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Generalized quasilinear approximations in homogeneous shear turbulence
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A generalized quasilinear (GQL) approximation [Marston et al., Phys. Rev. Lett. 116,
214501 (2016)] is applied to homogeneous shear turbulence following previous work on
the quasilinear (QL) model [Hernández and Hwang, J. Fluid Mech. 904, A11 (2020)].
For the GQL approximation, the velocity fluctuations are decomposed into low- and
high-wave-number groups, the former of which is solved by considering the full nonlinear
equations whereas the latter is obtained from the linearized equations around the former.
Unlike the QL model, which typically shows significant inhibition of the energy cascade
in the direction along which the linearization is made, the GQL model shows an energy
cascade that is more active than the QL model because more Fourier modes included in
the low-wave-number group allow for an extra energy transfer mechanism from the low-
to high-wave-number group via the so-called “scattering” mechanism. It is shown that this
scattering mechanism is most active when a relatively small and suitable number of Fourier
modes are included in the low-wave-number group instead of a large number of the Fourier
modes being so, and this is explained in terms of the neutral Lyapunov vector forming the
solution to the linear equations for the high-wave-number group. As a consequence, the
turbulence statics from the GQL model with a relatively small number of the Fourier modes
in the low-wave-number group are closer to those from DNS than those from the model
with a large number of the Fourier modes in the low-wave-number group. Finally, the
QL/GQL approximations made in the streamwise and spanwise directions are compared,
with emphasis on the role of slow pressure and the related pressure strain transport.
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I. INTRODUCTION

Turbulent flows often exhibit a highly chaotic and multiscale behavior. The cost of resolving
all scales involved down to the dissipation of energy (Kolmogorov scale) via direct numerical
simulations (DNS) is often prohibitively expensive, especially for high Reynolds numbers. There-
fore, there has been an increasing demand for reliable and accurate low-dimensional models
which can provide a statistical description of turbulence as well as its main dynamical features
at lower cost. Perhaps one of the earliest attempts was based on the utilization of the Navier-Stokes
equations linearized around the time-averaged velocity to describe the coherent motions typically
appearing in turbulent flows. A well-known example is the rapid distortion theory [1,2], where the
linearized Navier-Stokes equations are used to predict the evolution of turbulent statistics in a rapidly
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changing flow environment (e.g., high mean shear rate). In the last few decades, there have been a
large number of studies which aimed to understand the origin of coherent structures in more general
wall-bounded turbulent flows (e.g., Couette, pipe, channel, and boundary layer flows), where the
mean flow is known to be linearly stable at typical transitional Reynolds numbers. In this type of
flow, the evolution of disturbances has been studied by examining the response of the linearized
Navier-Stokes equations to various excitations such as initial condition and harmonic and stochastic
forcing [3–9], tools initially used for laminar flows at transitional Reynolds numbers. Additional
studies have shown that these techniques could also be suitably refined to explain the emergence of
energy-containing motions in turbulent flows (e.g., [5,10–15]).

Despite the recent advances made by these studies, the Navier-Stokes equations linearized
about the stable mean flow alone are not able to describe sustaining turbulent velocity fluctua-
tions. In this respect, the recently proposed quasilinear (QL)-type modeling offers an attractive
direction to pursue, as it incorporates the nonlinearity of the equations in a minimal manner.
A common theoretical basis of the QL approximation is the decomposition of the given flow
into two groups: one in which all nonlinear terms are kept, and the other in which all self-
interactions are either ignored or suitably modeled. The resulting equations for the first group
are unchanged from the original, while those for the second become equivalent to a linearization
around the first group sometimes with an additional (ad hoc) model (e.g., stochastic forcing, eddy
viscosity, etc.). The earliest work utilizing the QL framework can be found in [16–18], where
the self-interactions in the second group are simply ignored with application of the “marginal
stability” closure (i.e., imposition of zero growth rate of the leading eigenmode to have a sta-
tionary solution). Modern variants employ more flexible approaches in the flow decomposition
as well as in modeling of the self-interaction term in the second group: for example, stochastic
structural stability theory (S3T) [19,20], direct statistical simulation (DSS) [21,22], self-consistent
approximations [23,24], restricted nonlinear (RNL) model [25–32], generalized quasilinear ap-
proximations [33–36], and minimal quasilinear approximation augmented with eddy viscosity
[37,38]. Finally, [39] recently performed a multiple-scale analysis of an archetypal slow-fast
QL system.

The RNL approach, which we will refer to as the QL model hereafter, is the signpost of the
present study, and it employs a decomposition of the given velocity into a streamwise mean and
the fluctuation. Like a typical QL approximation, the former group is solved by the full nonlinear
equations, whereas the latter is approximated with the linearized equations about the former. With-
out any extra modeling effort for the self-interacting nonlinear term in the second group, this model
has been shown to successfully produce a reduced-order description of turbulence in wall-bounded
shear flows at low Reynolds numbers [26–31]. This model was mathematically conceived to capture
the key dynamics of coherent structures described by the so-called self-sustaining process [40,41],
namely, the two-way interaction between a “streamwise elongated” structure of streamwise velocity
(streaks) and streamwise wavy structures of cross-streamwise velocities (waves and rolls). In the QL
model, the time-dependent dynamics of the streamwise-elongated streaks are well captured by the
first group (i.e., streamwise mean), while the streamwise wavy structures are approximated by the
equations linearized about the first.

In a previous work, Ref. [32] examined the spectral energy transfer of the QL model in uniform
shear turbulence in the streamwise wave-number space. This choice of shear flow was particularly
convenient since uniform shear turbulence has only a single integral length scale, and it also has self-
sustaining process similar to the one in wall-bounded turbulence [42,43]. Therefore, the uniform
shear turbulence enables us to study the effect of QL approximation on the self-sustaining process
supported at a single integral scale and its energy cascade. The QL model was previously found
to retain an active energy cascade in the spanwise wave-number space, whereas it significantly
inhibited the energy cascade in the streamwise wave-number space due to the nature of the given
approximation. It also results in highly elevated spectral energy intensity residing only at the integral
streamwise length scale like in previous studies [25,29,30]. Importantly, Ref. [32] showed that the
QL model is not able to incorporate some important role played by the slow pressure in distributing
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the energy produced at the streamwise component to the wall-normal and spanwise components,
resulting in the anisotropy of the fluid motions across all length scales including the Kolmogorov
scale.

It becomes evident from [32] that the primary limitation of the QL model originates from
the lack of the energy cascade in the streamwise direction due to the employed linearization for
the second group of the velocity field. In the present study, we shall therefore take one step
forward from the QL model by considering more of the energy cascade dynamics. To this end,
the generalized quasilinear (GQL) approximation is applied here to uniform shear turbulence.
The GQL approximation was originally proposed by [33,34,44–48] in the context of geophysical
and astrophysical fluid dynamics to develop low-dimensional models based on the evolution of
suitable statistical states (e.g., cumulants). More recently, it has also been used as a tool to study
the nonlinear interactions in turbulent channel flow [35,36]. The GQL approximation typically
decomposes the flow into two groups through a spectral cutoff filter: i.e., large and small scales.
The former large-scale group is solved by considering the full nonlinear equations, while the latter
small-scale group is obtained from the linearized equations around the former. In the limit of one
streamwise (i.e., zero wave number) and all spanwise Fourier modes in the first group, the GQL
approximation is reduced to the QL approximation [32]. On the other hand, if the first group
includes all Fourier modes in both the streamwise and spanwise directions, it then becomes a
DNS. In the present study, we will examine the energy transfer of the GQL approximation in both
streamwise and spanwise wave-number space while evaluating its capability and accuracy at the
same time.

The paper is organized as follows. The GQL model is introduced in Sec. II, where its spectral
energy budget is formulated in Sec. II C and the numerical settings for simulations are provided in
Sec. II D. In Sec. III the statistics and spectra of the GQL model are compared to those of DNS. The
energy-budget and pressure-strain spectra are also presented here with a detailed analysis to explain
the statistical features of the GQL model. Finally, the results are discussed in Sec. IV, and the paper
concludes in Sec. V with some remarks.

II. FORMULATION

A. The generalized quasilinear approximation

We consider a turbulent flow under a uniform mean shear, in which the density and kinematic
viscosity of the fluid are given by ρ and ν, respectively. The time is denoted by t , and the space is
denoted by x = (x, y, z), with x, y, and z being the streamwise, vertical, and spanwise directions,
respectively. For the GQL approximation, the velocity u is decomposed into two groups using a
discrete Fourier transform in the streamwise and spanwise directions:

u = Ul + uh, (1a)

where

Ul (x, y, z) =
Mz,F∑

n=−Mz,F

Mx,F∑
m=−Mx,F

ûm,n(y)ei(mkx,0x+nkz,0z) (1b)

and uh = u − Ul . Here ûm,n is the discrete Fourier mode of the velocity, kx,0 and kz,0 are the
fundamental streamwise and spanwise wave numbers defined by the horizontal computational
domain (see Sec. II D for further details), and Mx,F and Mz,F in (1b) define the threshold streamwise
and spanwise wave numbers in the decomposition such that kx,c = Mx,F kx,0 and kz,c = Mz,F kz,0.

Following the decomposition in (1), the projection operators Pl [·] and Ph[·] are defined
such that

Pl [u] ≡ Ul , Ph[u] ≡ uh. (2)
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By the definition, they satisfy the following properties:

Pl [·] + Ph[·] = I[·], (3a)

Pl [Pl [·]] = Pl [·], Ph[Ph[·]] = Ph[·], (3b)

Pl [Ph[·]] = Ph[Pl [·]] = 0, (3c)

where I[·] is the identity operator. These projection operators were first introduced in [49].
Using the definition (2) and the properties listed in (3), the Navier-Stokes equations are projected

onto the Pl (or low wave number) and Ph (or high wave number) subspaces. The linearization of
the equations for uh about Ul leads to the GQL system of interest in the present study,

∂Ul

∂t
+ Pl [(Ul · ∇)Ul ] = − 1

ρ
∇Pl + ν∇2Ul − Pl [(uh · ∇)uh] (4a)

and
∂uh

∂t
+ Ph[(uh · ∇)Ul ] + Ph[(Ul · ∇)uh] = − 1

ρ
∇ph + ν∇2uh, (4b)

where the pressures in the Pl and Ph subspaces, Pl and ph, are defined to enforce ∇ · Ul = 0 and
∇ · uh = 0, respectively, with p = Pl + ph. Here the terms Pl [(Ul · ∇)uh] and Pl [(uh · ∇)Ul ] are
neglected in (4a), so that the energy averaged over the entire flow domain is conserved, following
[33]. We note that the GQL approximation employed here reduces to the QL approximation if
Mx,F = 0 and Mz,F = Nz,F , where Nz,F is the total number of spanwise Fourier modes used for
simulation. On the other hand, if Mx,F = Nx,F and Mz,F = Nz,F (with Nx,F being the total number
of streamwise Fourier modes used for simulation), then Eq. (4a) becomes identical to those used for
DNS in the present work.

B. Reynolds decomposition

To analyze the turbulence statistics of the GQL and the original full equations of motion, we
consider the Reynolds decomposition of the velocity u = (u, v,w):

u = U + u′, (5)

where U(≡ 〈u〉x,z,t ) = (U (y), 0, 0) is the mean velocity with 〈·〉x,z,t being an average in t-, x and z
directions. The equation for the mean velocity is given by

ν
dU

dy
− 〈u′v′〉x,z,t = τ0

ρ
, (6a)

where the total applied shear stress is τ0 and the Reynolds shear stress per unit density is 〈u′v′〉x,z,t .
The equations for the turbulent velocity fluctuation are then given by

∂u′

∂t
+ (U · ∇)u′ + (u′ · ∇)U = − 1

ρ
∇p′ + ν∇2u′ − (u′ · ∇)u′. (6b)

We note that the Reynolds shear-stress term in (6a) does not appear in (6b) because it is spatially
uniform in homogeneous shear turbulence.

For the GQL approximation to (6b), u′ is further decomposed into low- and high-wave-number
components:

u′ = ul + uh. (7)

Using in (1) and (3), the projection of the equations for turbulent fluctuation onto the Pl and Ph

subspaces leads to the following momentum equations:
∂ul

∂t
+ (ul · ∇)U + (U · ∇)ul = − 1

ρ
∇pl + ν∇2ul − Pl [(ul · ∇)ul ] − Pl [(ul · ∇)uh]

−Pl [(uh · ∇)ul ] − Pl [(uh · ∇)uh] (8a)
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and

∂uh

∂t
+ Ph[(uh · ∇)Ul ] + Ph[(Ul · ∇)uh] = − 1

ρ
∇ph + ν∇2uh − Ph[(ul · ∇)ul ] − Ph[(uh · ∇)uh],

(8b)
where pl and ph are defined to enforce ∇ · ul = 0 and ∇ · uh = 0 with p′ = pl + ph. The terms
Pl [(ul · ∇)uh] and Ph[(uh · ∇)ul ] in (8a) and the self-interaction terms Ph[(ul · ∇)ul ] and Ph[(uh ·
∇)uh] in (8b) do not appear when the GQL approximation is applied.

C. Spectral energetics

We now address the effect of the GQL approximation on the energetics of the given flow. We
note that every term in the mean equation (6a) is constant in uniform shear flow. We first average
Eq. (6a) in the wall-normal direction. Multiplying it by dU/dy leads to the following equation for
the mean energy balance:

I − ν

(
dU

dy

)2

+ 〈u′v′〉x,y,z,t
dU

dy
= 0, where I ≡ τ0

ρ

dU

dy
. (9)

Here I is the energy input originating from the applied shear stress τ0, and it is balanced with the
mean dissipation (second term) and turbulent-kinetic-energy (TKE) production (third term).

The energy transfer is subsequently considered in the Fourier space. To this end, the velocity
fluctuation u′ can be written using the one-dimensional continuous Fourier transform

u′
j (t, r) =

∫ ∞

−∞
û′

j (t, k)eikrdk (10)

for j = 1, 2, 3, where ·̂ denotes the Fourier-transformed coefficient, (u′
1, u′

2, u′
3) = (u′, v′,w′), r(=

x orz) is the streamwise or spanwise coordinate, and k(= kx orkz ) the corresponding wave number.
We then take the Fourier transformation (10) to (6b), and multiply it by the complex conjugate of
û′

i(k) to give〈
Re

{
−û′v̂′ dU

dy

}〉
r⊥,y,t︸ ︷︷ ︸

P̂(k)

+
〈
−ν

∂ û′
i

∂x j

∂ û′
i

∂x j

〉
r⊥,y,t︸ ︷︷ ︸

ε̂(k)

+
〈
Re

{
−û′

i

(
∂

∂x j
(û′

iu
′
j − Ph[ ̂u′

h,iu
′
h, j] − Ph[ ̂u′

l,iu
′
l, j]) − Pl [ ̂u′

l,iu
′
h, j] − Pl [ ̂u′

h,iu
′
l, j]

)}〉
r⊥,y,t︸ ︷︷ ︸

T̂ (k)

= 0,

(11)

where (x1, x2, x3) = (x, y, z), r⊥(= z or x) is the horizontal direction orthogonal to r, the overbar
indicates the complex conjugate, and Re{·} represents the real part. The statistics in homogeneous
shear turbulence are invariant under a translation in the vertical direction, and an average in t and y
has further been taken. The terms on the left-hand side are the rate of turbulence production, P̂(k),
viscous dissipation, ε̂(k), and (nonlinear) turbulent energy transport, T̂ (k), at given wave numbers,
respectively.

Due to the energy-preserving nature of nonlinearity, the turbulent transport integrated over the
entire wave numbers is zero: ∫ ∞

0
T̂ (k)dk = 0. (12)
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Therefore, from (11), the production and dissipation exactly balance each other:∫ ∞

0
[P̂(k) + ε̂(k)] dk = 0. (13)

The turbulent kinetic energy equation (11) can further be split into each component:

P̂(k) +
〈

Re

{
p̂′

ρ

∂ û′

∂x

}〉
r⊥,y,t︸ ︷︷ ︸

�̂x (k)

+
〈
−ν

∂ û′

∂x j

∂ û′

∂x j

〉
r⊥,y,t︸ ︷︷ ︸

ε̂x (k)

+
〈
Re

{
−û′

(
∂

∂x j
(û′u′

j − Ph[̂u′
hu′

h, j] − Ph[ ̂u′
l u

′
l, j] − Pl [ ̂u′

l u
′
h, j] − Pl [ ̂u′

hu′
l, j])

)}〉
r⊥,y,t︸ ︷︷ ︸

T̂x (k)

= 0,

(14a)〈
Re

{
p̂′

ρ

∂ v̂′

∂y

}〉
r⊥,y,t︸ ︷︷ ︸

�̂y (k)

+
〈
−ν

∂ v̂′

∂x j

∂ v̂′

∂x j

〉
r⊥,y,t︸ ︷︷ ︸

ε̂y (k)

+
〈
Re

{
−v̂′

(
∂

∂x j
(v̂′u′

j − Ph[̂v′
hu′

h, j] − Ph[̂v′
l u

′
l, j] − Pl [ ̂v′

l u
′
h, j] − Pl [ ̂v′

hu′
l, j])

)}〉
r⊥,y,t︸ ︷︷ ︸

T̂y (k)

= 0,

(14b)〈
Re

{
p̂′

ρ

∂ŵ′

∂z

}〉
r⊥,y,t︸ ︷︷ ︸

�̂z (k)

+
〈
−ν

∂ŵ′

∂x j

∂ŵ′

∂x j

〉
r⊥,y,t︸ ︷︷ ︸

ε̂z (k)

+
〈
Re

{
−ŵ′

(
∂

∂x j
(ŵ′u′

j − Ph[ ̂w′
hu′

h, j] − Ph[̂w′
l u

′
l, j] − Pl [̂w′

l u
′
h, j] − Pl [̂w′

hu′
l, j])

)}〉
r⊥,y,t︸ ︷︷ ︸

T̂z (k)

= 0,

(14c)

where �̂x(k), �̂x(k), and �̂x(k) are the streamwise, wall-normal, and spanwise components of
the pressure strain, respectively. These terms do not appear in Eq. (11) because the continuity
equation gives

�̂x(k) + �̂y(k) + �̂z(k) = 0. (15)

Equation (15) indicates that the pressure strain would play an essential role in the distribution of
TKE produced at the streamwise component to the others through continuity [50].

D. Numerical simulations

The equations used in this study can be nondimensionalized by the total shear stress τ0 and the
kinematic viscosity ν. Using the friction velocity uτ = √

τ0/ρ and the Kolmogorov length scale
η = ν/uτ the mean-momentum equation (6a) is obtained as

dU ∗

dy∗ − 〈u′∗v′∗〉x,z,t = 1, (16)
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FIG. 1. Flow geometry featuring a sampling domain of size L∗
x × (L∗

y − 2δ∗
y ) × L∗

z for simulation of
homogeneous shear turbulence.

and the fluctuation equations (6b) are

∂u′∗

∂t∗ + (U∗ · ∇∗)u′∗ + (u′∗ · ∇∗)U∗ = ∇∗ p′∗ + ∇∗2u′∗ − (u′∗ · ∇∗)u′∗, (17)

where the superscript (·)∗ represents the dimensionless variables. The viscous terms in the dimen-
sionless equations are order of unity, which indicates that the velocity and length scales correspond
to Kolmogorov scales. The velocity and length scales of the largest eddies admitted are ΔU ∗ = L∗

z
and L∗

z , where ΔU ∗ indicates the difference in the mean velocity over the characteristic large-
eddy size Lz in the vertical direction. Therefore, Reτ,Lz = L∗

z = uτ Lz/ν is used to characterize the
separation between the largest and smallest length scales in the flow. Direct numerical simulations
and simulations of the GQL model for homogeneous shear turbulence are carried out using the
approach in [32,43]. Figure 1 shows a schematic diagram explaining how homogeneous shear flow
is simulated in the present study. Plane Couette flow is simulated, with two parallel sliding walls
with the velocity, ±U0, at y = ±Ly/2, respectively. The spanwise domain of the simulations is
restricted to be Lz < Ly so that the size of largest eddies is determined by Lz. This implies that the
effect of the near-wall structures remains confined in the near-wall region, whose thickness will
be O(Lz ) at best [32,43]. Since the equations of motion of plane Couette flow are identical to those
of homogeneous shear flow, this setting allows us to simulate homogeneous shear turbulence in the
bulk region. With the aforementioned simulation set-up, the statistics of uniform shear turbulence
can now be sampled from the bulk region y ∈ [−Ly/2 + δy, Ly/2 − δy], where the effect of the walls
is negligible (see Fig. 1; δy is the cutoff y location for sampling statistics in the bulk region). This
can be seen in Fig. 2, where the black dashed line represents the location which separates the bulk
region (from where the statistics have been sampled) and the near-wall region (whose effect has
been neglected in the present work), and δy has been determined by looking at the location where
the first-order statistics is constant. For further details of numerical setup in the present study, the
reader may refer to [43].

The numerical simulations in the present study are performed using diablo [51], which has
been validated in a number of previous studies [32,43,52]. The spanwise and streamwise directions
are discretized using Fourier series with the 2/3 dealiasing rule, and the wall-normal direction
is discretized using a second-order central difference. The time integration is carried out semi-
implicitly based on the fractional-step method [53]. The viscous terms are all implicitly advanced
with a second-order Crank-Nicolson method, while the rest of the terms are explicitly integrated
via a third-order low-storage Runge-Kutta method. These numerical methods are all applied to both
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FIG. 2. First- and second-order turbulence statistics (DNS) for y∗ ∈ [0, L∗
y /2]. The sampling domain is

delimited by the solid vertical line separating the bulk from the near-wall region. (a) U ∗(y∗); (b) u∗
rms, v∗

rms and
w∗

rms.

QL/GQL and DNS, and the only difference is in the setup of the nonlinear terms: a decomposition
is further introduced, and each set of terms is added to solve the corresponding equations for Ul

and uh.
Table I summarizes the parameters for the numerical simulations performed in the present

study. The simulations have been divided into DNS, QL, and GQL cases. The Reynolds number
considered here for all simulations is Re[≡ U0Ly/(2ν)] = 13 000, and the friction Reynolds number
is Reτ,Lz ≈ 279 (DNS). The horizontal computational box size is Lx × Lz = 1.8Ly × 0.6Ly. The
streamwise/spanwise domain’s aspect ratio has been chosen to be Lx/Lz = 3, in line with [32,42].
The number of grid points is Nx × Ny × Nz = 96 × 305 × 64 in the x, y, and z directions, respec-
tively. The total number of Fourier modes in the streamwise and spanwise wave-number space is
Mx,F × Mz,F = 32 × 21. The threshold streamwise and spanwise wavelength for the decomposition

TABLE I. Simulation parameters in the present study. The Reynolds number based on the friction velocities
is Reτ,Lz = L∗

z . The grid spacings in the x and z directions are �∗
x and �∗

z (after dealiasing). λx,c and λz,c are
the threshold streamwise and spanwise wavelengths, respectively. The number of the positive-wave-number
streamwise Fourier modes is denoted by Mx,F , and the number of the positive-wave-number spanwise Fourier
modes is Mz,F . The number of grid points in the x, y, and z directions is denoted by Nx , Ny, and Nz, respectively.

Case Reτ,Lz Δx∗ Δz∗ λx,c λz,c λ∗
x,c λ∗

z,c Mx,F Mz,F Nx × Ny × Nz δ∗
y T ∗

stats

DNS 279 13.1 6.5 — — — — 32 21 96 × 305 × 64 306 143 159
QLX 350 16.4 8.2 0 — 0 — 0 21 96 × 305 × 64 383 572 514
NX2 282 13.2 6.6 0.90 — 423 — 2 21 96 × 305 × 64 309 382 212
NX4 281 13.2 6.6 0.45 — 211 — 4 21 96 × 305 × 64 308 441 833
NX7 266 12.5 6.2 0.26 — 115 — 7 21 96 × 305 × 64 291 343 407
QLZ 285 13.4 6.7 — 0 — 0 32 0 96 × 305 × 64 311 446 294
NZ2 265 12.4 6.2 — 0.30 — 133 32 2 96 × 305 × 64 290 556 391
NZ4 266 12.5 6.2 — 0.15 — 66.5 32 4 96 × 305 × 64 292 366 187
NZ7 273 12.8 6.4 — 0.09 — 39.0 32 7 96 × 305 × 64 299 81 058
N22 291 13.6 6.8 0.90 0.30 437 146 2 2 96 × 305 × 64 319 224 863
N44 289 13.5 6.8 0.45 0.15 217 72.3 4 4 96 × 305 × 64 316 240 244
N77 271 12.7 6.4 0.26 0.09 116 38.7 7 7 96 × 305 × 64 296 297 831
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TABLE II. Turbulence statistics in the present study. dU ∗/dy∗ and −〈u′∗v′∗〉 are the two components of
mean-momentum equation. u∗

rms, v∗
rms, and w∗

rms are the root-mean-squared velocities of streamwise, vertical,
and spanwise velocities of fluctuations, respectively.

Simulation Reλ dU ∗/dy∗ −〈u′∗v′∗〉 u∗
rms v∗

rms w∗
rms

DNS 47 0.03 0.97 1.66 1.32 1.34
QLX 79 0.01 0.99 1.77 1.35 1.23
NX2 47 0.03 0.97 1.68 1.33 1.36
NX4 50 0.03 0.97 1.70 1.41 1.37
NX7 42 0.04 0.96 1.68 1.35 1.33
QLZ 58 0.03 0.97 1.77 1.51 1.56
NZ2 48 0.04 0.96 1.75 1.43 1.39
NZ4 45 0.04 0.96 1.73 1.36 1.33
NZ7 46 0.04 0.96 1.73 1.36 1.35
N22 53 0.03 0.97 1.70 1.38 1.35
N44 49 0.03 0.97 1.67 1.36 1.31
N77 43 0.04 0.96 1.68 1.34 1.28

of the velocity into the two groups in (1) is given by λr,c = 2π/kr,c with kr,c = 2πMr,F /Lr , where
r = x, z is the streamwise or spanwise directions, respectively. The time interval for sampling of
statistics is denoted by T ∗

stats. The DNS case resolves all Fourier modes in both directions, up to the
resolution used (Table I). The QLX (QLZ) case resolves the first streamwise (spanwise) Fourier
mode in the first group, whereas the remaining streamwise (spanwise) modes are linearized about
the former, and all spanwise (streamwise) Fourier modes are included in the first (nonlinear) group.
The NX no. (NZ no.) cases (no. = 2, 4, 7) are the GQL simulations in which the first (no. + 1)
streamwise (spanwise) Fourier mode is included in the first group. Finally, the N no. cases are
GQL simulations with different combinations of modes that have been explored, and the results are
reported in Sec. III.

III. RESULTS

A. Turbulence statistics and spectra

We first consider the set of DNS, QL, and GQL simulations in Tables I and II. The QL model
(QLX case) exhibits higher Reτ,Lz than DNS. As more streamwise modes are included in the Pl -
subspace group (NX no. cases, where no. = 2, 4, 7), Reτ,Lz is further reduced. The QL model also
displays a higher Reλ compared to DNS. From (6a), this implies that the energy input given to
the flow is increased by the QL approximation: if the flow in the QL model is more turbulent, the
contribution of the Reynolds shear-stress term in (16) should also increase, leading to a decrease of
dU ∗/dy∗ as observed in Table II and consistent with Ref. [32]. The QLZ and subsequent NZ no.
cases exhibit a different behavior: QLZ sees a very small increase in Reτ,Lz with respect to DNS,
while the NZ no. cases show an increase with the number of spanwise modes (opposite to the NX
no. trend). The inclusion of two more spanwise modes in the Pl -subspace group is found to increase
Reτ,Lz of the NZ no. cases, except for the case with eight spanwise modes, where a decreasing trend
is observed.

The first- and second-order statistics in the bulk region can be found in Table II. The QL model
(QLX) is found to generate more anisotropic velocity fluctuations, in particular, u∗

rms and v∗
rms are

increased while w∗
rms is decreased. This behavior is consistent with the previous study [32] at

lower and higher Reynolds numbers than that considered here and differs from the channel flow
case [30,35,54], where only u∗

rms is increased by the QL approximation while the other turbulence
statistics are decreased. As Mx,F is increased from the QLX case (NX no. case), the value of v∗

rms
relative to u∗

rms increases nonmonotonically. A similar trend is seen from w∗
rms. Similar one-point
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turbulence statistics is found in the NX7 case compared to DNS. It is interesting to note that the
statistics of the NX2 case also shows excellent agreement with that of DNS, but the NX4 case does
not exhibit such a behavior. This issue will be discussed in detail in Sec. IV A.

The cases of QL/GQL approximation made in the spanwise direction are found to exhibit
relatively larger velocity fluctuations than those in the streamwise direction: the QLZ case sees all
u∗

rms, v∗
rms, and w∗

rms increased. As Mz,F is increased, the values of the velocity fluctuations approach
those of DNS (NZ no.); in particular, v∗

rms and w∗
rms of the NZ4 and NZ7 cases give the closest

match of statistics to DNS. This represents a difference to the NX no. cases: a larger number of
spanwise Fourier modes need to be retained in the Pl -subspace group to obtain velocity fluctuations
that match those of DNS. The statistics of the combined cases (N no. cases) displays various trends,
but its convergence to the DNS statistics appears to be slightly better than NX and NZ no. cases.

Figure 3 compares the premultiplied spanwise wave-number spectra of Reynolds normal stress
(focus on �∗

uu and �∗
vv) of DNS with those of the QL/GQL approximation in the streamwise

direction [QLX, NX2, NX4, and NX7; Figs. 3(a) and 3(b)], in the spanwise direction [QLZ, NZ2,
NZ4, and NZ7; Figs. 3(c) and 3(d)], and with combined cases [N22, N44, and N77; Figs. 3(e)
and 3(f)]. The streamwise velocity component of the QLX case displays increased spectral energy
intensity over almost the whole range of spanwise wave numbers [Fig. 3(a)], except at largest scales
(kzLz � 8). It is also observed that the QLX case shows an increased spectral energy of the wall-
normal Reynolds stress spectra at large scale [kzLz � 10; Fig. 3(b)]. However, these spectra of the
QLX case fall off more quickly than those of DNS at high spanwise wave numbers. All these trends
are consistent with the results for the QL model reported in [32]. As Mx,F is increased, the spectral
energy becomes closer to that of DNS. In particular, the NX4 case shows excellent resemblance
except at the largest scales, where the differences are the greatest. The spectral energy of the
QLZ case is found to be elevated and retained within a limited range of spanwise wave numbers
(kzLz � 18), after which they fall to zero very quickly, for all velocity components [Figs. 3(c) and
3(d)]. This is due to the absence of energy cascade along the spanwise direction, along which the QL
approximation has been carried out, and will be discussed further with Fig. 6. As Mz,F is increased,
the GQL cases display a greater range of wave numbers with nonnegligible spectral energy; in
particular NZ2 is active in the range kzLz � 18, NZ4 in kzLz � 31, and NZ7 in kzLz � 50. These
approximately correspond to the cutoff spanwise wavelengths (see Table II). The spectra of the
combined cases show a decreased spectral energy intensity at large scales [Figs. 3(e) and 3(f)].
The spectra display “bumps” in which the spectral energy decreases abruptly at spanwise wave
numbers corresponding to the cutoff for every case (Table II); however, these drops are not absolute,
and there still remains nonnegligible energy after them. We note that the turbulent state generated
by the GQL cases is supported by a Pl subspace composed of Fourier modes in both streamwise
and spanwise wave-number space, and it appears that this feature enables a nonnegligible amount
of energy to be transferred, unlike in Figs. 3(c) and 3(d). This behavior is also observed in the
streamwise wave-number spectra (Fig. 4) and will be discussed below.

Figure 4 shows the premultiplied streamwise wave-number spectra of the Reynolds stress of DNS
and QL/GQL models. The spectral energy of the QLX case is found to be larger than that of the
DNS at large scales (kxLz � 6), while it quickly falls to zero before reaching kxLz ≈ 10 [Figs. 4(a)
and 4(b)]. This indicates that the energy contained in the zeroth streamwise Fourier mode could
not be redistributed from large- to small-scale motions in streamwise wave-number space, and the
energy transport is halted in this direction due to the QL approximation. This behavior is consistent
with previous studies [32,34,35,54]. It should be noted that the role of the self-interacting nonlinear
term in (8b) is the coupling between streamwise Fourier modes of (8b). Therefore, its removal by
the QL approximation leads to the halt of turbulent energy transport (11) and inhibits the related
energy cascade in the streamwise direction, as will be shown in Sec. III B. As Mx,F is increased,
the spectral energy becomes closer to that of DNS; in particular NX7 shows good resemblance at
large scales. It is observed that the spectral energy of NX2 does not drop to zero over the entire
streamwise wave-number space, largely improving the spectral behavior of the QL model by just
incorporating two more modes in the Pl -subspace group. However, the spectral energy of NX4 and
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FIG. 3. Premultiplied spanwise wave-number spectra of Reynolds stresses of DNS, QL, and GQL models.
(a, c, e) kzLz�

∗
uu(kzLz ) and (b, d, f) kzLz�

∗
vv (kzLz ). The vertical lines represent the spanwise cutoff wave numbers

(kz,c) dividing the Ph- (right) and Pl -subspace (left) regions.
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FIG. 4. Premultiplied streamwise wave-number spectra of Reynolds stresses of DNS, QL, and GQL
models. (a, c, e) kxLz�

∗
uu(kxLz ) and (b, d, f) kxLz�

∗
vv (kxLz ). The vertical lines represent the streamwise cutoff

wave numbers (kx,c) dividing the Ph- (right) and Pl -subspace (left) regions.
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NX7 show partial and total drops at approximately their cutoff streamwise wavelength, respectively.
In contrast, the QLZ case exhibits spectra extending over all streamwise wave numbers, despite the
larger spectral energy for all four components of the Reynolds shear stress [Figs. 4(c) and 4(d)].
The NZ4 case appears to give the closest spectra compared to DNS, while NZ7 gives the greatest
differences. Last, Figs. 4(e) and 4(f) show that the combined GQL cases in the streamwise and
spanwise directions exhibit spectra are similar to those of their NX no. counterpart cases; note the
resemblance between N22 and NX2, between N44 and NX4, and between N77 and NX7.

Figure 5 shows a visualization of instantaneous streamwise and wall-normal velocity fields of
DNS and QL/GQL simulation cases. For the DNS case, the motions associated with the streamwise
velocity fluctuation (blue isosurface) tend to be elongated in the streamwise direction, while those
corresponding to the wall-normal velocity fluctuations (red isosurface) appear to be more isotropic.
The flow field of the QLX case differs in that both motions appear to be elongated in the streamwise
direction. This case clearly features the motions associated to the self-sustaining process, which
are retained by the QL approximation in the streamwise direction. This is not the case with QLZ,
whose flow field does not clearly feature large-scale structures elongated in the streamwise direction.
The GQL cases, however, exhibit smaller-scale structures, with flow fields that resemble that of
DNS.

B. Spectral energy transfer

Now we study the spectral energy transfer in DNS, QLX, QLZ, and GQL cases. Owing to the
balance between production and dissipation given in (13), the spectral energy density of each term in
(11) is expected to be dependent on the rate of production of each simulation case. For this reason,
we consider the spectral energy budget per unit mean shear P̂∗/(dU ∗/dy∗), T̂ ∗/(dU ∗/dy∗) and
ε̂∗/(dU ∗/dy∗) like in [32]. By doing so, the inner-scaled turbulence production per unit mean shear
is now controlled to be P∗/(dU ∗/dy∗)  1 for all the cases (see Table II), making the comparison
between the cases more sensible.

The premultiplied spanwise wave-number spectra of the production, turbulent transport and
dissipation per unit mean shear for the selected cases are plotted in Fig. 6. All the plots on the left
column [Figs. 6(a), 6(c), 6(e), 6(g)] show a qualitatively similar behavior: production takes place at
large scales (kzLz � 30) and redistributes the energy to turbulent transport and viscous dissipation.
At small scales (kzLz � 50), the production becomes negligible and the turbulent transport is exactly
balanced with the viscous dissipation. The spectra of the QLX case are qualitatively similar to those
of DNS, but their spectral intensity is overall slightly higher. There are, however, subtle differences
in the spectral extent for the simulation cases: the transport and dissipation spectra diminish at
kzLz  130 for DNS [Figs. 6(a) and 6(b)], whereas those of QLX do the same only at kzLz  80
[Fig. 6(c)]. This is consistent with the spectra of �∗

uu and �∗
vv in Fig. 3, where the spectral intensities

at high spanwise wave number of QLX are shown to be smaller than those of DNS. As Mx,F is
increased, the range of the spanwise wave-number extent of the spectra is found to approximately
reach that of DNS with only two more streamwise Fourier modes in the Pl -subspace group, i.e.,
NX2 [Fig. 6(e)]. In contrast, the spectra of the QLZ case are found not to develop the typical
features of energy cascade and turbulent dissipation observed in the QLX case. In particular, both
turbulent transport and dissipation spectra are highly localized within the wave-number space where
the production is active: i.e., kzLz � 20 [Fig. 6(d)]. This explains the sudden drop of both �∗

uu and
�∗

vv at the aforementioned wave number [Figs. 3(c) and 3(d)]. As expected, the QL approximation
in the spanwise direction strongly damages the spanwise energy cascade. As Mz,F is increased
by a few spanwise Fourier modes (NZ2), the spectra are shown to extend over a wider range of
spanwise wave numbers [Fig. 6(f)]. However, the situation changes when more modes are added
to the Pl -subspace group [Fig. 6(h)]: the spectra of NZ7 show a sudden drop of turbulent transport
at kzLz  50, reminiscent of the complete depletion of energy observed in the Ph-subspace region
observed in [35,36]. This issue will be discussed in detail in Sec. IV.
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FIG. 5. Instantaneous flow fields of the DNS and QL/GQL simulations. The blue isosurfaces indicate
u′∗ = 2, while the red ones are v′∗ = 0.5.

064604-14



GENERALIZED QUASILINEAR APPROXIMATIONS IN …

FIG. 6. Premultiplied spanwise wave-number spectra of energy budget per unit mean shear: (a, b) DNS;
(c) QLX; (d) QLZ; (e) NX2; (f) NZ2; (g) NX7; (h) NZ7. The vertical lines represent the spanwise cutoff wave
numbers (kz,c) dividing the Ph- (right) and Pl -subspace (left) regions.
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The premultiplied streamwise wave-number spectra of the energy budget per unit mean shear
are shown in Fig. 7. The production takes place at large scales (kxLz � 20) and is transferred into
the turbulent transport and viscous dissipation. The QLX case exhibits a disruption of the energy
cascade at kxLz � 10, and an increased spectral energy is observed at large scales, compared to
DNS [Fig. 7(c)]. As Mx,F is increased, the spectra of the NX2 case show a recovery of the energy
cascade in the streamwise direction, extending over a wider range of streamwise wave numbers
and matching the DNS spectra fairly well [Fig. 7(e)]. In particular, comparing these streamwise
energy-budget spectra with the spanwise counterparts of NZ2 [Fig. 6(f)] suggests that the quasilinear
approximation in the streamwise direction seems to offer a scattering mechanism that provides a
better energy transfer from the Pl - to the Ph-subspace group. We note that the QLX case has been
understood as a minimal model for SSP, as the streamwise wave resolved by its high-wave-number
group is modeled with the linearized equations about the streamwise uniform “streaky” flow. In this
respect, NX2 perhaps offers a minimal description on the nonlinear evolution of the streamwise
wave, which is often believed to be crucial for the regeneration of streamwise vortices [40,55–57],
and this may explain why the scattering mechanism of NX2 performs better than that of NZ2. The
spectra of the NX7 case show a sharp drop of the spectral energy at kxLz  18, in agreement with
the trends displayed by the spectra of �∗

uu and �∗
vv (Fig. 3), and this is also similar to the NX7

case whose Ph-subspace group showed a depletion of the spectral energy. It is interesting to note
that, due to this behavior, the streamwise wave-number energy-budget spectra of the NX7 case
appear to be considerably different from DNS, unlike the NX2 case. Last, the QLZ case exhibits a
reasonably active cascade in the streamwise direction, as it appears to reasonably well reproduce the
streamwise wave-number spectra of DNS. The spectra of the GQL cases NZ2 and NZ7 also show
the same behaviors.

C. Componentwise energy transport and pressure strain

The pressure-strain spectra are also analyzed to understand the mechanism of componentwise
TKE distribution in the selected QL/GQL cases. The premultiplied spanwise wave-number spectra
of the pressure-strain transport terms for the DNS, QLX, QLZ, and GQL cases are shown in Fig. 8.
The DNS shows a negative streamwise component of the pressure strain �∗

x , while �∗
y and �∗

z
are positive for the most part of the spectra [Figs. 8(a) and 8(b)]. The spectra of QLX show
some important differences from those of DNS. In particular, despite that the energy transfer in
the spanwise direction is not directly modified by the approximation of QLX, the spectral energy
is found to be significantly reduced over then entire range of kzLz, and the �∗

z component also
becomes negative for kzLz � 10 [Fig. 8(c)]. As Mx,F is increased [Figs. 8(e) and 8(g)], the spanwise
wave-number spectra of NX2 and NX7 exhibit greater spectral energy and extend over larger
wave numbers. Similarly to QLX, QLZ also exhibits significantly disrupted spectra for kzLz ≈ 20
[Fig. 8(d)]. In this case, the spectral energy of �∗

x and �∗
z is, however, overestimated, and the �∗

y
component is abnormally small and positive over the whole range of spanwise wave numbers. As
Mz,F is increased, the spectra of NZ2 show a slight extension of the supported spanwise wave
numbers. This is further improved in NZ7, except for a sudden drop of spectral energy at the cutoff
wavelength of NZ7.

To understand this, let us introduce the following equations for pressure fluctuation [58,59]:

1

ρ
∇2 pR = −2

dU

dy

∂v′

∂x
, (18a)

1

ρ
∇2 pS = −∂u′

j

∂xi

∂u′
i

∂x j
, (18b)

where p′ = pR + pS , and pR and pS are rapid and slow pressures, respectively. The terms rapid and
slow are derived from the fact that only the rapid part responds immediately to a change imposed
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FIG. 7. Premultiplied streamwise wave-number spectra of energy budget per unit mean shear: (a, b) DNS;
(c) QLX; (d) QLZ; (e) NX2; (f) NZ2; (g) NX7; (h) NZ7. Here the vertical lines represent the streamwise cutoff
wave numbers (kx,c) dividing the Ph- (right) and Pl -subspace (left) regions.
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FIG. 8. Premultiplied spanwise wave-number spectra of the pressure-strain transport: (a, b) DNS; (c) QLX;
(d) QLZ; (e) NX2; (f) NZ2; (g) NX7; (h) NZ7. Here the vertical lines represent the spanwise cutoff wave
numbers (kz,c) dividing the Ph- (right) and Pl -subspace (left) regions.
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on the mean, and the slow part feels the change through nonlinear interactions [59]. Using the field
decomposition in (1) and the projections defined in (2), (18) can be written as

1

ρ
∇2 pR

l = −2
dU

dy

∂vl

∂x
, (19a)

1

ρ
∇2 pS

l = Pl

[
− ∂ul, j

∂xi

∂ul,i

∂x j

]
+ Pl

[
− 2

∂ul, j

∂xi

∂uh,i

∂x j

]
+ Pl

[
− ∂uh, j

∂xi

∂uh,i

∂x j

]
, (19b)

in the Pl subspace and

1

ρ
∇2 pR

h = −2
dU

dy

∂vh

∂x
, (20a)

1

ρ
∇2 pS

h = Ph

[
− ∂ul, j

∂xi

∂ul,i

∂x j

]
+ Ph

[
− 2

∂ul, j

∂xi

∂uh,i

∂x j

]
+ Ph

[
− ∂uh, j

∂xi

∂uh,i

∂x j

]
, (20b)

in the Ph subspace. In the QL and GQL models, the second term in the right-hand side of (19b)
and the first and the last terms in the right-hand side of (20b) are absent. It is therefore evident
that the QL/GQL models do not fully account for the slow pressure, which originates from the
nonlinear term of turbulent fluctuation equations (6b), thereby playing an important role in energy
cascade [32,35,36]. In particular, the decomposition of velocity fluctuations into a streamwise mean
and the remaining fluctuation in the case of the QL model (QLX) make ul, j in (20b) not vary
in the streamwise direction; thus each streamwise Fourier mode of pS

h is coupled only with that
of uh, j at the same wave number. Therefore, pS

h does not play any role in the energy transport
between the streamwise Fourier modes (32,35). In the GQL model, ul, j is instead allowed to vary
in the streamwise direction, which evidently enhances the streamwise-dependent slow pressure
generation in the Pl subspace through (19b). However, even if no approximation is made in the
spanwise direction, the QLX case still features lower spectral intensity of pressure strain along the
same direction, compared to DNS [Fig. 8(c)]. The reduction of pressure-strain transport even at
the integral length scales suggests that the damaged nonlinear terms (through a limited interaction
between streamwise Fourier modes) play an important interactive role in the process of turbulence
production.

Figure 9 shows the premultiplied streamwise wave-number spectra of the pressure-strain trans-
port. All three components of the pressure-strain transport term of DNS are active down to small
scales kxLz � 40 in DNS [Figs. 9(a) and 9(b)]. The streamwise wave-number spectra of QLX overall
display lower energy like its spanwise counterpart [Fig. 9(c)]. A pronounced spectral cutoff appears
at kxLz ≈ 9, beyond which the pressure-strain transport is not active, consistent with Fig. 7(c).
With an increase of Mx,F , the spectra of NX2 extend over larger streamwise wave numbers and
appear to match well those of DNS [Fig. 9(e)]. The NX7, however, exhibits a severe drop of
spectral energy approximately at the cutoff wavelength (kxLz ≈ 18) [Fig. 9(g)]. The QLZ case shows
more energetic pressure-strain transport spectra [Fig. 9(g)], also consistent with the behavior of the
spectral energy-budget spectra observed in spanwise direction [Fig. 7(c)]. This case also displays
an active energy cascade in streamwise wave-number space. When Mz,F is increased, the spectral
energy of the �∗

x and �∗
z components gets reduced while �∗

y increases to DNS levels for the NZ2
and NZ7 cases [Figs. 7(f) and 7(h)].

IV. DISCUSSION

In the present work, the generalized quasilinear (GQL) approximation in both the streamwise
and spanwise directions has been applied to homogeneous shear turbulence. This study is the direct
extension of the previous work on the QL approximation [32]. For the GQL approximation in this
study, the flow is decomposed into a group of low-wave-number Fourier modes (Pl subspace) and
the rest (Ph subspace) as in (1), the former of which is solved by considering the full nonlinear
equations, whereas the latter is obtained by solving the linearized equations about the former. Unlike
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FIG. 9. Premultiplied streamwise wave-number spectra of the pressure-strain transport: (a, b) DNS;
(c) QLX; (d) QLZ; (e) NX2; (f) NZ2; (g) NX7; (h) NZ7. The vertical lines represent the streamwise cutoff
wave numbers (kx,c) dividing the Ph- (right) and Pl -subspace (left) regions.
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wall-bounded turbulence studied previously [29,30,34–36,54], the homogeneous shear turbulence
contains a single (integral) length scale controlled by the spanwise computational domain, whose
dynamics is well described by the so-called “self-sustaining process” [40,41]. This feature has
been crucial in gaining the understanding of the precise roles of the GQL approximation in the
self-sustaining process given at the single integral length scale (in particular, in the QL model the
elongated streaks are captured by the streamwise mean and the streamwise undulating instability
is captured by the linearized equations). The spectral energetics of the QL and GQL models have
been analyzed and compared to that of DNS, with a focus on the study of streamwise and spanwise
nonlinear energy transport. As expected, the QL approximation significantly inhibits the energy
cascade in the direction along which it is applied, i.e., streamwise direction for QLX and spanwise
direction for QLZ. The energy cascade is shown to be gradually recovered when more Fourier modes
are incorporated in the Pl subspace. However, the implementation of the GQL approximation has
revealed that there are some nontrivial points which deserve further discussions: (1) nonmonotonic
convergence of the GQL model as more Fourier modes are incorporated into the Pl -subspace
group, and the dependence of the energy transfer to the Ph subspace on the cutoff wavelengths
λr,c and (2) similarities and differences between the GQL approximations made in the streamwise
and spanwise directions (i.e., NX no. and NZ no. cases), with special attention to the maintenance
of turbulence generated by the QL model in the spanwise direction (QLZ case). Here point (1) (i.e.,
the nonmonotonic convergence of the GQL model) was also observed in a recent PhD thesis that
considered a set of GQL approximations for turbulent channel flow [60]. We will address these
points in this section.

A. Nonmonotonic convergence and energy transfer to the high-wave-number group

In Sec. III it has been observed that the scattering mechanism in the GQL model [i.e., the energy
transfer from Pl to Ph spaces through the second and third terms in Eq. (4b)] is not present when the
cutoff wavelength λr,c is sufficiently low: Figs. 3 and 4 show that the spectral intensity for λr < λr,c

(r = x or z) in NX7, NZ4, NZ7, and N77 is zero, a result difficult to understand solely owning to
the proposed scattering mechanism. As previously discussed in Ref. [35], this behavior originates
from the linear nature of the equations for the Ph-subspace group. The velocity component uh is
governed by the linear equation (4b) whose last two terms Ph[(ul · ∇)ul ] and Ph[(uh · ∇)uh] are
neglected by the GQL approximation. We note that the equation (4b) is linear and has no driving
term, thereby written as follows:

∂uh

∂t
= L(Ul )uh, (21)

where L is an autonomous linear operator. For a QL/GQL model to be well posed (i.e., not blow
up) with chaotic Ul , the resulting stable solution should lead to uh in the form of either the nontrivial
neutrally stable leading Lyapunov vector (e.g., [20,54]) or the trivial solution (i.e., zero). Therefore,
the leading Lyapunov exponent of the linear equations L(Ul ) should be either negative or zero for
the QL/GQL model to not blow up: in other words, uh can only decay or be marginally stable. In the
particular case of the turbulent state produced by the QL/GQL approximation, the leading Lyapunov
exponent from (21) must be zero [20,54], if Eq. (21) admits a nontrivial solution. Otherwise, the only
possible solution is the trivial solution.

As λr,c is decreased from a large value (or Mr,F is increased), the smallest timescale of the
velocity field Ul is expected to be reduced. This is because the decrease of λr,c would admit
Ul to contain more smaller length scales. Given that the leading Lyapunov exponent is inversely
proportional or is even larger to the smallest timescale of the motion about which the equation is
linearized (e.g., [61,62]), the decrease in λr,c could lead the linearized equations for a given wave
number in the Ph subspace to become more unstable before they reach the statistically stationary
state. This is consistent with the spectra of the Ph-subspace group shown in Figs. 3 and 4, which
are extended to smaller wavelengths on decreasing λr,c. However, if λr,c is too small, the linearized
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equations may admit only the trivial solution in the Ph subspace due to the strong viscous damping
effect, which explains why the spanwise wave-number spectra of NZ4, NZ7, and N77 cases (Fig. 3)
and the streamwise wave-number spectra of the NX7 and N77 cases (Fig. 4) exhibit the trivial
solution for λr < λr,c. This is a physical rationale explaining the nonmonotonic convergence of the
GQL model: when the cutoff wavelength is too large, the high wave numbers are not excited by the
scattering mechanism; however, if the cutoff wavelength is too small (e.g., near Kolmogorov length
scale), the scattering mechanism is completely suppressed by the mechanism discussed above. This
suggests that there exists a sweet spot in the choice of λr,c for the performance of GQL, in which
the scattering mechanism can excite sufficiently small length scales close to the Kolmogorov length
scale. It appears that this is the best possible choice of cutoff wavelength, explaining why the NX7
case does not show better performance than NX2 or NX4; in fact, NX2 gives the closest statistics
compared to DNS. A simple improvement of this behavior of the NX7 case within the quasilinear
framework could be obtained by adding a forcing resembling the low-wave-number interaction
terms in the Ph-subspace group, whose contribution has recently been shown to become important
when the scattering mechanism plays little role in generating the fluctuation in the Ph subspace (i.e.,
when the cutoff wavelength is sufficiently small) [36].

B. Comparison between QL/GQL approximations in the streamwise and spanwise directions

When the cutoff wavelength λr,c is large, the QL/GQL models (with approximations taken
along the streamwise or spanwise directions) have been shown to hold a common feature: they all
exhibit a highly anisotropic turbulent fluctuation which contains significantly elevated energy in the
streamwise component. This originates from the fact that, first, in parallel wall-bounded shear flows
the turbulence production appears only in the streamwise component. Second, the pressure strain
transfers the energy produced at the streamwise component to the other two components. Third,
since the GQL approximations prevent the energy distribution mechanism into the other velocity
components (through the damaged slow pressure), it results in the overpredicted streamwise com-
ponent of the velocity exhibited in the QL/GQL cases: for further discussions, see also [32,35,36].

There are, however, differences between the QL/GQL approximations made in the streamwise
and spanwise directions (i.e., NX no. and NZ no. cases). First, the inhibition of the spectral energy
transfer by the QL/GQL approximation appears to be more significant in the spanwise direction
than in the streamwise direction. Indeed, the spectral energy budget spectra show that the QL/GQL
approximations made in the spanwise direction tend to more sharply cut off the energy transfer from
Pl to Ph subspaces than those made in the streamwise direction [in particular, compare Fig. 6(f)
(NZ2) with Fig. 7(e) (NX2)], indicating that the scattering mechanism at least in the homogeneous
shear flow is more effective in the streamwise direction. Second, the pressure strain spectra suggest
that the QL/GQL approximations made in the streamwise direction are significantly less capable of
transferring energy produced in the streamwise component to the other two components than those
made in the spanwise direction. This is particularly apparent in the comparison between the pressure
strain spectra of QLX and QLZ cases [see Figs. 8(c) and 8(d) and Figs. 9(c) and 9(d)], consistent
with more anisotropic velocity fluctuations of the QLX case than those of the QLZ case reported in
Table II. In fact, it is interesting to observe that the first- and second-order turbulence statistics from
the QLZ case are equally good compared to those from the QLX case, if they are not seen better (see
Table II). Having said this, the QLX case has often been referred to as a minimal model capturing
the self-sustaining process [29–31]: ul in the QLX case fully describes the nonlinear evolution
of streaks, while the instability wave of the streaks is captured by the linearized equations for
uh. Therefore, it is important to mention that the better turbulence statistics of the QLZ case do
not necessarily imply that the QLZ case provides a dynamically more consistent description for
turbulence in DNS than the QLX does and that the observation here may simply be a coincidence of
the particular parameters used in the present study. However, the sustaining turbulence in the QLZ
case does suggest that there might exist an uncovered mechanism that supports sustaining turbulence
other than the self-sustaining process in shear flows [40,41]. At this point, at least the following four
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scenarios might be possible to explain the sustaining mechanism of the QLZ case: (1) inflectional
instability and/or the related transient growth of the spanwise mean flow caused by nontrivial
dynamics of single streaky structures in the high-wave-number group; (2) inflectional instability
and/or transient growth of the spanwise mean flow by interactions of vertically stacked multiple
streaky structures (since our simulations involve multiple streaky motions in the y direction); (3)
parametric instability associated with either of the dynamics proposed in (1) and (2); and (4) some
other mechanisms that do not belong to all the scenarios mentioned. The simulations designed here
would not allow us to separately examine each of these scenarios, requiring a further investigation on
this issue. Therefore, it remains uncertain which of the mechanisms play a role in the self-sustaining
turbulence in the QLZ case and whether it is more important than the self-sustaining process. These
are the issues of our current investigation.

V. CONCLUSIONS

In the present study, the spectral energetics of the QL/GQL approximations applied to ho-
mogeneous shear turbulence is investigated and compared to that of DNS. For the QL/GQL
approximations, the flow is decomposed into low- and high-streamwise-wave-number groups,
the former of which is solved by considering the full nonlinear equations, whereas the latter is
obtained from the linearized equations around the former. Given that the large-scale dynamics
of the homogeneous shear turbulence is well described by the so-called “self-sustaining process”
[40,41], this study provides a convenient framework to understand the energy cascade and turbulent
dissipation associated with the self-sustaining process. Unlike the QL model, which shows an active
cascade in one direction and a disruption of it in the other direction because of the linearization in
the given approximation, the GQL model shows healthier energy cascades along the direction in
which more Fourier modes are included in the Pl subspace (e.g., spanwise energy cascade of NZ2
case), resulting in a better description of the dynamics and statistics of the given flow than the
QL model. As in the previous study [32], the slow pressure is commonly damaged by this type of
approximations made in any directions, yielding an overprediction of the streamwise component
of the velocity due to the lack of componentwise energy distribution mechanism mediated by
the related pressure strain. Nonmonotonic convergence of turbulence statistics of the QL/GQL
approximation to those of DNS is also discussed in relation to the scattering mechanism (e.g., [34])
and the neutral Lyapunov vector being the nontrivial solution to the equations for the Ph subspace
(e.g., [25]). Finally, the QL/GQL models applied to the streamwise and spanwise directions are
compared.
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[24] V. Mantič-Lugo and F. Gallaire, Saturation of the response to stochastic forcing in two-dimensional

backward-facing step flow: A self-consistent approximation, Phys. Rev. Fluids 1, 083602 (2016).
[25] B. F. Farrell, D. F. Gayme, and P. J. Ioannou, A statistical state dynamics approach to wall turbulence,

Philos. Trans. R. Soc. A 375, 20160081 (2017).
[26] D. F. Gayme and B. A. Minnick, Coherent structure-based approach to modeling wall turbulence, Phys.

Rev. Fluids 4, 110505 (2019).
[27] B. A. Minnick and D. F. Gayme, Characterizing energy transfer in restricted nonlinear wall-bounded,

in 11th Intl. Symp. on Turbulence and Shear Flow Phenomena, Southampton, United Kingdom (2019),
p. 145.

[28] J. U. Bretheim, C. Meneveau, and D. F. Gayme, Standard logarithmic mean velocity distribution in a band-
limited restricted nonlinear model of turbulent flow in a half-channel, Phys. Fluids 27, 011702 (2015).

[29] V. L. Thomas, B. F. Farrell, P. J. Ioannou, and D. F. Gayme, A minimal model of self-sustaining
turbulence, Phys. Fluids 27, 105104 (2015).
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