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This paper proposes an ordinary-differential-equation (ODE)-based nonequilibrium
boundary layer (NEQBL) wall modeling in large-eddy simulation (LES) for accurate
prediction of nonequilibrium separated turbulent boundary layers at a high Reynolds
number. The proposed ODE-based wall model does not require computational grids with
full connectivity. The key to the modeling is to incorporate the nonequilibrium effects
into the pressure-gradient term, convective term, and turbulent eddy viscosity consistently.
The model is inaccurate if any of these terms are modeled inconsistently from the others,
and it is found important to include the nonequilibrium effects into the turbulent eddy
viscosity, which has not been discussed in prior studies. The proposed modeling of the
three nonequilibrium terms is first analyzed by a priori tests using the wall-resolved LES
(WRLES) database of pressure-induced separated and reattached turbulent boundary layer
at Reynolds number Reθ ≈ 2.0 × 103. Then, the wall-modeled LES using the proposed
ODE-based NEQBL wall model is conducted under the same condition as the WRLES
database. The proposed ODE-based NEQBL model yields accurate predictions of the
resolved turbulence statistics for both equilibrium-attached and nonequilibrium-separated
flows.

DOI: 10.1103/PhysRevFluids.8.064605

I. INTRODUCTION

Accurate prediction of separated turbulent boundary layers is one of the crucial factors in the
design of many industrial applications, such as aircraft, rockets, turbines, etc. Large-eddy simulation
(LES) is a promising approach to predicting the separated turbulent boundary layers since energetic
and dynamically important eddies are directly resolved. However, the computational cost of the
wall-resolved LES (WRLES) of wall-bounded turbulent flows at a high Reynolds number becomes
highly prohibitive [1–3], which leads to the wall-modeled LES (WMLES; cf. the review articles
[4–6]) for predicting the high Reynolds number wall-bounded flows. In the WMLES, the spatially
filtered LES equations are solved on the computational grid that resolves outer-layer turbulence,
while the effects of the unresolved near-wall turbulence in the inner layer (i.e., the innermost
approximately 10% of the boundary layer, y � 0.1δ) are modeled to alleviate the near-wall grid
resolution requirement in viscous units. In the wall-stress modeling approach (e.g., Refs. [7–14]),
an inner-layer wall model that is solved between the wall and wall-model top boundary (i.e.,
the matching location y = hwm) estimates the wall-shear stress τw (and wall heat flux qw for
compressible flows) and imposes τw (and qw) as a flux boundary condition for the LES. Since the
LES resolves the outer-layer turbulence (say, in the region y � 0.1δ) directly, the key to the accurate
prediction of the WMLES is the modeling of the inner-layer turbulence.
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One of the simplest and most prevalent wall-stress models is the equilibrium boundary layer
(EQBL) model [7,8,10,12]. The EQBL model solves the equilibrium boundary layer equation:

d

dy

[
(μ + μt )

du

dy

]
= 0, (1)

where u is the wall-parallel velocity, μ is the shear viscosity, and μt is the turbulent eddy viscosity.
Equation (1) is derived from the Favre-averaged momentum equation by imposing the equilibrium
assumptions. The Favre-averaged momentum equation is

ρ
∂ ũi

∂t
+ ρũ j

∂ ũi

∂x j
+ ∂ p

∂xi
= ∂τ i j

∂x j
− ∂

∂x j
(ρũ′′

i u′′
j ), (2)

where ρ is the density, ui is the velocity components, p is the static pressure, τi j is the viscous
stress tensor, f and f̃ denote the Reynolds and Favre averaging quantities, f = f + f ′ and f = f̃ +
f ′′. The EQBL model employs the equilibrium assumptions, where the time-derivative, convective,
pressure-gradient, and wall-parallel viscous-diffusion terms in Eq. (2) are neglected. Also, in the
EQBL model, the Reynolds shear stress is modeled by the Boussinesq eddy-viscosity approximation
−ρũ′′v′′ ≈ μt (du/dy). Consequently, the EQBL model solves the wall-normal ordinary differential
equation (ODE) between the wall and matching location y = hwm and thus allows the model to be
applied without the computational grids with full connectivity in all directions.

The WMLES with the EQBL model has been widely used to simulate attached equilibrium
boundary layer flows [12,15] and also separated nonequilibrium boundary layer flows [16–23]
at high Reynolds numbers. In most cases, the EQBL wall model reasonably predicts the low-
order turbulent statistics (e.g., the mean velocity, Reynolds stresses, etc.) even for the separated
nonequilibrium flows where the equilibrium assumptions used in the EQBL model are no longer
valid. However, some prior studies [11,19,24,25] reported that the neglected nonequilibrium terms
(hereafter, called the nonequilibrium effects) become important in predicting the nonequilibrium
boundary layers such as separated turbulent boundary layers. Wang and Moin [11] showed that the
model including the nonequilibrium effects improves the skin-friction prediction near the airfoil
trailing edge where the pressure gradient is nonnegligible. Similarly, Tamaki et al. [19] showed the
nonnegligible contributions of the nonequilibrium effects near the airfoil leading-edge where the
pressure gradients are present. Also, Park [25] indicates that the equilibrium assumptions are not
valid in a separation bubble and downstream of the reattachment, and the wall model including the
nonequilibrium effects improves the prediction accuracy.

To incorporate the nonequilibrium effects into the wall model, a straightforward approach is to
solve some form of the RANS (Reynolds averaged Navier-Stokes)-type partial differential equa-
tions (PDEs) that include the nonequilibrium effects without the use of the equilibrium assumptions
[9,10,13,14]. Because of the PDE-based governing equations used in the nonequilibrium boundary
layer (NEQBL) model, the NEQBL model requires the wall-layer mesh between the wall and match-
ing location y = hwm with full connectivity in all directions, which often increases the difficulty
of using the NEQBL model for complex geometries. To remove the full connectivity required
for solving the PDE-based NEQBL model, the developments of the ODE-based [11,24,26,27] or
machine-learning-based [28] NEQBL models that do not require the wall-layer mesh have been
attempted. In the ODE-based models, to reduce the PDE to an ODE, the nonequilibrium effects are
modeled by using the outer-layer LES solutions at the wall-model top boundary (i.e., at the matching
location y = hwm). Hoffmann and Benocci [26], Wang and Moin [11], and Catalano et al. [27] mod-
eled the pressure-gradient term without modeling the convective term. However, Hickel et al. [24]
proposed an ODE-based NEQBL model that accounts for both the pressure-gradient and convective
terms and argued that the consistent modeling between the convective and pressure-gradient terms
is the key to accurate modeling of the nonequilibrium effects. Also, there is a potential issue with the
turbulent eddy viscosity modeling used in the wall model [19], which has not been discussed in prior
studies. In the existing PDE-based [9,10,13,14] and ODE-based [11,24,26,27] NEQBL models, the
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turbulent eddy viscosity used in the wall model is calculated using the mixing-length model derived
from the equilibrium assumptions. A recent study by Tamaki et al. [19] suggested that the turbulent
eddy viscosity modeling also needs to be modified for the NEQBL model to maintain consistency
with the nonequilibrium effects. Therefore, there is a potential inconsistency between the modeling
of the nonequilibrium terms (i.e., the pressure-gradient and convective terms) and the turbulent eddy
viscosity when using the mixing-length model.

In this study, we propose an ODE-based NEQBL wall model for the LES at a high Reynolds
number by consistently modeling the nonequilibrium effects, i.e., the pressure-gradient and con-
vective terms, and the turbulent eddy viscosity. The proposed model only requires the input from
the outer-layer LES at the matching location y = hwm and does not require grid connectivity,
which is typically needed for the existing PDE-based NEQBL models [9,10,13,14], and thus
does not require the wall-layer mesh to compute the NEQBL wall model. We first analytically
derive the consistent modeling for the nonequilibrium effects term-by-term and then validate
the derived modelings through a priori tests and numerical experiments (in which the proposed
ODE-based NEQBL wall model is implemented to the solver) by comparing with the WRLES
database of a nonequilibrium pressure-induced separated and reattached turbulent boundary layer.
Since a high-fidelity turbulence database plays an essential role in the modeling and validation
processes, the WRLES of the separated and reattached turbulent boundary layer at moderately
high Reynolds number Reθ ≈ 2.0 × 103 (and freestream Mach number M∞ = 0.2) with 1.6 billion
grid points is conducted, and the obtained high-fidelity WRLES database is analyzed. Using the
direct comparisons between the WRLES database and modeling of the nonequilibrium effects, the
detailed analysis of the nonequilibrium terms in the inner layer can be addressed for developing the
physics-based modeling.

This paper is organized as follows. In Sec. II, we first describe the reference WRLES database
of pressure-induced separated and reattached turbulent boundary layer on a flat plate (the WRLES
database is available on our website [29]). Then, the ODE-based modeling of the pressure-gradient
and convective terms, and the turbulent eddy viscosity are analytically derived, and each model is
validated based on the WRLES database. At the end of Sec. II, the framework of the proposed ODE-
based NEQBL wall model is summarized. In Sec. III, the proposed ODE-based NEQBL model is
validated through a priori tests using the WRLES database. Then, the prediction capability of the
WMLES with the proposed ODE-based NEQBL wall model for the attached and separated turbulent
boundary layers is discussed in Sec. IV. The concluding remarks are provided in Sec. V.

II. ODE MODELING OF NONEQUILIBRIUM EFFECTS

The proposed ODE-based NEQBL wall model consists of the modelings of the pressure-gradient
term, convective term, and turbulent eddy viscosity. The governing equation for the ODE-based
NEQBL model is derived from the streamwise momentum equation (Eq. (2)). First, the thin-
boundary-layer approximation is applied to Eq. (2), i.e., ignoring ∂/∂x and ∂/∂z terms in the
right-hand-side viscous and Reynolds stress terms,

Conv. + Pres. = d

dy

(
μ

du

dy

)
+ d

dy
(−ρũ′′v′′), (3)

where Conv. is the convective term [Conv. ≡ ρũ(dũ/dx) + ρṽ(dũ/dy)], Pres. is the streamwise
pressure-gradient term (Pres. ≡ d p/dx), u and v are the streamwise and wall-normal velocity, and
x and y are the streamwise and wall-normal direction. Note that neglecting the streamwise diffusion
term assumes a mild streamwise change of the flow. We have confirmed that the streamwise
diffusion term is negligible in the present low-speed gradually separated flow. Then, applying the
Boussinesq approximation to the Reynolds shear stress yields

d

dy

[
(μ + μt )

du

dy

]
= Conv. + Pres. (4)
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FIG. 1. Schematic of separated and reattached turbulent boundary layer on a flat-plate with adverse and
favorable pressure gradients (APG and FPG). Isosurfaces of instantaneous Q ≡ −(1/2)(∂ui/∂x j )(∂uj/∂xi ) =
0.03u2

∞/θ2
in colored by streamwise velocity u.

In the ODE-based NEQBL model, the nonequilibrium effects (Conv., Pres., and μt ) in Eq. (4) are
consistently modeled based on the theoretical analyses and the WRLES database. In this section,
the high-fidelity WRLES database is described in Sec. II A. Then, in Sec. II B, the modeling of the
nonequilibrium effects, i.e., the pressure-gradient term, convective term, turbulent eddy viscosity,
and a priori analyses of the proposed modelings are discussed.

A. Wall-resolved LES database [29]

To analyze and validate the proposed modeling of the nonequilibrium effects in detail, the
WRLES of a pressure-induced separated and reattached turbulent boundary layer on a flat plate
at the Reynolds number based on the inlet momentum thickness Reθin ≈ 2000 and inlet freestream
Mach number M∞ = 0.2 is conducted. The simulation settings are following Na and Moin [30]
and Abe [31], but the Reynolds number is increased so that the scales of the inner and outer layers
more clearly separate. Following the previous studies [30–32], the streamwise pressure gradient is
generated by imposing the wall-normal velocity at the upper boundary as

vtop = vmax ×
√

2 ×
(

xc − x

σ

)
exp

[
ψ −

(
xc − x

σ

)2
]
, (5)

where vmax/u∞ = 0.3325, xc/θin ≈ 105/29, σ/θin ≈ 80
√

2(52/25), ψ = 0.95, and θin is the mo-
mentum thickness at the inlet of the computational domain (test section) shown in Fig. 1. Similar to
the prior studies [33,34], the inflow turbulence for the test section is extracted from the concurrent
WRLES of the nominally zero-pressure-gradient fully developed flat-plate turbulent boundary layer
computed in the separated domain (driver section, not shown in Fig. 1). The rescaling-reintroduction
method [35] is used to generate realistic inflow turbulence in the driver section. The size of test
section in Fig. 1 is Lx ≈ 400θin, Ly ≈ 80θin, and Lz ≈ 80θin in streamwise (x), wall-normal (y), and
spanwise (z) directions, and the driver section is Lx ≈ 172θin, Ly ≈ 80θin, and Lz ≈ 80θin, where the
subscript (in) denotes the inlet quantity of the test section. Note that in the test section, an additional
buffer region with the length of 800θin in the streamwise direction is placed at the outlet boundary to
remove turbulent fluctuations and any reflections from the boundary (i.e., the actual computational
domain size of the test section is Lx ≈ 1200θin, Ly ≈ 80θin, and Lz ≈ 80θin). The total number of
grid points for the test section is approximately 1.6 billion. Here, the wall-tangential grid spacings
are 	x+ ≈ 12.6 and 	z+ ≈ 6.3, while the wall-normal grid spacing 	y+ is approximately 0.8 at the
wall and does not exceed 13 in the region y/θin � 40. Note that the superscript + denotes a quantity
in wall units. The same grid spacing is also used in the driver section. The present grid resolution is
sufficient for the WRLES to resolve the near-wall turbulent structures with the employed sixth-order
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FIG. 2. Inflow turbulence statistics obtained by the WRLES of pressure-induced separated and reattached
turbulent boundary layer on a flat plate at Reθin ≈ 2000 and M∞ = 0.2. (a) Mean streamwise velocity,

(b) Reynolds stresses: upper,
√

ρũ′′u′′/τw; upper-middle,
√

ρ˜w′′w′′/τw; lower-middle,
√

ρṽ′′v′′/τw; lower,
ρũ′′v′′/τw . Blue lines, present WRLES with 	x+ ≈ 12.6, 	y+ � 12.6, and 	z+ ≈ 6.3; green lines, WRLES
with 	x+ ≈ 15, 	y+ � 15, and 	z+ ≈ 7.5; red lines, WRLES with 	x+ ≈ 26, 	y+ � 26, and 	z+ ≈ 13;
circles, incompressible DNS at Reθ = 2000 [37]; gray line in (a), u+ = 1/0.41 log(y+) + 5.2.

compact difference scheme [36]. Figure 2 shows that the grid-converged turbulence statistics of
the mean streamwise velocity and Reynolds stresses are achieved by the employed grid (i.e., the
finest grid in Fig. 2), and the turbulent statistics at the inlet show a good agreement with the direct
numerical simulation (DNS) of an incompressible turbulent boundary layer at Reθ = 2000 [37].

The spatial derivatives are evaluated by the sixth-order compact difference scheme [38] coupled
with an eighth-order low-pass filter [38,39] where the filter parameter α f is fixed at 0.495. Our prior
studies [33,36] indicate the appropriateness of applying α f = 0.495 for high-fidelity turbulent flow
simulations. The explicit third-order total variation diminishing Runge-Kutta scheme [40] is used
for time integration. The subgrid-scale (SGS) turbulent eddy viscosity is calculated by the selective
mixed-scale model [41]. After the flow reaches a quasi-steady state, the turbulence statistics are
computed by averaging in time for a time interval of 1600θin/u∞ as well as in the homogeneous
spanwise direction to ensure convergence of flow statistics.

Figure 3 compares the skin friction and mean streamwise velocity obtained by the present
WRLES with the available DNS database at lower Reynolds number Reθin = 900 by Abe [31].
The WRLES shows the separated and reattached flow similar to the DNS, although the upstream
and downstream skin friction shows some discrepancies because of the different Reynolds numbers
employed by the present WRLES and the DNS (although not shown here, we also conduct the
WRLES at Reθin = 900 and the results well agree with the results of the incompressible DNS by
Abe [31]). By using the WRLES database [29], the nonequilibrium terms in the inner layer are
analyzed in details and the modelings of the nonequilibrium effects are validated through the direct
comparisons.

B. Modeling of nonequilibrium effects and a priori analyses

1. Pressure-gradient term

To model the pressure-gradient term (Pres. = d p/dx) in Eq. (4) in the inner layer, the typical
boundary layer theory, constant pressure in the wall-normal direction throughout the wall-modeled
layer is employed. Therefore, using the pressure in the outer-layer LES solutions at the matching
location hwm, the pressure-gradient term is modeled as

Pres.model = d p

dx

∣∣∣∣
hwm

. (6)

This modeling is the same as the modeling proposed by Wang and Moin [11] and Hickel et al.
[24]. We note that the assumption of the constant pressure in the wall-normal direction is widely
employed by the wall modeling and is also assumed in the derivation of the EQBL model [12].
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(b) Streamwise velocity ũ/u∞ (left, present WRLES; right, incompressible DNS31)

FIG. 3. Comparisons between the present WRLES database [29] at Reθin = 2000 and the available in-
compressible DNS [31] at lower Reynolds number Reθin = 900 for pressure-gradient-induced separated and
reattached turbulent boundary layer.

The modeling of Eq. (6) is validated through a priori tests using the WRLES database [29].
Figure 4 compares the proposed pressure-gradient model Pres.model with the WRLES database of
d p/dx below the matching location hwm (where the matching location is set to hwm ≈ 0.85θin that is
approximately 10% of the boundary layer thickness) at the streamwise locations x/θin = 0, 50, 100,
150, 200, 250, 300, 350. The WRLES database indicates the almost constant distributions of the
pressure-gradient term in the wall-normal direction and almost zero pressure gradient at the inlet
and separated region x/θin = 0, 150, 200, 250, adverse pressure gradient at the upstream region
x/θin = 50, 100, and favorable pressure gradient at the downstream reattached region x/θin = 300,
350. The proposed model well predicts these streamwise variations of the pressure-gradient term.

FIG. 4. A priori test of the proposed modeling of the pressure-gradient term at x/θin = 0, 50, 100, 150,
200, 250, 300, 350 [each profile is separated by a horizontal offset of 0.004. Blue lines, Pres.model/(ρ∞u2

∞/θin )
(proposed model); circles, Pres./(ρ∞u2

∞/θin ) (WRLES database [29])].
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FIG. 5. Convective and pressure-gradient terms at matching location of wall model at y/θin ≈ 0.85 (ap-
proximately 10% of the boundary layer thickness). Blue line, −Pres./(ρ∞u2

∞/θin ); circles, Conv./(ρ∞u2
∞/θin ).

2. Convective term

For the modeling of the convective term [Conv. = ρũ(dũ/dx) + ρṽ(dũ/dy)] in Eq. (4) in the
inner layer, we assume that the distributions of the convective term in the inner layer is related to
the value of the convective term at the matching location. Therefore, in this study, the convective
term is modeled as

Conv.model = Conv.model

∣∣
hwm

F (y). (7)

Here, the modeling of the convective term is split into two components, the value of the convective
term at the matching location hwm and the damping function F (y) to connect between the matching
location and the wall.

First, the modeling of Conv.model|hwm is considered. Since the matching location locates in
the log layer, it is reasonable that the viscous term in Eq. (3) is negligible at the matching
location, i.e., d

dy (μ du
dy )|hwm ≈ 0. Also, at the matching location within the log layer, we assume

that d
dy (−ρũ′′v′′)|hwm is relatively small compared to the convective and pressure-gradient terms,

and thus the convective term and pressure-gradient term are balanced. Therefore, in this study,
Conv.model|hwm is modeled by using the pressure gradient term at the matching location instead of
estimating ρũdũ/dx and ρṽdũ/dy directly as

Conv.model

∣∣
hwm

= − d p

dx

∣∣∣∣
hwm

. (8)

To validate this modeling, the comparison between the convective and pressure-gradient terms at
the height of y/θin ≈ 0.85 (approximately 10% of the boundary layer thickness) obtained by the
WRLES database is shown in Fig. 5. Figure 5 shows that the convective term and pressure-gradient
term at the matching location is balanced with each other throughout the separated and reattached
regions, indicating the validity of the proposed modeling in Eq (8). We note that Hickel et al. [24]
also showed the balance between the convective term and the pressure gradient term above the
viscous layer in their implicit WRLES of the adverse pressure-gradient turbulent boundary layer
[42].

The second component of the convective term modeling in Eq. (7), the damping function F (y),
is derived from the original convective term (Conv. = ρũdũ/dx + ρṽdũ/dy) by employing the
following two assumptions. Since the compressibility effects are generally small in the inner layer
of boundary layers, except high-speed flows with a strong wall heat flux, the first assumption is that

064605-7



KAMOGAWA, TAMAKI, AND KAWAI

the flow compressibility is negligible (i.e., ∂ui/∂xi ≈ 0, ũ ≈ u and ṽ ≈ v) in the inner layer. Using
the incompressible continuity equation, the wall-normal velocity in the wall model can be replaced
by

ṽ ≈ v = −
∫

∂u

∂x
dy. (9)

The second assumption is that the Favre-averaged streamwise velocity ũ is expressed as

ũ ≈ u(x, y) ≈ u+(y+) uτ (x), (10)

where we assume that the profile of the nondimensionalized velocity u+ is only the function of
y+, while the friction velocity uτ varies in the streamwise direction x. This assumption suggests
that the function form u+(y+) does not change rapidly in the streamwise direction. Although the
applicability to rapidly separated flows should be investigated further in the future, this assumption
is essentially valid in the present flow. Substituting Eqs. (9) and (10) into the original convective
term (Conv.), the convective term can be approximated as

Conv. = ρũ
∂ ũ

∂x
+ ρṽ

∂ ũ

∂y

≈ ρ u
∂u+(y+) uτ (x)

∂x
− ρ

(∫
∂u+(y+) uτ (x)

∂x
dy

)
∂u+(y+) uτ (x)

∂y
.

(11)

Here, the derivatives are decomposed by using the chain rule as

∂u+(y+) uτ (x)

∂x
= u+ duτ

dx
+ uτ

du+

dy+
∂y+

∂x
≈ u+ duτ

dx
+ uτ

du+

dy+
y

νw

duτ

dx
,

= u+ duτ

dx
+ y+ du+

dy+
duτ

dx
,

(12)

where we assume that νw = μw/ρw is approximately constant with respect to x, which is considered
to be reasonable under the first assumption (i.e., flow compressibility is negligible in the inner layer).
Similarly,

∂u+(y+)uτ (x)

∂y
= uτ

du+

dy+
dy+

dy
= uτ

uτ

νw

du+

dy+ . (13)

Substituting Eqs. (12) and (13) into Eq. (11) with the relation dy = (νw/uτ )dy+,

Conv. ≈ ρ u

(
u+ duτ

dx
+ y+ du+

dy+
duτ

dx

)
− ρ

[∫ (
u+ duτ

dx
+ y+ du+

dy+
duτ

dx

)
dy

]
u2

τ

νw

du+

dy+

= ρ u u+ duτ

dx
+ ρ

du+

dy+
duτ

dx
(uy+ − I ),

(14)

where

I = u2
τ

νw

∫ (
u+ + du+

dy+ y+
)

dy = uτ

∫ (
u+ + du+

dy+ y+
)

dy+

= uτ

(∫
u+dy+ + u+y+ −

∫
u+dy+

)
= uy+.

(15)

Finally, by substituting Eq. (15) into Eq. (14), the convective term can be approximated as

Conv. ≈ ρ u u+ duτ

dx
= ρ u2 1

uτ

duτ

dx
∝ ρ u2, (16)
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FIG. 6. A priori test of the proposed modeling of the convective term at x/θin = 0, 50, 100, 150, 200, 250,
300, 350 [each profile is separated by a horizontal offset of 0.004. Blue lines, Conv.model/(ρ∞u2

∞/θin ) (proposed
model); circles, Conv./(ρ∞u2

∞/θin ) (WRLES database [29])].

where since (1/uτ )(duτ /dx) is constant in wall-normal direction, the wall-normal distributions of
Conv. become proportional to ρ u2. Based on the analysis, we propose to model the wall-normal
damping function of the convective term as

F (y) = ρ u2

(ρ u2)|hwm

, (17)

where (ρ u2)|hwm is the ρ u2 at the matching location hwm.
Consequently, the proposed modeling of the convective term is represented as

Conv.model = − d p

dx

∣∣∣∣
hwm

ρ u2

(ρ u2)|hwm

. (18)

Note that the convective term modeled by Hickel et al. [24] is

ũ j
∂ ũ

∂x j
≈

(
ũ j

∂ ũ

∂x j

)∣∣∣∣
hwm

∣∣∣∣ ũ

ũ|hwm

∣∣∣∣α, (19)

where the free parameter α of the damping function is determined to fit their implicit WRLES
database and set to α = 1.5. In this study, we analytically derive the damping function F (y) by the
analysis of the convective term, which suggests F (y) ∝ ρ u2 (in other words, under the assumption
of constant density, our study indicates α = 2.0).

Similar to the pressure-gradient term, the proposed convective-term modeling of Eq. (18) is
validated through a priori tests using the WRLES database. Figure 6 compares the proposed
model and the WRLES database of Conv. = ρũdũ/dx + ρṽdũ/dy at the streamwise locations
x/θin = 0, 50, 100, 150, 200, 250, 300, 350. The proposed model reasonably well predicts the
convective-term profiles obtained by the WRLES database throughout the separated and reattached
regions, indicating the validity of the proposed convective-term modeling.

3. Turbulent eddy viscosity

In the existing PDE-based [10,11,13,14] and ODE-based [24] NEQBL models, the turbulent
eddy viscosity used in the wall model is calculated by the typical mixing length model,

μt,eq = ρκy

√
|τw|
ρ

D+, (20)

where the wall-damping function is

D+ =
[

1 − exp

(
−y+

A

)]2

. (21)
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In this model, the mixing length l is assumed to be proportional to the distance from the wall (i.e.,
l ≈ κy), and the turbulent eddy viscosity is damped in terms of y+ near the wall by the wall-damping
function D+.

In the mixing length model, Reynolds shear stress is expressed as

−ρũ′′v′′ = μt
du

dy
= ρl2

∣∣∣∣du

dy

∣∣∣∣du

dy
. (22)

In the log layer, since the viscous term is negligible, the total shear stress τ of the equilibrium
boundary layers becomes

τ = τw = μ
du

dy
− ρũ′′v′′ ≈ −ρũ′′v′′. (23)

Substituting Eq. (22) into Eq. (23) yields √
|τ |
ρ

≈ l

∣∣∣∣du

dy

∣∣∣∣. (24)

Furthermore, by substituting Eq. (24) into Eq. (22), the turbulent eddy viscosity can be formulated
as

μt = ρl

√
|τ |
ρ

= ρκy

√
|τ |
ρ

. (25)

In the equilibrium boundary layers where the total shear stress τ is equal to the wall shear-stress τw

as in Eq. (23), Eq. (25) is identical to Eq. (20) except for the wall damping.
The issue here is that the equilibrium boundary-layer assumption is inaccurate in the nonequi-

librium boundary layers where the pressure-gradient and convective terms are not negligible.
Therefore, the turbulent eddy viscosity also needs to take the nonequilibrium effects into account in
the formulation in addition to modeling the pressure-gradient and convective terms themselves. In
the nonequilibrium boundary layers, the total shear stress τ in the log layer becomes

τ = τw +
∫

(Conv. + Pres.)dy, (26)

that can be derived from the streamwise momentum equation Eq. (3) where the thin-layer approxi-
mation is applied.

In this study, therefore, we propose to model the turbulent eddy viscosity by using the total shear
stress that includes the nonequilibrium effects. From the conservation of the streamwise momentum,
τmodel is computed as

τmodel = τw +
∫

(Conv.model + Pres.model )dy. (27)

Consequently, we propose to model the turbulent eddy viscosity as

μt,model = ρκy

√
|τmodel|

ρ
D∗, (28)

where

D∗ =
[

1 − exp

(
−y∗

A

)]2

, (29)

with

y∗ = y
u∗

τ

νw

, u∗
τ =

√
|τmodel|

ρw

. (30)
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FIG. 7. Effective turbulent eddy viscosity under the adverse pressure gradient obtained by WRLES
database [29]. Black lines, x/θin = 0; red lines, x/θin = 50; green lines, x/θin = 75; blue lines, x/θin = 87.5;
gray lines, μt,eff/μw = κy+ in (a) and μt,eff/μ∞ = κy∗ in (b) where κ = 0.41.

In this model, the turbulent eddy viscosity is damped in terms of y∗ with the wall-damping function
D∗ instead of using y+, which also includes the nonequilibrium effects. Naturally, in the equilibrium
boundary layers where τ = τw, the proposed turbulent eddy viscosity model Eq. (28) reduces to
Eq. (20).

The validity of Eq. (28) is investigated by comparing the proposed turbulent eddy viscosity
model [Eq. (28)] that incorporates the nonequilibrium effects into the model with the widely used
eddy viscosity model [Eq. (20)]. In the validation, the effective turbulent eddy viscosity μt,eff =
−ρũ′′v′′/(du/dy) that is calculated by the WRLES database is used. A simple variation of Eq. (28)
with the use of ρ ≈ ρw leads to μt,model/μw ≈ κy∗D∗, which suggests that μt,model/μw ≈ κy∗ in
the logarithmic region. Similarly, from Eq. (20), μt,eq/μw ≈ κy+D+. Figure 7 shows the effective
turbulent eddy viscosity μt,eff/μw obtained by the WRLES database at the adverse pressure-gradient
region (x/θin = 0, 50, 75, 87.5) in terms of the typical wall unit y+ (= yuτ /νw) and the proposed
wall scaling y∗ (= yu∗

τ /νw) to validate the proposed turbulent eddy viscosity model [Eq. (28)]. The
effective turbulent eddy viscosity in the proposed y∗ scaling collapses well to the κy∗ line in the
logarithmic region, while the profiles are scattered with the typical y+ scaling. The WRLES data
indicate the validity of the proposed turbulent eddy viscosity model [Eq. (28)] scaling with y∗ (as
suggested in Appendix, by incorporating the effects of pressure gradient into the wall-damping
function, the collapse of the turbulent eddy viscosity may further improve).

The proposed modeling of the turbulent eddy viscosity in Eq. (28) is also validated through
a priori tests using the WRLES database. Figure 8 compares the proposed model [Eq. (28)],

FIG. 8. A priori test of the proposed modeling of the turbulent eddy viscosity at x/θin = 0, 50, 100, 150,
200, 250, 300, 350 (each profile is separated by a horizontal offset of 50). Blue lines, μt,model/μ∞ (proposed
model); black dashed lines, μt,eq/μ∞ (existing model); circles, μt,eff/μ∞ (WRLES database [29]).
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the existing eddy-viscosity model [Eq. (20)], and the reference effective turbulent eddy viscosity
μt,eff = −ρũ′′v′′/(du/dy) obtained by the WRLES database at the streamwise locations x/θin =
0, 50, 100, 150, 200, 250, 300, 350. In both the eddy viscosity models, κ and A are set to 0.41
and 17 as followed by the prior study [12]. In the attached equilibrium turbulent-boundary-layer
region at the inlet x/θin = 0, the two models [Eqs. (28) and (20)] show almost identical results.
The results indicate that the proposed model automatically reduces to the typical equilibrium model
when the nonequilibrium effects are negligible (i.e., τ ≈ τw). In the separated region under the
adverse pressure gradient (x/θin = 50, 100) where the nonequilibrium effects are not negligible,
the proposed turbulent-eddy-viscosity model shows superior predictions compared to the existing
model, indicating the validity of including the nonequilibrium effects in the eddy-viscosity model.
In the boundary layer downstream of of the reattachment (x/θin = 250, 300, 350), the proposed
model shows a certain deviation from the WRLES database. The root of the deviation is considered
to be caused by the framework of the mixing length model itself. In the mixing length model, the
turbulence scale is assumed to be proportional to the single length scale, the distance from the
wall (i.e., l ≈ κy), and the proportional coefficient is calibrated by the equilibrium fully developed
turbulent boundary layers. In the boundary layer downstream of the reattachment, however, the
lifted large-scale turbulent structures that grew in the separated shear-layer flow down and merge
with the boundary layer as discussed by Abe [31] (also observed by the present WRLES shown in
the reattached downstream region in Fig. 1). Therefore, the mixing length l is not considered to be
only the function of y, i.e., l 	= κy in the reattached region. Also, at x/θin = 350, the boundary layer
is still spatially developing after the reattachment. As a result, we conclude that the discrepancies in
the proposed model after the reattachment is due to the invalidity of l ≈ κy employed by the mixing
length model.

C. Implementation of the proposed ODE-based NEQBL wall model

The proposed ODE-based nonequilibrium wall-model equation, which is solved in an over-
lapping layer between the wall y = 0 and the matching location y = hwm with the adiabatic (or
isothermal) no-slip boundary condition at the wall, is

d

dy

[
(μ + μt,model )

du

dy

]
= Conv.model + Pres.model. (31)

Based on the proposed modeling of nonequilibrium effects discussed in Sec. II B, the modeled
nonequilibrium terms are implemented as

Pres.model =
〈

d p

dx

〉∣∣∣∣
hwm

,

Conv.model = −
〈

d p

dx

〉∣∣∣∣
hwm

min

(
ρu2

(ρu2)|hwm + ε
, 1

)
,

μt,model = ρκy

√
|τmodel|

ρ

[
1 − exp

(
−y∗

A

)]2

,

(32)

where

y∗ = y
u∗

τ model

νw

, u∗
τ model =

√
|τmodel|

ρw

,

τmodel = τw +
〈

d p

dx

〉∣∣∣∣
hwm

· y +
∫ y

0
Conv.model dy.

(33)

ε = 1 × 10−12 is the small positive constant to prevent division by zero, and the convective term is
clipped by a value at the matching location to assure the convergence of the wall-model solution in
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the region where the streamwise velocity at the matching location is too small. Here, u is the solution
of the wall model itself. Since the velocity generally decreases from the matching height to the wall,
we assume that the function ρu2/(ρu2)|hwm does not exceed one except in the particular case near the
separation point. Note that the top boundary conditions at y = hwm for the wall-model equation are
imposed by the instantaneous LES solutions of ρ, u, p at the matching location similar to the prior
wall model studies [12,13], while d p/dx is replaced with an averaged quantity 〈d p/dx〉 to stabilize
the wall-model calculation. In this study, 〈 〉 denotes the averaged quantity in the homogeneous
spanwise direction, and κ and A are set to 0.41 and 17. Note that in a practical 3D flow simulations,
the x axis should be taken in the local flow direction at the matching height. Also, the averaging in
the homogeneous direction 〈 〉 may be replaced by a low-pass spatial filtering or exponential moving
average.

D. Summary of modeling assumptions

Here, we list the modeling assumptions employed in the proposed model. First, the fundamental
assumptions are

(1) The inner-layer flow follows the thin-layer assumption [Eq. (3)].
(2) The convection and pressure-gradient terms balance at the matching height y = hwm at the

log layer [Eq. (8)].
The modeling of the pressure-gradient term assumes

(3) The pressure is constant in the wall-normal direction below the matching location, and thus
the streamwise pressure gradient is constant in the wall-normal direction [Eq. (6)].
Furthermore, the modeling of the convection term employs the following assumptions

(4) In the near-wall region, the flow compressibility is negligible [Eq. (9)].
(5) The mean velocity profile may be split into ũ(x, y) ≈ u+(y+)uτ (x) [Eq. (10)].

Finally, the modeling of the eddy viscosity assumes
(6) The eddy viscosity is given by the mixing-length model using the local total shear stress

[Eq. (25)].
Among the assumptions above, 1, 2, and 3 are employed also by Hickel et al. [24], while 4,

5, and 6 are the originals of this study. Although it depends on the contribution each assumption
makes to the modeling, it is possible that the model may not work well for flows that do not match
the modeling assumptions.

III. A PRIORI ANALYSES OF THE PROPOSED ODE-BASED NEQBL WALL MODEL

To validate the proposed wall model [Eq. (31)], the skin friction, which is used for the wall flux
boundary condition in the WMLES, obtained by solving Eq. (31) is compared with the WRLES
database through a priori tests using the WRLES data. In addition to the proposed wall model
Eq. (31), the following models are also examined to show the importance of consistently modeling
the three terms (i.e., the pressure-gradient term, convective term, and turbulent eddy viscosity) to
incorporate the nonequilibrium effects properly.

Model A:
d

dy

[
(μ + μt,eq )

du

dy

]
= Pres.model,

Model B:
d

dy

[
(μ + μt,eq )

du

dy

]
= Conv.model,

Model C:
d

dy

[
(μ + μt,model )

du

dy

]
= 0,

Model D:
d

dy

[
(μ + μt,eq )

du

dy

]
= Pres.model + Conv.model,
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Model E:
d

dy

[
(μ + μt,model )

du

dy

]
= Pres.model,

Model F:
d

dy

[
(μ + μt,model )

du

dy

]
= Conv.model.

Models A, B, and C include one of the nonequilibrium effects (i.e., Pres.model in Model A,
Conv.model in Model B, and μt,model in Model C), while the other two nonequilibrium effects are not
incorporated. Models D, E, and F include two of the nonequilibrium effects, while the remaining
one term is not modeled. Here, the modeled terms Pres.model, Conv.model, and μt,model are calculated
by Eqs. (6), (18), and (28), respectively, and μt,eq is calculated by Eq. (20).

Figure 9 compares the skin friction Cf ≡ 2τw/(ρ∞u2
∞) predicted by each model. Here, the

result obtained by the EQBL model [12] (i.e., d
dy [(μ + μt,eq ) du

dy ] = 0) is also included. The pro-
posed model shows an overall good agreement with the WRLES database except for the small
deviation from the WRLES database downstream of the reattachment at x/θin � 300. However,
the models that do not consistently model the three nonequilibrium effects (Model A–F) show
large deviations from the WRLES database. For example, Model D (the model that includes the
pressure-gradient and convective terms without modifying the turbulent eddy viscosity) predicts the
flow separation far upstream. The result of Model D indicates the significant importance of reflecting
the nonequilibrium effects in the turbulent eddy viscosity modeling in addition to the modeling
of the pressure-gradient and convective terms, which has not been discussed in prior studies. That is,
the model that neglects any one of the nonequilibrium effects is inaccurate. These results indicate the
importance of consistently incorporating the nonequilibrium effects into all of the pressure-gradient
term, convective term, and turbulent eddy viscosity. Note that although there is a discrepancy in
the reattached region, the EQBL model reasonably accurately predicts the skin friction coefficient
upstream of the flow separation. However, this reasonable prediction in the upstream of the flow
separation does not indicate the validity of the EQBL model because all the terms (i.e., Pres.model,
Conv.model, and μt,model) are inconsistent with the WRLES. Such inconsistency may cause the
dependency of the results on flow conditions or matching height.

Furthermore, we investigate the cause of the discrepancy downstream of the reattachment at
x/θin � 300 obtained by the proposed model, since this discrepancy may influence the development
of the boundary layers downstream of the reattachment. Figure 10 shows a skin friction obtained by
solving following equation:

d

dy

[
(μ + μt,eff )

du

dy

]
= Pres.model + Conv.model, (34)

where μt,eff = −ρũ′′v′′/(du/dy) is the effective eddy viscosity calculated by using the WRLES
database, while the right-hand side modeling is retained from Model D. Using the effective eddy
viscosity (i.e., using the correct eddy viscosity obtained by the WRLES database), the model
prediction is improved in the regions downstream of the reattachment. The result indicates that the
modeling of the turbulent eddy viscosity is the key to improving the prediction of skin friction in the
reattached regions. Note that as discussed in Sec. II B 3, in the reattached region, the separated shear
layer with the large-scale turbulent structures flows down and merges to the reattached turbulent
boundary layer, indicating that the mixing length l is not considered to be only the function of y,
i.e., l 	= κy as typically used, in the reattached region. This fact makes the turbulent-eddy-viscosity
modeling at the reattachment region challenging.

IV. NUMERICAL EXPERIMENTS

In this section, the proposed ODE-based NEQBL wall model is implemented to the solver, and
the LES with the proposed model [Eqs. (31) and (32)] is conducted for the flat-plate zero-pressure-
gradient and separated turbulent boundary layers to investigate the behavior of the proposed
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(a) Proposed model. Blue line, the proposed model; circles, WRLES database29
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(b) Models including zero or only one of the non-equilibrium effects. Orange line, Model A; green

line, Model B; red line, Model C; grey line, EQBL model, circles, WRLES database29
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(c) Models including only two of the non-equilibrium effects. Orange line, Model D; green line,

Model E; red line, Model F; circles, WRLES database29

FIG. 9. Skin friction coefficient Cf predicted by a priori test of various wall models.

wall-model implemented in the LES. The flow conditions and the computational domain size are the
same as the WRLES database described in Sec. II A. The turbulent boundary layer of the driver sec-
tion is under the zero pressure gradient and is used for the inflow conditions in the test section shown
in Fig. 1. In the test section, the fully developed attached turbulent boundary layer separates in the
adverse pressure-gradient region and then reattaches in the favorable-pressure-gradient region. The
results are compared to those obtained by the existing PDE-based NEQBL wall model [13] and the
WRLES database. The streamwise and spanwise grid spacings are 	x = 	z ≈ δin/25 (where δin

is the boundary layer thickness at the inlet of the test section), and the wall-normal grid spacing
is 	yw ≈ δin/100 near the wall and 	y ≈ δin/25 at the height of the outer layer. Here, 48 and 57
grid points exist below the inflow boundary layer thickness in the test section and the height of
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FIG. 10. Skin friction coefficient Cf predicted by a priori test of wall model. Blue line, the proposed
ODE-based wall model with turbulent eddy viscosity μt,model (Eq. (28)); black line, the proposed ODE-based
wall model with effective turbulent eddy viscosity μt,eff ; circles, WRLES database [29].

the recirculation region, respectively. Also, the matching point is the tenth grid point from the
wall (y/δin = 0.10). Our prior WMLES study [12] indicates that the employed grid spacing is
sufficient to achieve the grid convergence of statistics using the sixth-order compact differencing
scheme [38]. The total number of grid points is about 90 million, which is 18 times smaller than
that of the WRLES. In addition to the LES grid, the 1D grid for solving the ODE-based wall
model has 43 points between the wall and matching height, where the grid spacing at the wall
satisfies 	y+

w < 1. The wall-normal resolution of the ODE grid is comparable to the WRLES, which
sufficiently resolves the mean flow variables in the viscous sub-layer and the buffer layer. Also, the
time-step size can be increased from the WRLES the large 	yw. Here, we set the time step size to
	tu∞/δin ≈ 1.2 × 10−3, which is 6 times larger than that of the WRLES (	tu∞/δin ≈ 2.0 × 10−4).
Note that the ODE-based model does not restrict the time step size even though the grid spacing
within the ODE is small. The employed numerical methods are the same as the WRLES described
in Sec. II A. The spatial derivatives and the time advancement are evaluated by using the sixth-order
compact difference scheme [38] and the third-order total variation diminishing Runge-Kutta method
[40], respectively. The SGS turbulent eddy viscosity is calculated by the selective mixed-scale model
[41]. After the flow reaches a quasi-steady state, the turbulence statistics are computed by averaging
in time for a time interval of 9600θin/u∞ and in the homogeneous spanwise direction to ensure
convergence of flow statistics.

A. Zero-pressure-gradient attached turbulent boundary layer

The turbulent statistics of the zero-pressure-gradient attached turbulent boundary layer in the
driver section are shown in Fig. 11. Figure 11(a) shows the streamwise evolution of the skin friction,
and Figs. 11(b) and 11(c) show the mean streamwise velocity and Reynolds stresses at Reθ ≈ 2.0 ×
103, respectively. The skin friction developments obtained by both the proposed ODE-based and
existing PDE-based NEQBL wall models show a good agreement with the WRLES database, and
all the results are within 5% differences from the correlation proposed by Schlichting [43]. The mean
velocity profiles reasonably follow the log-law, and the Reynolds stresses obtained by both the ODE-
based and PDE-based NEQBL models also show a good agreement with the WRLES database.

B. Pressure-gradient-induced separated and reattached flat-plate turbulent boundary layer

The WMLES results of the mean streamwise velocity and Reynolds shear stress are compared
in Figs. 12 and 13. Both the mean streamwise velocity and Reynolds shear stress predicted by the
proposed ODE-based NEQBL wall model agree reasonably well with the corresponding WRLES
database. Also, the predicted results are almost identical to the results obtained by the existing
PDE-based NEQBL model [13], in which time-dependent partial differential equations are solved.
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FIG. 11. Turbulent statistics of the zero-pressure-gradient turbulent boundary layer. Blue lines, proposed
ODE-NEQBL wall model; black dashed-lines, PDE-NEQBL wall model [13]; circles, WRLES database [29];
gray line in (a), Schlichting[43] (shaded regions are ±5%); gray line in (b), u+ = 1/0.41 log(y+) + 5.2.

Next, the modeled nonequilibrium effects are validated term-by-term by directly comparing with
the corresponding WRLES database at the streamwise locations (x/θin = 0, 50, 100, 150, 200, 250,
300, and 350). The pressure-gradient term, convective term, and turbulent eddy viscosity obtained
by the proposed ODE-based NEQBL wall model at 0 � y � hwm are compared with the near-wall
WRLES database in Fig. 14. The proposed ODE-based NEQBL model reasonably well predicts
the nonequilibrium terms and the turbulent eddy viscosity, similar to the a priori tests discussed in
Sec. II. The results suggests that the proposed model works reasonably well in the separated and
reattached turbulent boundary layer, even if the instantaneous LES solutions are used as the input
for the wall model instead of using the averaged data as in the a priori tests.

Finally, the skin friction and wall pressure obtained by the proposed ODE-based and existing
PDE-based NEQBL wall models are compared with the WRLES database in Fig. 15. In the
WMLES, the predicted skin friction (i.e., wall-shear stress τw) is fed back to the LES as a flux
boundary condition. In the adverse pressure-gradient region prior to the separation (x/θin � 100),
the proposed ODE-based NEQBL model predicts the skin friction slightly better than the existing
PDE-based NEQBL model. The improvement in the proposed ODE-based NEQBL model is
mainly due to the proposed turbulent eddy viscosity modeling that incorporates the nonequilibrium
effects of the pressure-gradient and convective terms consistently into the model. In the separation
bubble (100 � x/θin � 250), overall the proposed ODE-based NEQBL model predicts the skin
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(a) WRLES database29

(b) Proposed ODE-based NEQBL wall model

(c) PDE-based NEQBL wall model13

FIG. 12. Mean streamwise velocity ũ/u∞ (left) and Reynolds shear stress −ρũ′′v′′/(ρ∞u2
∞) (right).

friction reasonably well. However, the proposed model does not reproduce the negative Cf dip
at 200 � x/θin � 250. Since the negative Cf dip is successfully predicted in the a priori test (see
Fig. 9), the slight deterioration in the predicted Cf may be due to the use of instantaneous LES
solutions as an input of the wall model, while the averaged LES solutions are used as an input of
the wall model in the a priori tests. The result also suggests that the fluctuation components are not
negligible in this region. We note that as Tamaki et al. [19] indicated, this slight deterioration in the
Cf prediction obtained by the proposed ODE-based NEQBL model is considered not to significantly
affect the LES solution because the small skin friction in the separated region has little effect on
the boundary layer development [19]. In the favorable-pressure-gradient region downstream of the
reattachment (x/θin � 250), both the ODE-based and PDE-based NEQBL models show a deviation
from the WRLES database. We consider that the deviation is due to the failure of the mixing length
model in the reattached region, as discussed in Sec. III (see also Fig. 10).

V. CONCLUSIONS

In this study, we proposed an ODE-based nonequilibrium boundary layer (NEQBL) wall model
that does not require a computational grid with full connectivity for accurately predicting separated
nonequilibrium turbulent boundary layers. In the proposed modeling, the nonequilibrium effects,
i.e., the pressure-gradient term, convective term, and turbulent eddy viscosity, were consistently
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(a) Mean streamwise velocity (each profile is separated by a horizontal offset of 1.0)

(b) Reynolds shear stress (each profile is separated by a horizontal offset of 0.005)

FIG. 13. Mean streamwise velocity and Reynolds shear stress at streamwise locations x/θin = 0, 50, 100,
150, 200, 250, 300, 350. Blue lines, proposed ODE-based NEQBL wall model; black dashed-lines, PDE-based
NEQBL wall model [13]; circles, WRLES database [29].

modeled term-by-term and first validated through a priori tests using the WRLES database of the
pressure-gradient-induced separated and reattached flat-plate turbulent boundary layer at Reynolds
number Reθ ≈ 2.0 × 103. Then, the WMLES using the proposed ODE-based NEQBL model was
conducted under the same condition as the WRLES database and validated by comparing the results
with the WRLES database and the existing PDE-based NEQBL model.

The key to the modeling is to incorporate the nonequilibrium effects into the pressure-gradient
term, convective term, and turbulent eddy viscosity consistently. The model that does not consis-
tently model any of these terms is inaccurate. Also, it was found the significant importance of
reflecting the nonequilibrium effects into the turbulent eddy viscosity, which has not been discussed
in prior studies. The turbulent eddy viscosity is modeled using the total shear stress, including the
nonequilibrium effects of the pressure-gradient and convective terms, while the existing turbulent
eddy viscosity model assumes the equilibrium boundary layer. The proposed convective term
modeling comprises the value at the matching location and wall damping function. A simple analysis
of the turbulent statistics within the inner layer leads to the value of the convective term at the
matching location, which is equivalent to the pressure gradient term, i.e., the convective term and
pressure-gradient term at the matching location are balanced. The wall-damping function of the
convective term is then analytically derived with two assumptions summarized in Sec. II D, which
does not include any tuning parameters.

The a priori tests using the WRLES database showed the validity of each modeling term and
the importance of consistency among the pressure-gradient term, convective term, and turbulent
eddy viscosity. The WMLES using the proposed ODE-based NEQBL wall model predicts the mean
streamwise velocity and Reynolds shear stress profiles in the separated turbulent boundary layer as
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(a) Pressure gradient term (each profile is separated by a horizontal offset of 0.004)

(b) Convective term (each profile is separated by a horizontal offset of 0.004)

(c) Turbulent eddy viscosity (each profile is separated by a horizontal offset of 50)

FIG. 14. Modeled nonequilibrium terms in the separated and reattached turbulent boundary layer. Blue
lines, proposed ODE-based NEQBL wall model; circles, WRLES database [29].

accurately as the existing PDE-based NEQBL model. The results suggest that the proposed ODE-
based NEQBL wall model can be used as an alternative to the existing PDE-based NEQBL wall
model. Considering the need to solve the time-dependent PDE equations on the computational grids
with full connectivity in the existing PDE-based NEQBL model, the proposed ODE-based NEQBL
model extends the applicability of the WMLES to flow simulations around complex geometries.
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APPENDIX: INCORPORATING THE EFFECTS OF PRESSURE GRADIENT INTO
WALL-DAMPING FUNCTION IN TURBULENT EDDY VISCOSITY MODEL

As discussed in Sec. II B 3, in the proposed turbulent eddy viscosity in the ODE-based NEQBL
wall model, the eddy viscosity is modeled as

μt,model

μw

≈ κy∗D∗, D∗ =
[

1 − exp

(
−y∗

A

)]β

, (A1)

where κ = 0.41, A = 17, and β = 2. The values of the coefficients κ and A are calibrated for
the equilibrium boundary layer. However, there is no guarantee that those values are valid even
in nonequilibrium flows. For example, the wall-damping function of the turbulent eddy viscosity
may change due to the adverse pressure gradient. As shown in Fig. 7, scaling the turbulent eddy
viscosity by y∗ is reasonably accurate in the log layer, while the possibility of improving the
wall-damping function in the viscous layer remains. Therefore, in this Appendix, the sensitivity
of the wall-damping function in the turbulent eddy viscosity model is investigated by a priori
tests using the WRLES database, seeking a possible improvement by taking the effects of pressure
gradient into account.

Here, we consider the nondimensionalized pressure p+ ≡ [νw/(ρwu3
τ )](d p/dx)w to incorporate

the effects of pressure gradient into the wall damping function. Specifically, the wall damping
of the turbulent eddy viscosity is designed to decrease in the region where p+ is large (i.e., the
damping constant A becomes small when the pressure-gradient is large). In this study, the following
equation for A is examined:

A = 17[exp (−|p+|)]3 + ε, (A2)

where if the pressure gradient |p+| is large, then the constant A reduces, and if the pressure gradient
is zero, then Eq. (A2) becomes the original A = 17. ε is the small positive constant to prevent
division by zero.

To decrease the wall damping in the region where p+ is large, another possibility is to reduce the
exponent β in the wall-damping function in Eq. (A1). One example of the modified wall-damping
function considered in this study is

β = 2 − min(log |1 + 10p+|, 2), (A3)
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FIG. 16. Behaviors of the modified wall-damping function in turbulent eddy viscosity model. Black lines,
x/θin = 0; red lines, x/θin = 50; green lines, x/θin = 75; blue lines, x/θin = 87.5.

where if p+ is large, β reduces, and β = 2 when p+ = 0 (zero pressure gradient). The modified
wall-damping functions [Eq. (A1) using the modified constant A in Eq. (A2) and Eq. (A1) with
the modified exponent β in Eq. (A3)] at the adverse pressure-gradient region (x/θin = 0, 50, 75,
87.5) are shown in Fig. 16. Both the modified wall-damping functions decrease the wall damping
as intended.

The skin friction predicted by the proposed ODE-based NEQBL wall model with the modified
wall-damping functions is investigated through a priori tests by using the WRLES database.
Figure 17 compares the skin friction predicted by the original damping function [A = 17 and β = 2
in Eq. (A1)] with those with the wall-damping function with the modified A [Eq. (A2)] and the
exponent β [Eq. (A3)]. In the cases with the modified damping functions, the predicted skin friction
approaches the reference WRLES database under the adverse pressure gradient (30 � x/θin � 120).
For future work, additional investigations of the theoretical background are desired.
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FIG. 17. Skin friction predicted by a priori test of proposed ODE-based NEQBL wall model with modified
wall-damping function. Blue line, original damping function with A = 17 and β = 2 in Eq. (A1); red line, with
modified constant A [Eq. (A2)]; green line, with modified exponent β [Eq. (A3)]; circles, WRLES database
[29].
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