a
relatively small portion of the channel is captured in these cases. The spatial profiles for Nplane = 7
confirm that reconstructions tend to be more accurate near the measurement planes in that the errors
associated with higher-order modal truncations are concentrated far from the measurement planes.
These results indicate that targeted reconstructions of localized flow structures are more feasible
than accurate full-channel reconstructions and may require considerably fewer measurements to
provide meaningful (partial) flow information.

The STRME reconstructions of urms are remarkably good considering the training data includes
only a (streamwise) mean profile, but the reconstructions of vrms and wrms are still missing con-
siderable energy for all STRME estimators. Consistent with previous findings [32], these results
suggest that a broadband forcing assumption can be used to garner significant information about urms

given only a mean profile (via the resolvent formulation). The reconstructed mean cross-correlations
reinforce this notion, as the most energetic correlations captured involve the streamwise fluctuations.
Further, the snapshots in Fig. 7 confirm that energetic flow structures are better captured for the
streamwise fluctuations than for the wall-normal or spanwise fluctuations.
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FIG. 6. Summary of reconstruction accuracies for the STRME estimators. (a) Full-field (top) and truncated
(bottom) error statistics, where Nlocal = 2 is used for the truncated metrics. (b) RMS velocity profiles and error
profiles for reconstructions using different modal truncations and Nplane = 7. The vertical lines represent the
sensor locations. (c) Reconstructed cross-correlations (left) and their mean errors with respect to the filtered
(middle) and unfiltered (right) cross-correlations for Nplane = 7 and Nmode = 158. The averages in (a) and (b) are
computed prior to applying the square roots in the error metrics and the uncertainties extend to the 20th and
80th percentiles.
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FIG. 7. Comparisons of the reconstructions, filtered DNS snapshots, and their differences for the stream-
wise (top), wall-normal (middle), and spanwise (bottom) velocity fluctuations at t = 150. The comparisons
here are shown for STRME with Nplane = 7 and Nmode = 158, for which εfilt (t ) = 0.708 and εfull (t ) = 0.737.
Isosurfaces (+: red, −: blue) are based on the TKE of each velocity component and have magnitudes
〈u2

rms〉1/2 = 1.58 (top), 〈v2
rms〉1/2 = 0.68 (middle), and 〈w2

rms〉1/2 = 0.77 (bottom), where 〈·〉 represents the mean
over the wall-normal direction.

064612-21



ARUN, BAE, AND McKEON

In summary, STRME can leverage the governing equations to produce informative localized
reconstructions, especially of streamwise statistics, when no training data are available.

B. Hybrid estimation: SORBE

SORBE provides a practical approach to improve estimator performance by using spatially lim-
ited data to produce more realistic forcing statistics than the uncorrelated forcing CSD assumed in
STRME. This hybrid framework provides a natural means of incorporating training measurements
in conjunction with the governing equations. It allows a balance between cost and accuracy along the
spectrum of training data fidelity. Figures 8 and 9 summarize the accuracy of the SORBE estimators
computed using various extents of training data.

For all measurement configurations, increasing the spatial extent of training data used for the
forcing estimate broadly improves reconstruction accuracy. When using relatively few measurement
planes (Nplane � 4), the forcing fidelity has a large influence on reconstruction accuracy. By contrast,
using more measurement planes (Nplane � 6) produces relatively smooth and more incremental
(but still significant) reductions in error. These behaviors highlight two forms of the cost-accuracy
tradeoff associated with augmenting the SORBE estimator using measurements. When the test-
ing measurements are sparse, high-fidelity training data can drastically improve reconstruction
accuracy. When higher-fidelity testing measurements are available, lower-fidelity training data are
required to achieve similar accuracy, and high-fidelity training data further improve reconstruction
accuracy.

The errors localized about each measurement plane are even lower than the full-field errors for all
SORBE estimators considered. Since reconstructions are not limited by an ill-posed flow represen-
tation, the filtered errors are small in the vicinity of the measurement planes. Correspondingly, the
unfiltered errors at these planes are also relatively small due to the minimal energy associated with
the excluded Fourier modes. Further, as depicted in the profiles for Nplane = 7, errors tend to grow
with the distance from the measurement planes. Between the measurement planes, the errors for the
streamwise and spanwise fluctuations grow more rapidly than for the wall-normal fluctuations since
they are (i) larger in magnitude and (ii) more localized in the wall-normal direction.

The errors in the regions between measurements are primarily attributed to the extent of the
training data and the fidelity of the streaming measurements during testing. When only partial
training data are used, errors grow in the gray regions (see Fig. 8) where measurements were not
used to inform forcing statistics. This error source reflects that the least-squares forcing statistics
informed by partial training data do not fully capture the structure of the true forcing statistics.
However, even when the estimator incorporates full-field statistics from training, the errors still
grow with the distance from the measurements. In the noncausal estimation setting, this error
source formally reflects that the flow is poorly correlated with the measurements far from the
sensor planes. Hence, while it is unreasonable to expect perfect global reconstructions from sparse
measurements, this behavior can be used to inform the number of and spacings between sensors used
for flow reconstruction. Moreover, as discussed more extensively in Sec. IV D, this error source is
augmented by the application of the formally noncausal estimator in a streaming setting, where the
flow statistics vary in time.

In the limit of full training data, SORBE produces results that converge to those produced by
a generalized Wiener filter. When the generalized Wiener filter is used with Nplane = 7 (as in Case
E), the mean values of εfilt (t ) and εfull(t ) are 41.5% and 52.0%, respectively. Since these errors are
averaged prior to applying the square roots in their definitions, the corresponding error energies
are 17.2% and 27.0% of the TKE, respectively. Further, the reconstructed mean cross-correlations
are significantly more energetic than their corresponding errors for this estimator, indicating the
second-order flow statistics during the testing period are well captured.

Figure 9 further reinforces that this estimator performs well throughout the channel, as the dom-
inant global flow structures are well reconstructed for all components of the velocity fluctuations.
The energetic flow structures are best captured for the wall-normal fluctuations (v) since they are
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FIG. 8. Summary of reconstruction accuracies for the SORBE estimators in the style of Fig. 6. Here the
spatial profiles (for Nplane = 7) are shown for various extents of auxiliary training data, where regions with gray
shading are not captured during training. The cross-correlations are shown for the Nplane = 7 case with full-field
training data and represent the generalized Wiener filter.

064612-23



ARUN, BAE, AND McKEON

FIG. 9. Comparisons of the reconstructions, filtered DNS snapshots, and their differences in the style
of Fig. 7. The comparisons here are shown for SORBE with Nplane = 7 and full-field training data (i.e.,
the generalized Wiener filter), for which εfilt (t ) = 0.399 and εfull (t ) = 0.448. Videos depicting the temporal
evolutions of these comparisons are provided in the Supplemental Material [64].
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less localized in y than the streamwise (u) and spanwise (w) fluctuations. Further, the reconstructions
of structures of u and w tend to accumulate errors between sensor planes since the corresponding
structures tend to be more localized in y. These observations are consistent with the error profiles for
each component and the reductions in error when considering localized wall-normal subdomains.

In summary, the SORBE estimator provides a practical and effective means of improving
reconstruction accuracy by balancing the cost-accuracy tradeoff associated with increasing training
(and testing) data fidelity. In the full training data limit, a relatively small number of sensors can
reproduce the dominant statistical and dynamical flow features with high accuracy.

C. Data-driven estimation: STSME

When full-field statistics from training data are available, STSME provides a data-driven method
for flow reconstruction that efficiently captures energetic structures on a modal basis. Figures 10
and 11 summarize the accuracy of the STSME estimators for each modal truncation.

Similar to the STRME cases, the Nmode = 2 estimator can outperform the Nmode = 8 estimator
when relatively few measurement planes are used. However, in contrast to the STRME cases, the
higher-order truncations (Nmode � 40) produce similar, relatively accurate reconstructions for all
measurement configurations. This behavior and the approximate stationarity of the estimation errors
during the testing period suggest that the SPOD modes, and the flow statistics underlying their
computation, are approximately converged. Hence, the coefficient statistics given by the SPOD
eigenvalues accurately weight the SPOD modes, unlike in the STRME method. The performance of
the Nmode = 40 estimator also suggests that the first 40 SPOD modes form an approximately well-
posed basis for the flow. This observation is supported by Fig. 12, which shows that the Nmode = 40
truncation captures nearly all of the kinetic energy of the velocity fluctuations. By contrast, the
Nmode = 2 and Nmode = 8 truncations capture significant but relatively incomplete portions of the
kinetic energy, especially at smaller spatial scales.

Since the SPOD modes remain energetically relevant up to approximately mode 40, the lower-
rank modal truncations provide ill-posed bases for representing the flow. Correspondingly, whereas
the localized errors are excellent for Nmode � 40, they are considerably larger for the lower-order
truncations. Similarly, as shown for Nplane = 7, the filtered reconstruction errors at the measurement
planes are only near zero for Nmode � 40 and they are visibly nonzero for the lower-order cases. As
observed for SORBE, even with a well-posed basis, the reconstruction errors still grow far from the
measurements due to the locality of the correlations and the influence of time-varying flow statistics
(see Sec. IV D).

When all SPOD modes are retained, the STSME estimator converges to the generalized Wiener
filter (as did the SORBE estimator with full training data). Correspondingly, the transfer functions
computed using full-field training data for SORBE and an untruncated basis for STSME produce
identical error profiles and integrated errors. As Nplane increases, these errors decay smoothly since
the flow becomes increasingly well correlated with the measurements.

Besides the generalized Wiener filter, even the lower-order truncations produce impressive
reconstructions when Nplane = 7. Even though using Nmode = 2 provides a highly compressed
representation of the flow (retaining only 1.2% of the modes), it produces very good reconstructions
of various flow features during the testing period. For example, it produces good reconstructions
of the rms fluctuations, especially for the streamwise direction. Further, the dominant features
of the mean cross-correlations are very well captured during the testing period. The snapshots
in Fig. 11 further support this observation. Whereas the errors are not negligible with respect to
the flow structures, the reconstructions qualitatively capture most relevant flow structures for each
velocity component. Hence, if leading SPOD modes can be computed using alternative means to
alleviate the training data requirement, STSME has the potential to provide efficient reconstructions
of energetically relevant flow structures. However, as presently formulated, the spatial extent of the
training statistics is likely a prohibitive limitation to applying the STSME estimators in practice.
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FIG. 10. Summary of reconstruction accuracies for the STSME estimators in the style of Figs. 6 and 8.
Here the spatial profiles (for Nplane = 7) are shown for various modal truncations and the cross-correlations
(for Nplane = 7) are shown for the case with Nmode = 2.
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FIG. 11. Comparisons of the reconstructions, filtered DNS snapshots, and their differences in the style of
Figs. 7 and 9. The comparisons here are shown for STSME with Nplane = 7 and Nmode = 2, for which εfilt (t ) =
0.681 and εfull (t ) = 0.711.
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FIG. 12. The fraction of the kinetic energy captured by the first Nmode SPOD modes for the Nmode = 2, 8,
and 40 truncations. The fraction is shown as a function of k◦

x = kx�xNx/2π ≈ kx/3.54 and k◦
z = kz�zNz/2π ≈

kz/7.08, and the energies are summed over all temporal frequencies. The results are symmetric about k◦
x = 0

and k◦
z = 0.

D. Reconstruction accuracy discussion

While the STRME, SORBE, and STSME estimators considered share many themes regarding
experimental design, they each have distinct use cases based on the fidelity of the available training
data. When no training data are available, STRME provides an equation-based means of flow recon-
struction that critically relies on the validity of the assumed mode weight statistics. The uncorrelated
forcing assumption may be informative when only localized reconstructions or streamwise rms
reconstructions are required. However, beyond these limited settings, second-order statistics help
to inform more accurate reconstructions, especially for the wall-normal and spanwise fluctuations.
When spatially limited training data are available, SORBE provides an efficient means of improving
reconstruction accuracy by incorporating the data with the governing equations. Designing the
estimator involves cost-accuracy tradeoffs for the fidelity of training data and the measurements.
When full-field training data are available, STSME provides a data-driven framework that efficiently
captures energetic flow structures on a modal basis. Practical constraints often dictate the available
data and, correspondingly, the estimator used for flow reconstruction.

The linear model and training data used to form the selected estimator are critical to its behavior
in constrained (e.g., experimental) settings. One common theme for the estimators we consider
is that errors grow large when relatively few (Nplane � 4) measurements are used in conjunction
with an ill-posed modal truncation (STRME and STSME) or incomplete training data (SORBE).
Whereas the errors decay monotonically with Nplane for well-posed STSME estimators (Nmode �
40), the STRME errors behave nonmonotonically even with all Nmode = 388 resolvent modes due
to ill-posed nature of the uncorrelated forcing assumption. By contrast, the SORBE errors decay
monotonically in the generalized Wiener filter limit since the statistics from training data more ac-
curately represent the flow. These results reflect that robust, high-accuracy, full-field reconstructions
require, within practical limitations, a tailored combination of (i) sufficiently high-fidelity estimators
and (ii) sufficiently many measurements (e.g., Nplane � 6) spread throughout the channel.

1. Reconstruction performance with a single plane

While multiplane PIV is capable of simultaneously measuring multiple planes in an experimental
setting, single-plane PIV represents a more conventional experimental setup. Here we discuss the
errors for our Nplane = 1 generalized Wiener filter, which is particularly informative of estimator
performance when measurements are isolated to one half of the channel (at y+ ≈ 14.7).
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FIG. 13. Summary of the reconstruction accuracies (top: spatial profiles, bottom: cross-correlations) for
the generalized Wiener filter using Nplane = 1. The plots are in the style of Figs. 6, 8, and 10.

Figure 13 shows the spatial structure of the errors associated with the Nplane = 1 generalized
Wiener filter. This estimator produces highly accurate reconstructions in the vicinity of the mea-
surement plane and, more generally, in the near-wall region. However, limited information far from
the wall can be inferred from the single measurement plane. As expected by the channel symmetry,
the most energetic correlations with the flow in the opposite half of the channel occur at the same
wall-normal location. However, these correlations are considerably less energetic than those in the
vicinity of the measurement plane. These results demonstrate that the near-wall fluctuations in each
half of the channel are relatively decoupled from one another. These observations are qualitatively
confirmed by the reconstruction snapshots in Fig. 14. While energetic flow structures are recon-
structed for each velocity component, these structures are isolated to the bottom half of the channel.
Since we place the single measurement plane at the peak of urms, it represents a logical choice
for reconstructing the near-wall flow associated with the corresponding streamwise-dominated flow
structures.

Beyond providing a practical benchmark for conventional experiments, the Nplane = 1 case also
enables comparisons with previous studies [17,43] that employ linear estimators in similar turbulent
channel flows. Consistent with these studies, we consider the error metric

γ (y, kx, kz ) =
(∫

�T ∗ |Fx,z{ufilt (x, t ) − ũ(x, t )}|2dt∫
�T ∗ |Fx,z{ufilt (x, t )}|2dt

)1/2

, (40)

where the integrals are taken over the testing period and Fx,z{·} represents the spatial Fourier
transform. This metric represents the distribution of relative errors over the spatial Fourier modes
considered, and it is typically evaluated at estimation planes that are distinct from the measurement
planes. Illingworth et al. [17] provides a detailed discussion of estimator performance through the
lens of this metric in the context of linear models. Figure 15 shows the relative error distributions
at various planes in the same half-channel as the measurement plane. These errors are qualitatively
similar to those reported by Amaral et al. [43] using wall measurements at Reτ ≈ 500 and 1000.
Specifically, the present relative error levels at y+ ≈ 28.7 are similar to those reported previously
[43] at a comparable distance (in outer units) above the measurement plane. Those errors levels,
which represent ORBE in a noncausal setting, were also shown [43] to be favorable to those incurred
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FIG. 14. Comparisons of the reconstructions, filtered DNS snapshots, and their differences in the style
of Figs. 7, 9, and 11. The comparisons here are shown for the generalized Wiener filter with Nplane = 1, for
which εfilt (t ) = 0.840 and εfilt (t ) = 0.865. Videos depicting the temporal evolutions of these comparisons are
provided in the Supplemental Material [64].
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FIG. 15. Relative error levels, γ , at each estimation plane, plotted using a color axis that is consistent with
previous investigations [17,43]. The normalized wave numbers, k◦

x and k◦
z , are the same as those in Fig. 12.

The squared errors are averaged over positive and negative k◦
x and computed prior to averaging wall-normal

velocities to the cell centers.

by the relevant estimator of Illingworth et al. [17]. The results of these related investigations also
suggest that, while not investigated here, employing an eddy viscosity has the potential to further
improve the estimation errors. However, care should be taken when comparing the present errors to
those of the previous studies [17,43] since they were conducted at Reτ > 186.

2. Spatial structure of reconstruction errors

The spatial structure of the reconstruction errors, particularly in the wall-normal direction,
provides insight into how streaming measurements, sensor placement, and flow statistics impact
estimator performance. This structure can be formally characterized using the CSD of the estimation
error, which is given by

E[(û − ˜̂u)(û − ˜̂u)H ] = Suu − SuyTu
H − TuSuy

H + TuSyy,nTu
H . (41)

As discussed previously in the context of ORBE [40,41], the error CSD expression is based on
the observable subspace of linear model coefficients b, as determined by the selected measurement
planes. However, the expression in (41) assumes that Suu is fixed, consistent with the noncausal
formulation of the generalized Wiener filter that formally considers a temporal Fourier transform of
infinite length. Since our streaming reconstructions employ a small sliding temporal window (�T =
1), there is a residual in the error CSD due to the temporal variations in the streaming flow statistics.
During the testing period, the streaming response CSD is instantaneously given by S∗

uu(y, k, t ) =
ûûH , which is computed without averaging. This streaming CSD has a residual with respect to the
true response CSD of ε∗

uu(y, k, t ) = S∗
uu(y, k, t ) − Suu(y, k), and we employ analogous definitions

for ε∗
uy and ε∗

yy,n. The corresponding residual in the error CSD with respect to the expression in (41)
is given by

(û − ˜̂u)(û − ˜̂u)H − E[(û − ˜̂u)(û − ˜̂u)H ] = ε∗
uu − ε∗

uyT H
u − T uε

∗H
uy + Tuε

∗
yy,nT H

u . (42)

Here the design of the sliding temporal window primarily impacts the contribution of ε∗
uu. The

last three terms in (42) characterize how that contribution propagates through linear estimation
framework, and they depend critically on the selected measurements. Altogether, the residual in
(42) characterizes how applying a formally noncausal estimator in a setting with time-varying flow
statistics contributes to the estimation errors. Figure 16 depicts how the cross-correlations of the
observed errors during testing are partitioned between the optimal and residual cross-correlations
associated, via Parseval’s theorem, with the CSDs in (41) and (42), respectively. As expected, the
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FIG. 16. Time-averaged cross-correlations of the estimation errors with respect to ufilt during the testing
period (column 1), the contributions associated with the optimal error CSDs in (41) (column 2), and those
associated with the residual error CSDs in (42) (column 3). Column 4 depicts the rms error profiles, the squares
of which represent the diagonals of the cross-correlations in columns 1–3, summed over all three components.
These error profiles are consistent with those of εfilt shown for generalized Wiener filter with Nplane = 7 (see
Fig. 8) and Nplane = 1 (see Fig. 13).

error variance at the sensor planes directly results from the residual errors since the optimal errors
decay to zero at these locations. For Nplane = 7, the variances associated with the optimal and
residual errors are roughly equipartitioned away from the sensor planes. In this case, optimizing
the design of the sliding Fourier transform window has the potential to further reduce errors by
producing flow statistics with reduced temporal variations. By contrast, for Nplane = 1, the optimal
errors dominate the residual errors far from the measurement plane. Since the true generalized
Wiener filter is invariant of the linear model, this case reflects a regime in which spatially constrained
measurements hinder estimator performance more than temporal uncertainty in flow statistics.

The spatial structures of the reconstruction accuracies also share various features across each
linear model we consider. Far from measurements, the streamwise errors tend to grow larger than
the spanwise errors, which tend to be larger than the wall-normal errors. This reflects (i) the
typical magnitudes of these fluctuations and (ii) that low-error regions are more localized about
measurements for u and w than for v. Physically, it reflects that the streamwise and spanwise flow
structures are more localized in y, whereas the wall-normal flow structures are more persistent in y.
The maximum errors (far from measurements) do not grow larger than the rms fluctuations when the
estimators and measurements are of sufficiently high fidelity. Especially for SORBE and STSME,
increasing the fidelity of the estimator reduces error levels throughout the channel. In the limit of full
training data, the highest fidelity SORBE and STSME estimators are identical and converge to the
generalized Wiener filter with the caveat of nonoptimality imposed by time-varying flow statistics.

While the full-field errors, εTKE(t ), εfilt (t ), and εfull(t ), are informative of the global accuracy
of each reconstruction method, the spatially truncated errors, ε∗

TKE(t ), ε∗
filt (t ), and ε∗

full(t ), provide
a more localized picture of reconstruction accuracy. As expected, these localized errors are con-
siderably smaller than the full-field errors for all cases considered. However, the localized errors
also tend to increase when increasing the number of sensor planes. These behaviors reflect that the
larger full-field errors are concentrated far from the measurement planes and that truncated errors are
computed over smaller fractions of the channel when fewer sensor planes are used. Correspondingly,
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FIG. 17. Wall times required (per time step, �t = 2.86 × 10−3) to complete each stage of the real-time
flow reconstruction framework employed during the testing period. The uncertainties about the averages extend
to the 20th and 80th percentiles. For ŷn → ˜̂u, Tu is single precision for both “double” and “single” precision
computations to save space. We exclude the time required to produce graphics for each snapshot.

whereas adding additional sensors can marginally increase errors near the sensor planes, this effect
is outweighed globally by the reduction in errors far from the sensor planes.

In the present study, we heuristically limit the spatial integration of localized errors to within
Nlocal = 2 cells from each measurement plane. In Appendix D we further probe how the spatial
extents of the localized error domains affect reconstruction accuracy by comparing the errors, ε∗

filt (t )
and ε∗

full(t ), for Nlocal = 1, 2, and 3. The results highlight that the spatial structure of the errors can
be used to limit reconstructions and thereby improve their accuracy in a manner relatively invariant
to the extent of truncation.

E. Towards real-time reconstructions

In addition to reconstruction accuracy, we also evaluate the feasibility of implementing the
present framework in real time (e.g., for experimental flows). We primarily focus on using the
time delay required for computationally reconstructing the flow to determine relevant experimental
parameters that would enable real-time reconstructions. Figure 17 provides a summary of the wall
times required for each step of the reconstructions when running the (relatively unoptimized) code
implementing the present frameworks on a laptop. The minimal difference between the single
and double precision times when applying Tu arises since Tu is always single precision and only
the precision of ŷn varies. One way that the present code is unoptimized is that converting ˜̂u to ũ
via the inverse Fourier transform (3IFT) is performed after estimating the fluctuations in Fourier
space. Since these estimates are computed in parallel for each triplet, a more efficient method
would simply transform and add the contributions of each triplet to the physical-space estimates
as they are computed (in Fourier space). This modification will be helpful in that the 3IFT presently
composes the largest fraction of the time required to reconstruct each snapshot. Further speedups
may be garnered by exploiting the Hermitian symmetry of the Fourier transform when applied to
real signals.

As expected, the scaling of the total reconstruction time (per snapshot) with Nplane results from
applying the SDFT and applying Tu. At the high end, the present framework reconstructs snapshots
in approximately 250 ms, and we use this as our benchmark for experimental design. Figure 18

064612-33



ARUN, BAE, AND McKEON

FIG. 18. Breakdown of the wall time required to achieve real-time reconstructions in an experimental
setting. The pie chart shown is based on the mean wall times for double precision reconstructions using
Nplane = 7, as in Fig. 17.

summarizes how this benchmark time can be used in designing an experimental protocol for real-
time reconstructions. Beyond reconstruction wall time, real-time schemes must also consider the
time required to (i) obtain velocity measurements (e.g., from raw images in PIV) and (ii) use the
reconstructions for related tasks (e.g., flow control). Regarding (i), hardware implementations of
PIV computations have computed flow fields from raw data at 15 Hz [65] and sparse processing
techniques have been used to accelerate computations to up to 2000 Hz by reducing their size [66].
Nevertheless, extending real-time PIV techniques to multiplane PIV measurements may require
further modifications, e.g., to accommodate multiple cameras.

We consider a hypothetical and somewhat naïve experiment by fixing Reτ = 186 and assuming
flow in a water channel at room temperature (20 ◦C), such that ν = 1.00 mm2/s. We further define
the channel aspect ratio as ξ = Lz/2h = 10, where Lz is the spanwise extent of the channel, to
ensure a 1D canonical mean flow. Correspondingly, the volumetric flow rate in the channel, Qb,
may be expressed in terms of the nondimensional bulk velocity, Ub, as

Qb = 4ξUbuτ h2 = 4ξUbReτ νh, Ub = 1

2

∫ 2

0
U (y) dy. (43)

Using the true mean profile, U (y), estimated over an interval much longer than the training
data, Ub = 16.0 for the present investigation. Similarly, the (dimensional) sampling time between
snapshots required to match that of the present investigations is given by

�tdim = �t

Reτ

h2

ν
. (44)

We examine the quadratic, linear, and inverse dependencies of �tdim, Qb, and uτ , respectively,
on h in Fig. 19. In order to have sufficient time to reconstruct each snapshot in real time (i.e.,
before the next measurement is taken), the minimum channel half-height is h = 12.8 cm and the
corresponding flow rates are O(104) cm3/s. Both of these parameters are feasible in standard water
channel configurations with sufficient pumping power, but the physical setup must be tailored to be
compatible with the imaging and computation specifications. Since we fix Reτ , the friction velocity
must decrease as the size of the channel increases, and, hence, the wall roughness must be carefully
designed to accommodate for the selected scale of the channel. Finally, we note that sampling
every O(100) ms is a realistic benchmark for modern PIV setups. Taken together, these rough
estimates indicate that the present methodology has the potential for real-time implementation in an
experimental turbulent channel flow and provide motivation for evaluating the present techniques in
that setting.
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FIG. 19. Required dimensional sampling time (left), required flow rate for ξ = 10 (right: blue), and
required friction velocity (right: red) as functions of the channel half-height. Vertical dotted lines represent
the half-height corresponding to the approximate computation time to reconstruct each snapshot (250 ms).

V. CONCLUSIONS

We develop an efficient framework for streaming reconstructions of turbulent velocity fluctua-
tions from sparse measurements with the potential for real-time implementation. In this framework,
we partition time-resolved data into an initial training period and a subsequent testing period of
equal length. We enable efficient, inverse-free reconstructions by first computing linear estimators
from the training data and later applying them to measurements from the testing data. Various
estimators are considered to address scenarios with varying degrees of available training data.
Specifically, we employ streaming (i) truncated (resolvent) response mode estimation (STRME), (ii)
optimal resolvent-based estimation (SORBE), and (iii) truncated SPOD mode estimation (STSME)
to address the cases where the training data consists of (i) no, (ii) limited, and (iii) full-field
second-order statistics.

As a prototypical example of this framework, we reconstruct snapshots from a DNS of turbulent
flow in a minimal channel at Reτ ≈ 186 using spatially isolated wall-parallel planes to simulate
a multiplane PIV setup. We use the energetically dominant Fourier modes to efficiently represent
the dynamics at each plane and evaluate their ability to reconstruct both the filtered and unfiltered
snapshots. By operating in Fourier triplet space, we allow for parallel reconstructions of reduced
size at each triplet. During training, we introduce blockwise inversion to efficiently and accurately
compute the resolvent operator. This technique is interpretable through the governing equations in
terms of input-output relationships and a modified projection. During testing, we enable efficient
streaming reconstructions by recursively updating the triplet space measurements via incoming data
using a temporal sliding discrete Fourier transform (SDFT).

The STRME estimators can be formed from only the governing equations and a mean profile,
but rely on an unrealistic uncorrelated forcing assumption in the present formulation. They provide
a simple and informative means for local reconstructions and streamwise statistical reconstructions.
The SORBE estimators effectively incorporate limited training data with the governing equations to
improve reconstruction accuracy. They allow for a tailored balance of the cost-accuracy tradeoffs
associated with incorporating training statistics and testing measurements. The STSME estimators
require full-field training statistics and do not consider the governing equations. They provide an
efficient means of representing energetic flow structures on a modal basis.

With full-field flow statistics, SORBE and STSME converge to the generalized Wiener filter.
This estimator produces the most accurate reconstructions in the present investigation and it has
filtered and unfiltered errors of 41.5% and 52.0% (i.e., 17.2% and 27.0% of the TKE), respectively,
when Nplane = 7 measurement planes are used. However, these errors are larger than those of the

064612-35



ARUN, BAE, AND McKEON

formally optimal noncausal estimator since the sliding temporal window produces time-varying
flow statistics. For all methods, significant reductions in error are obtained by computing the errors
over a truncated wall-normal domain based on proximity to the measurements. The spatial error
profiles demonstrate that this is primarily because spatially localized streamwise and spanwise flow
structures are relatively well captured in these regions. The errors grow less rapidly for the wall-
normal fluctuations since they are less localized in the wall-normal direction.

One promising feature of the present framework is its potential amenability to real-time re-
constructions of turbulent flows in experimental settings. Even the relatively unoptimized code
used in the present investigation can reconstruct each incoming snapshot in a fraction of a second
(∼250 ms). This time delay suggests that the present technique can help enable relatively accurate
real-time flow estimation in laboratory settings (e.g., using a water tunnel) when paired with a
multiplane PIV measurement system and a real-time PIV scheme. The time delay can be further
reduced, thereby alleviating experimental design constraints, by optimizing the implementation and
computational hardware used for the reconstruction scheme.

Moving forward, experimental validation is a natural next step to validate the efficacy of the
present methodology in real-time settings. The velocity fluctuation statistics used for the present
estimators are within reach for modern experimental measurements, and the resolvent operator
relates them to the forcing statistics (as in SORBE), which are more difficult to measure directly. In
estimating flow statistics, determining the required spatial resolution and optimal underlying models
is important to determining the extent of training data required to produce transfer functions with
sufficient fidelity. In experimental reconstructions, further considerations are required to address
more complex boundary conditions and real-time processing of raw data.

Further, numerous methodological improvements are likely to yield more efficient and accurate
flow reconstructions. For example, the recently developed causal ORBE framework [45] is a logical
choice to employ in real-time applications. Another particularly promising avenue would be to
combine frameworks to improve reconstruction accuracy with minimal training data. For example,
estimators could be initialized using the STRME framework and continuously refined using flow
statistics estimated from streaming measurements. Moreover, whereas the present frameworks
involve computing optimal linear estimators, better performance may be obtained by introducing
nonlinearity into the reconstruction formulation, either explicitly in the estimator or through, e.g., an
eddy-viscosity model. Further, whereas we heuristically select measurement locations, optimizing
the sensor locations to best capture the relevant dynamics in the flow is likely to improve recon-
struction accuracy. While we consider a fixed measurement configuration during testing, adaptive
measurement schemes may provide a means to significantly reduce measurement costs by capturing
flow features of interest as they evolve. Beyond estimation, adapting the streaming framework to
accommodate real-time flow control is a promising avenue of investigation. Further developments
are required to address the need for in-time actuation based on real-time measurements.
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APPENDIX A: EDDY-VISCOSITY RESOLVENT OPERATOR

Following previous studies [17,43], the modified (discrete) basic linear dynamics are given by

Lt
B =

⎡
⎢⎣

Lt
c −ikx∂yνt + ∂yU 0

0 Lt
e − Ee 0

0 −ikz∂yνt Lt
c

⎤
⎥⎦, (A1)
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where ∂yνt is defined in an analogous form to ∂yU . The modified diagonal subblocks are given by

Lt
c,e = Lc,e − Ec,e − 1

Reτ

νt

ν
∇̂2

c,e, Ec,e = ∂yνt∂y, (A2)

where the discrete constituents of Ec,e are appropriately defined with respect to cell center and edge
values. Here νt is the turbulent eddy viscosity, which is given by

νt

ν
= 1

2

{
1 + κ2Re2

τ

9
(1 − η2)2(1 + 2η2)2

[
1 − exp

(
Reτ

A
(|η| − 1)

)]2
}1/2

− 1

2
, (A3)

where η = y/h, κ = 0.426, and A = 25.4 [67]. Inverting the basic linear dynamics as before, now
with extra terms, we express the basic resolvent as

RB,t
u = (

Lt
B

)−1 =

⎡
⎢⎢⎢⎣

(
Lt

c

)−1 (
Lt

c

)−1
(ikx∂yνt − ∂yU )

(
Lt

e − Ee
)−1

0

0
(
Lt

e − Ee
)−1

0

0
(
Lt

c

)−1
(ikz∂yνt )

(
Lt

e − Ee
)−1 (

Lt
c

)−1

⎤
⎥⎥⎥⎦, (A4)

which again acts between aligned quantities in x and z for convenience. Thus, just as two inverses,
L−1

c and L−1
e , are required (for staggered data) to compute the standard basic resolvent, two different

inverses, (Lt
c)−1 and (Lt

e − Ee)−1, are required to compute the eddy-viscosity basic resolvent. As
before, using blockwise inversion to enforce continuity gives the full eddy-viscosity resolvent as

Rt
u = SH

[
RB,t

u − RB,t
u ∇̂(∇̂T

RB,t
u ∇̂)−1∇̂T

RB,t
u

]
S. (A5)

This form is analogous to the form derived for the standard resolvent operator, and therefore it may
also be understood as a modified projection that acts to eliminate the pressure terms and enforce
continuity.

APPENDIX B: TEMPORAL FOURIER TRANSFORM ACCURACY

We implicitly absorb into the noise vector the errors associated with computing the temporal
Fourier transforms of measurements (i) using a (recursive) sliding DFT and (ii) over a finite-length
window. It is therefore important to at least qualitatively characterize the validity of these methods,
the former in the context of real time or streaming reconstructions and the latter in the context
of transfer functions designed for noncausal estimates. Figure 20 depicts the errors associated with
both of these methods for (kx, kz ) = (3.54, 7.08). The relative SDFT error plots show that the SDFT
does not meaningfully contribute to the errors absorbed into the noise vector beyond those incurred
by employing the fft over the same temporal window. The normalized temporal Fourier amplitude
spectra address the validity of the finite-length temporal window. When properly normalized, the
spectra computed over a temporal window of size �T = 1 bear qualitative resemblance to those
computed over �T ′ = 80. Further, the variability in the amplitudes computed over subsequent
smaller windows is in line with the amplitudes computed over the longer interval. This suggests
that information regarding the noise incurred by truncating the integral associated with the temporal
Fourier transform may be inferred to some degree. Nevertheless, to retain simplicity, we employ
the simplified noise CSD model, S̃nn = εI, when computing the transfer functions in the present
investigation.

APPENDIX C: COEFFICIENTS WITH LIMITED TRAINING DATA

The optimal choice of coefficients for flow reconstruction remains an open question. Here we
empirically demonstrate that using the forcing (as in SORBE) produces more accurate reconstruc-
tions than using the mode weights (as in STRME) in the present investigation. Figure 21 compares
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FIG. 20. Single precision relative SDFT errors (top) and normalized temporal Fourier amplitude spectra
(bottom) of û (left), v̂ (middle), and ŵ (right) computed for (kx, kz ) = (3.54, 7.08) and y+ ≈ 14.7 over the
training period. The relative SDFT errors are evaluated with respect the fft coefficients computed over the
same temporal window (�T = 1). The normalized spectra show the �T ′ = 80 amplitudes (black curves) and
the �T = 1 amplitudes (colored curves: square root of mean variance, shading: 20th–80th percentiles). The
long-time and short-time spectra are normalized to reproduce unit signal energy, and in the latter case nor-
malization is performed prior to computing statistics. The magenta dotted lines represent the local convection
velocity, U (y+) ≈ 10.9.

the spatially integrated errors for estimators (Nplane = 7) that incorporate forcing and mode weight
statistics computed using various (limited) amounts of training data. In both cases the coefficient
statistics are estimated from the same auxiliary observations in a manner analogous to (24). The

FIG. 21. Comparisons of the full-field filtered errors, εfilt (t ) (bars: square root of mean variance, error
bars: 20th–80th percentiles), for reconstructions using the data-driven extension of STRME (light bars) and
using SORBE (dark bars). The errors are shown for estimators (Nplane = 7) that incorporate various amounts of
auxiliary training data to estimate coefficient statistics during training.
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FIG. 22. Temporal evolutions of the full-field errors, εfilt (t ) and εfull (t ), and the localized errors, ε∗
filt (t ) and

ε∗
full (t ), for Nlocal = 3, 2, and 1. These cases are listed such that the fraction of the channel captured by each

metric, φvol, decreases from left to right.

results show that the forcing-based SORBE estimator produces consistently lower errors than the
mode weight-based estimator representing a data-driven extension of STRME. While this validates
our choice of SORBE to address the case where limited training data are available, further work is
needed to find coefficients with statistics easily inferred from sparse training data.

APPENDIX D: EFFECT OF TRUNCATED ERRORS

To further probe the effect of truncating the wall-normal domain over which errors are computed,
we consider truncations to within Nlocal = 1, 2, and 3 cells of the measurement planes. Figure 22
compares the temporal evolutions of the full-channel and localized error metrics during the testing
period for selected cases. For the Nplane = 7 generalized Wiener filter, the localized reconstruction
errors decrease with decreasing Nlocal, especially with respect to the filtered fluctuations. Since
seven measurement planes are used, the fraction of the domain captured when integrating the
errors (φvol) remains relatively large for all cases shown. This indicates that truncating the errors
allows for improved reconstruction accuracy while retaining a large (albeit limited) domain of
applicability. For the Nplane = 2 STRME estimator, the values of φvol are considerably smaller
since fewer measurement planes are considered. These localized errors are much smaller (by an
order of magnitude) than the full-field error, but apply only to considerably smaller subdomains.
However, these large error reductions suggest that the Nplane = 2 STRME estimator may be suitable
for localized reconstructions about each measurement plane. In this limited context, the uncorrelated
forcing assumption has a relatively small impact on reconstruction accuracy.

[1] I. Gultepe, R. Sharman, P. D. Williams, B. Zhou, G. Ellrod, P. Minnis, S. Trier, S. Griffin, S. Yum, B.
Gharabaghi et al., A review of high impact weather for aviation meteorology, Pure Appl. Geophys. 176,
1869 (2019).

064612-39

https://doi.org/10.1007/s00024-019-02168-6


ARUN, BAE, AND McKEON

[2] Y. Fan, G. Arwatz, T. W. Van Buren, D. E. Hoffman, and M. Hultmark, Nanoscale sensing devices for
turbulence measurements, Exp. Fluids 56, 138 (2015).

[3] K. Manohar, B. W. Brunton, J. N. Kutz, and S. L. Brunton, Data-driven sparse sensor placement for
reconstruction: Demonstrating the benefits of exploiting known patterns, IEEE Control Syst. Mag. 38, 63
(2018).

[4] S. L. Brunton and B. R. Noack, Closed-loop turbulence control: Progress and challenges, Appl. Mech.
Rev. 67, 050801 (2015).

[5] K. Sasaki, S. Piantanida, A. V. G. Cavalieri, and P. Jordan, Real-time modelling of wavepackets in
turbulent jets, J. Fluid Mech. 821, 458 (2017).

[6] I. A. Maia, P. Jordan, A. V. G. Cavalieri, E. Martini, K. Sasaki, and F. J. Silvestre, Real-time reactive
control of stochastic disturbances in forced turbulent jets, Phys. Rev. Fluids 6, 123901 (2021).

[7] M. R. Abbassi, W. J. Baars, N. Hutchins, and I. Marusic, Skin-friction drag reduction in a high-Reynolds-
number turbulent boundary layer via real-time control of large-scale structures, Int. J. Heat Fluid Flow
67, 30 (2017).

[8] G. Berkooz, P. Holmes, and J. L. Lumley, The proper orthogonal decomposition in the analysis of
turbulent flows, Annu. Rev. Fluid Mech. 25, 539 (1993).

[9] P. J. Schmid, Dynamic mode decomposition of numerical and experimental data, J. Fluid Mech. 656, 5
(2010).

[10] A. Towne, O. T. Schmidt, and T. Colonius, Spectral proper orthogonal decomposition and its relationship
to dynamic mode decomposition and resolvent analysis, J. Fluid Mech. 847, 821 (2018).

[11] O. T. Schmidt and T. Colonius, Guide to spectral proper orthogonal decomposition, AIAA J. 58, 1023
(2020).

[12] A. Ghate, A. Towne, and S. Lele, Broadband reconstruction of inhomogeneous turbulence using spectral
proper orthogonal decomposition and Gabor modes, J. Fluid Mech. 888, R1 (2020).

[13] O. T. Schmidt and A. Towne, An efficient streaming algorithm for spectral proper orthogonal decomposi-
tion, Comput. Phys. Commun. 237, 98 (2019).

[14] A. Nekkanti and O. T. Schmidt, Frequency–time analysis, low-rank reconstruction and denoising of
turbulent flows using SPOD, J. Fluid Mech. 926, A26 (2021).

[15] M. Chevalier, J. Hœpffner, T. R. Bewley, and D. S. Henningson, State estimation in wall-bounded flow
systems. Part 2. Turbulent flows, J. Fluid Mech. 552, 167 (2006).

[16] C. H. Colburn, J. B. Cessna, and T. R. Bewley, State estimation in wall-bounded flow systems. Part 3. The
ensemble Kalman filter, J. Fluid Mech. 682, 289 (2011).

[17] S. J. Illingworth, J. P. Monty, and I. Marusic, Estimating large-scale structures in wall turbulence using
linear models, J. Fluid Mech. 842, 146 (2018).

[18] F. Martinelli, Feedback control of turbulent wall flows, Ph.D. thesis, Politecnico di Milano, Milan, 2009.
[19] R. J. Adrian and P. Moin, Stochastic estimation of organized turbulent structure: Homogeneous shear

flow, J. Fluid Mech. 190, 531 (1988).
[20] C. Tinney, F. Coiffet, J. Delville, A. Hall, P. Jordan, and M. Glauser, On spectral linear stochastic

estimation, Exp. Fluids 41, 763 (2006).
[21] B. Podvin, S. Nguimatsia, J.-M. Foucaut, C. Cuvier, and Y. Fraigneau, On combining linear stochastic

estimation and proper orthogonal decomposition for flow reconstruction, Exp. Fluids 59, 58 (2018).
[22] C. He and Y. Liu, Time-resolved reconstruction of turbulent flows using linear stochastic estimation and

sequential data assimilation, Phys. Fluids 32, 075106 (2020).
[23] V. Gupta, A. Madhusudanan, M. Wan, S. J. Illingworth, and M. P. Juniper, Linear-model-based estimation

in wall turbulence: Improved stochastic forcing and eddy viscosity terms, J. Fluid Mech. 925, A18 (2021).
[24] A. Madhusudanan, S. J. Illingworth, and I. Marusic, Coherent large-scale structures from the linearized

Navier–Stokes equations, J. Fluid Mech. 873, 89 (2019).
[25] C. Vamsi Krishna, M. Wang, M. S. Hemati, and M. Luhar, Reconstructing the time evolution of wall-

bounded turbulent flows from non-time-resolved PIV measurements, Phys. Rev. Fluids 5, 054604 (2020).
[26] M. Wang, C. Vamsi Krishna, M. Luhar, and M. S. Hemati, Model-based multi-sensor fusion for recon-

structing wall-bounded turbulence, Theor. Comput. Fluid Dyn. 35, 683 (2021).

064612-40

https://doi.org/10.1007/s00348-015-2000-0
https://doi.org/10.1109/MCS.2018.2810460
https://doi.org/10.1115/1.4031175
https://doi.org/10.1017/jfm.2017.201
https://doi.org/10.1103/PhysRevFluids.6.123901
https://doi.org/10.1016/j.ijheatfluidflow.2017.05.003
https://doi.org/10.1146/annurev.fl.25.010193.002543
https://doi.org/10.1017/S0022112010001217
https://doi.org/10.1017/jfm.2018.283
https://doi.org/10.2514/1.J058809
https://doi.org/10.1017/jfm.2020.78
https://doi.org/10.1016/j.cpc.2018.11.009
https://doi.org/10.1017/jfm.2021.681
https://doi.org/10.1017/S0022112005008578
https://doi.org/10.1017/jfm.2011.222
https://doi.org/10.1017/jfm.2018.129
https://doi.org/10.1017/S0022112088001442
https://doi.org/10.1007/s00348-006-0199-5
https://doi.org/10.1007/s00348-018-2513-4
https://doi.org/10.1063/5.0014249
https://doi.org/10.1017/jfm.2021.671
https://doi.org/10.1017/jfm.2019.391
https://doi.org/10.1103/PhysRevFluids.5.054604
https://doi.org/10.1007/s00162-021-00586-8


TOWARDS REAL-TIME RECONSTRUCTION OF VELOCITY …

[27] B. J. McKeon and A. S. Sharma, A critical-layer framework for turbulent pipe flow, J. Fluid Mech. 658,
336 (2010).

[28] B. J. McKeon, The engine behind (wall) turbulence: Perspectives on scale interactions, J. Fluid Mech.
817, P1 (2017).

[29] B. F. Farrell and P. J. Ioannou, Stochastic forcing of the linearized Navier–Stokes equations, Phys. Fluids
5, 2600 (1993).

[30] S. Symon, Reconstruction and estimation of flows using resolvent analysis and data-assimilation,
Ph.D. thesis, California Institute of Technology, Pasadena, CA, 2018.

[31] S. Symon, D. Sipp, P. J. Schmid, and B. J. McKeon, Mean and unsteady flow reconstruction using data-
assimilation and resolvent analysis, AIAA J. 58, 575 (2020).

[32] R. Moarref, A. S. Sharma, J. A. Tropp, and B. J. McKeon, Model-based scaling of the streamwise energy
density in high-Reynolds-number turbulent channels, J. Fluid Mech. 734, 275 (2013).
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