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Use of eddy viscosity in resolvent analysis of turbulent channel flow
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The predictions obtained from resolvent analysis with and without an eddy viscosity
model for turbulent channel flow at Reτ = 550 are compared to direct numerical simulation
data to identify the scales and wave speeds for which resolvent analysis provides good
predictions. The low-rank behavior of the standard resolvent identifies energetic regions of
the flow whereas the eddy resolvent is low rank when the resulting projection of the leading
eddy resolvent mode onto the leading mode from spectral proper orthogonal decomposition
is maximum. The highest projections are obtained for structures that are associated with
the near-wall cycle and structures that are energetic at z = ±0.5. It is argued that these
types of structures are likely to be correctly predicted for any friction Reynolds number
due to the inner and outer scaling of the Cess eddy viscosity profile. The eddy resolvent
also correctly identifies the most energetic wave speed for these two scales. For all other
scales, neither analysis reliably predicts the most energetic wave speed or mode shapes.
The standard resolvent tends to overestimate the most energetic wave speed while the eddy
resolvent underestimates it. The resulting eddy resolvent modes are overly “attached” to
the wall since the wall-normal gradient of the eddy viscosity overestimates the transport
of energy towards the wall. These observations have direct implications for future work
towards estimating turbulent channel flows using resolvent analysis and suggest that the
Cess profile can be further optimized for individual scales to provide better low-order
models of turbulent channel flows.
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I. INTRODUCTION

The Navier-Stokes equations linearized around the mean (time-averaged) flow have been used
to identify coherent structures in a variety of flows. In the resolvent-based approach of Ref. [1], for
example, the linearized Navier-Stokes equations are analyzed from an input-output perspective. The
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input is made up of nonlinear perturbation terms that are treated as an intrinsic forcing to the linear
resolvent operator and the output is the perturbation velocity field. In the context of wall-bounded
flows, resolvent analysis has been exploited for a variety of applications from finding reduced-order
models of exact coherent states [2] to predicting statistics of high-Reynolds-number turbulence
[3,4]. The ability of resolvent analysis to identify prominent linear mechanisms, moreover, has
made it an attractive alternative to direct numerical simulation (DNS) for designing flow control
strategies [5–7].

From DNS and experimental studies of wall-bounded flows, it is known that the production of
turbulent kinetic energy is mainly driven by the exchange of energy from the mean flow to the
fluctuations. Resolvent analysis models well this exchange from the mean to the fluctuations, where
the mean is assumed to be known a priori. Therefore, the term in the energy budget that the resolvent
analysis captures most successfully is production [8,9]. The resolvent operator also tends to be low
rank for energy-producing scales [3]. The term that resolvent analysis captures the least accurately
for an arbitrary scale is nonlinear transfer between scales. One way to model this term is to add an
eddy viscosity to the resolvent operator [10–16]. The eddy viscosity provides additional dissipation
that removes energy from all scales. As such, it attempts to model this nonlinear transfer of energy
from the large scales to the small scales.

In terms of structures, many studies have observed good agreement between the structures
predicted by resolvent analysis and those found in DNS. The leading resolvent mode, which is
computed as the leading left singular vector of the resolvent operator, is the dominant structure
predicted by resolvent analysis. The dominant mode from DNS is computed as the leading mode
from spectral proper orthogonal decomposition (SPOD) [17,18]. In fact, if the nonlinear forcing
is white in space and time, then resolvent and SPOD modes are theoretically equivalent [19]. The
nonlinear forcing, however, is not white in space and time [15,20,21]. As such, the role of eddy
viscosity is to model the effect of the nonlinear forcing such that white in space and time forcing
is sufficient to predict the correct structures. Reference [13] showed that adding eddy viscosity
improved predictions of coherent motions in turbulent channel flow at a friction Reynolds number
of Reτ = 1007 and Ref. [22] compared resolvent predictions with and without eddy viscosity for
turbulent channel flow at Reτ = 2003. The most comprehensive comparison between resolvent and
SPOD modes was presented by Abreu et al. [23], who computed the projection of the leading
resolvent mode onto the leading SPOD mode for turbulent pipe flow at low Reynolds numbers. The
authors noted good agreement, i.e., high projections between the resolvent and SPOD modes, for
scales where the lift-up mechanism [24,25] was active. A similar analysis was performed in Ref. [26]
for turbulent channel flow using resolvent analysis with a number of eddy viscosity models.

The principal aim of this study is to identify the scales and wave speeds for which resolvent
analysis with eddy viscosity provides good predictions and thereby also identify the scales that
are not modeled accurately by the eddy resolvent. The predictions are quantified by calculating
the projections of the leading resolvent mode with and without eddy viscosity onto the leading
SPOD mode. The role of the wave speed in particular is analyzed since the energy of a structure is
concentrated at the wall-normal location where its wave speed matches the local mean velocity. The
inner and outer scalings of the Cess eddy viscosity profile provide additional evidence that structures
which are energetic in the buffer and wake regions are predicted well by resolvent analysis with
eddy viscosity. However, even at this relatively low Reynolds number of Reτ = 550, the structures
which are energetic in the logarithmic regions are not predicted well by the eddy resolvent. This
trend will likely worsen for higher Reynolds numbers, where the significance of structures in the
log-layer increases. To explain these trends, we investigate the energy transfers introduced by eddy
viscosity. Even though eddy viscosity adds extra dissipation to the energy balance, its wall-normal
gradient transports energy towards the wall. The wall-normal profiles of the transfers introduced by
eddy viscosity are examined to explain why resolvent modes for logarithmic structures are overly
energetic near the wall. Although the eddy viscosity gradient biases resolvent modes of logarithmic
structures towards the wall, it can potentially model local positive energy transfer in the near-wall
region, which has been observed in DNS [27–30]. In other words, the success of resolvent analysis
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with eddy viscosity depends on its ability to correctly model the wall-normal profile of nonlinear
transfer.

The rest of the paper is organized as follows. Section II presents the governing equations for
channel flow and provides a brief overview of resolvent analysis, the Cess eddy viscosity profile,
and SPOD. The details of the DNS for Reτ = 550 are provided in Sec. III. The predictions of
resolvent and eddy analysis are evaluated in Sec. IV using scalar quantities. Section V provides a
more detailed comparison of the mode shapes for select scales. The extent to which a constant eddy
viscosity profile, i.e., one that does not depend on space, can successfully predict structures is also
investigated in Sec. V. The energy transfer processes introduced by eddy viscosity are discussed
in Sec. VI. The role of the eddy viscosity gradient, in particular, is examined and artificially
manipulated to understand its influence on the mode shapes. Finally, conclusions and implications
for optimizing a scale-dependent eddy viscosity are suggested in Sec. VII.

II. METHODOLOGY

Section II A describes the governing equations for plane Poiseuille flow and their nondimension-
alization. A brief overview of resolvent analysis is provided in Sec. II B. In Sec. II C, a modified
resolvent operator, which includes the Cess eddy viscosity profile, is formulated. In order to assess
the predictive capability of resolvent analysis with and without eddy viscosity, the leading modes
are compared to SPOD modes, which are computed using the procedure summarized in Sec. II D.

A. Plane Poiseuille flow equations

The nondimensional Navier-Stokes equations for statistically steady, turbulent plane Poiseuille
flow are

∂u
∂t

+ u · ∇u = −∇p + 1

Reτ

∇2u, (1a)

∇ · u = 0, (1b)

where u(x, t ) = [u, v,w]T is the velocity in the x (streamwise), y (spanwise), and z (wall-normal)
directions, p(x, t ) is the pressure, and ∇ = [∂/∂x, ∂/∂y, ∂/∂z]T . The friction Reynolds number
Reτ = uτ h/ν is defined in terms of the friction velocity uτ , channel half height h, and kinematic
viscosity ν. Periodic boundary conditions are applied in the streamwise and spanwise directions
and no-slip boundary conditions are imposed at the walls. The velocities are nondimensionalized
by uτ , the spatial variables by h, and the pressure by ρu2

τ where ρ is the density of the fluid. A “+”
superscript denotes spatial variables that have been normalized by the viscous length scale ν/uτ .

B. Resolvent analysis

Equation (1) is Reynolds decomposed, leading to the following equations for the fluctuations:

∂u′

∂t
+ U · ∇u′ + u′ · ∇U + ∇p′ − 1

Reτ

∇2u′ = −u′ · ∇u′ + u′ · ∇u′ = f ′, (2a)

∇ · u′ = 0, (2b)

where (·) and (·)′ denote a time average and fluctuation, respectively. The mean velocity profile
U = [U (z), 0, 0]T is assumed to be known a priori from DNS. Equation (2) is written such that all
linear terms appear on the left-hand side. The nonlinear terms on the right-hand side are lumped
together as a forcing f ′. Equation (2) is Laplace transformed in time and Fourier transformed in the
homogeneous directions x and y:

û(kx, ky, s) = 1

(2π )3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
u′(x, y, z, t )est−ikxx−ikyydx dy dt . (3)
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Upon integration of Eq. (3), we set s = iω to consider the frequency response û(k) where (·̂)
denotes the Fourier-transformed coefficient and the wavenumber triplet k = (kx, ky, ω) consists of
streamwise wavenumber kx, spanwise wavenumber ky, and temporal frequency ω. The equivalent
wavelengths in the streamwise and spanwise directions are λx = 2π/kx and λy = 2π/ky. The
wavenumbers are nondimensionalized by (1/h) and the wavelengths by h.

Equation (3) is substituted into Eq. (2) and rearranged into state-space form [31],

iωq̂(k) = A(kx, ky)q̂(k) + B(kx, ky) f̂ (k), (4a)

û(k) = C(kx, ky)q̂(k), (4b)

where the state q̂ consists of the wall-normal velocity ŵ and wall-normal vorticity η̂ = ikyû − ikx v̂.
The matrices A, B, and C are the discretized forms of the linearized Navier-Stokes operator, the
forcing operator, and the output operator, respectively. The expressions for the matrices A, B, and
C are given in Appendix A. The operators are discretized numerically with Ny = 201 Chebyshev
collocation points and the discretized differentiation operators are formed using the suite developed
in Ref. [32]. The convergence of the results is ensured by checking that they are not modified when
the number of collocation points is doubled. It is worth noting that A, B, and C are independent of ω

but are functions of the wavenumber pair (kx, ky) under consideration. For the sake of brevity, this
dependence is omitted for the rest of the paper.

Equation (4) is recast into input-output form,

û(k) = C(iωI − A)−1 f̂ (k) = H(k) f̂ (k), (5)

where H(k) is a linear operator called the resolvent that relates the input forcing f̂ (k) to the output
velocity û(k). Even if f̂ (k) is unknown, the resolvent operator can be characterized by the singular
value decomposition

H(k) = �̂(k)�(k)�̂
∗
(k), (6)

where �̂(k) = [ψ̂1(k), ψ̂2(k), . . . , ψ̂p(k)] are the resolvent modes, which form an orthogonal basis
for velocity, and �̂(k) = [φ̂1(k), φ̂2(k), . . . , φ̂p(k)] are the resolvent forcing modes which form an
orthogonal basis for the nonlinear forcing. �(k) is a diagonal matrix that ranks the pth structure
by its gain σp(k) using an inner product that is proportional to its kinetic energy, i.e., 〈ψ̂, ψ̂〉 =∫ h
−h ψ̂

∗ · ψ̂dz. The structure ψ̂1(k) is, therefore, referred to as the optimal or leading resolvent mode
and is the most amplified response of the linear dynamics contained in the resolvent.

The true velocity field from experiments or DNS can be expressed as a weighted sum of resolvent
modes,

û(k) =
N∑

p=1

ψ̂p(k)σp(k)χp(k), (7)

where χp(k) is the projection of φ̂p(k) onto f̂ (k), i.e.,

χp(k) = 〈 f̂ (k), φ̂p(k)〉. (8)

It can be noted from Eqs. (7) and (8) that if f̂ (k) is white noise or projects equally onto the resolvent
forcing modes, then the contribution of a resolvent mode ψ̂p in reconstructing the velocity field
according to Eq. (7) is solely dependent on the associated singular value σp. Moreover, if σ1 � σ2,
then it is often argued that the velocity response can be well approximated by the leading resolvent
response mode ψ̂1 alone.

C. Cess eddy viscosity model

It has been shown, however, that the nonlinear forcing may have little to no overlap with the
leading forcing mode [8,15,33] resulting in χ1 � χp	=1. This nonalignment stems from the fact that
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the resolvent does not model well the interscale nonlinear transfer. To address this shortcoming,
an eddy viscosity can be added to the linearized Navier-Stokes equations after performing a triple
decomposition of the total velocity field ũ into a mean component U , coherent motions u, and
incoherent fluctuations u′ [10]. A new set of equations govern the coherent velocity and pressure:

∂u
∂t

+ U · ∇u + u · ∇U + ∇p − 1

Reτ

∇ ·
[νT

ν
(∇u + ∇uT )

]
= d, (9)

where νT (z) is the total effective viscosity and d = −u · ∇u + u · ∇u is the disturbance term.
Similar to Refs. [34] and [12], the Cess [35] eddy viscosity profile,

νT (z) = ν

2

[
1 + κ2Re2

τ

9
(1 − z2)2(1 + 2z2)2

(
1 − exp

[
(|z| − 1)

Reτ

A

])2
]1/2

+ ν

2
, (10)

is employed in this study. The constants κ = 0.426 and A = 25.4 are chosen based on a least-
squares fit to experimental mean velocity profiles at Reτ = 2000 [36]. Even though the Reynolds
number in this study is lower than the Reynolds number for which the fit was performed, it has been
verified that the results are not sensitive to the values of these constants. Appendix B, moreover,
illustrates that eddy viscosity profiles computed directly from the DNS mean velocity profile yield
nearly identical results to the Cess profile in Eq. (10).

As done in Sec. II B, Eq. (9) is Fourier transformed in time and the homogeneous directions to
obtain an input-output relationship between the velocity and disturbance fields,

û(k) = He(k)d̂(k), (11)

where He(k) is a modified resolvent operator henceforth referred to as the eddy resolvent. Its
singular value decomposition can be written as

He(k) = �̂
e
(k)�e(k)�̂

∗,e
(k). (12)

The superscript e differentiates the eddy resolvent modes, henceforth referred to as eddy modes,
and singular values from their standard resolvent counterparts in Eq. (6). The interpretation of each
term in the decomposition is similar to Eq. (6) in that ̂e(k) consists of orthogonal basis functions
for the velocity field and the diagonal matrix �e(k) ranks the pth structure by its gain using an inner
product proportional to its kinetic energy. The matrix �̂e(k), on the other hand, contains orthogonal
basis functions for the disturbance field d̂(k) which is less interpretable than f̂ (k). Despite this
drawback, the addition of eddy viscosity is expected to partially model the effect of f̂ (k) and thus
improve the efficiency of eddy modes as a basis for the velocity field.

D. Spectral proper orthogonal decomposition

The efficiency of resolvent and eddy modes as a basis for the velocity field can be assessed by
projecting them onto SPOD modes, which are computed directly from data. The SPOD modes are
computed with the same procedure described in Ref. [19] so only a brief summary is presented
here. Using Welch’s method [37], the DNS data for a particular (kx, ky) are divided into overlapping
segments containing 512 snapshots with 75% overlap. Each segment is Fourier transformed in time
and the Fourier modes for a specific frequency ω can be arranged into the new data matrix

Q̂(k) = [
q̂(1)

ω q̂(2)
ω · · · q̂(s)

ω

] ∈ Cm×s, (13)

where m represents the number of states and s the number of segments. The cross-spectral density
matrix for a specific wavenumber triplet Ŝ(k) is

Ŝ(k) = Q̂(k)Q̂
∗
(k). (14)
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TABLE I. Channel flow DNS parameters.

Reτ Lx Ly Lz Nx Ny Nz �x+ �y+ �z+
min �z+

max

550 2π π 2h 256 256 201 13.5 6.75 6.79 × 10−2 8.64

The SPOD eigenvectors (or modes) V̂ (k) and eigenvalues �(k) can be obtained by performing an
eigenvalue decomposition of the cross-spectral density matrix,

Ŝ(k)V̂ (k) = V̂ (k)�(k). (15)

III. DNS DATASET

A DNS of channel flow at Reτ = 550 is performed using the CHANNELFLOW pseudospectral
code [38]. Table I summarizes the parameters of the simulation which was solved on a domain with
dimensions 2π × π × 2h in the streamwise (Lx), spanwise (Ly), and wall-normal (Lz) directions.
There are Nx = Ny = 256 equally spaced points in the streamwise and spanwise directions and
Ny = 201 points in the wall-normal direction on a Chebyshev grid. Periodic boundary conditions
are employed in the streamwise and spanwise directions while no-slip boundary conditions are
enforced on the channel walls. Further details on the mesh discretization (�x+,�y+,�z+

min,�z+
max)

are presented in Table I. The mean velocity and Reynolds stress profiles are presented in Figs. 1(a)
and 1(b), respectively. All profiles show good agreement with the DNS results from Ref. [39] despite
the smaller computational box in this study.

SPOD is performed on a database of 6784 snapshots that have been used to generate Fig. 1. The
time resolution is �t = 0.2 and the data are divided into equal segments containing 512 snapshots
with an overlap of 75% in order to obtain sufficient frequency resolution for kx = 1 modes. There
are 50 segments, which is comparable with many previous studies [13,15,21,40] and ensures that
the leading pair of SPOD modes is converged. The cross-spectral density matrices in Eq. (14) are
computed using Welch’s method with a Hamming window. The SPOD modes and their respective
energies for a desired frequency are obtained from the eigenvectors and eigenvalues, respectively,
of the cross-spectral density matrices.

FIG. 1. (a) Mean velocity profile and (b) Reynolds stress profiles from the present study (solid lines) and
Ref. [39] (open squares).
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FIG. 2. Low-rank maps for (a) SPOD, (b) the standard resolvent, and (c) the eddy resolvent for a fixed
wave speed of c+ = 18.9. Contours of the turbulent kinetic energy spectrum at z = −0.5 are denoted in black.

IV. STANDARD AND EDDY RESOLVENT PREDICTIONS

In this section, the predictions from standard and eddy resolvent analysis are compared to DNS
data using several measures. To begin with, the low-rank behavior of the SPOD modes (computed
from the cross-spectral density matrix) is compared to those of the resolvent modes in Sec. IV A.
Next, the projection of the dominant SPOD mode onto the leading resolvent and eddy modes is
computed in Sec. IV B for the most energetic wavenumber pairs. Structures convecting at a range
of wave speeds c+ = ω/kx are considered and projections are computed independently for each
wave speed. In Sec. IV C, the wave speed of the most energetic SPOD mode is compared to
the most amplified wave speed identified by standard and eddy resolvent analysis for a range of
(kx, ky) wavenumber pairs. This motivates the selection of specific wavenumber triplets to examine
in greater detail in Sec. V in which the SPOD, resolvent, and eddy mode shapes are compared
directly.

A. Low-rank maps

An important aspect of the cross-spectral density matrix is its rank or, more specifically, the
percentage of the total energy that is captured by the leading SPOD modes alone. Due to the
symmetry of the channel, SPOD eigenvalues come in (approximately) equal pairs. One mode in
each pair is symmetric with respect to the channel centerline while the other mode is antisymmetric.
The low-rank behavior of SPOD modes can therefore be studied by computing the ratio of the
dominant pair of eigenvalues to the sum of all eigenvalues:

R(k) = λ2
1(k) + λ2

2(k)∑
p λ2

p(k)
. (16)

The low-rank behavior of the SPOD modes can be compared to that of standard resolvent or eddy
resolvent modes by using the singular values obtained from the resolvent analysis in Eq. (16) in
place of the SPOD eigenvalues.

The low-rank maps are computed across (λ+
x , λ+

y ) for a fixed wave speed of c+ = 18.9 and
are shown for the case of DNS, standard resolvent, and eddy resolvent in Figs. 2(a), 2(b), and
2(c), respectively. Since Ref. [3] noted good agreement between the low-rank behavior of the
standard resolvent and the turbulent kinetic energy spectrum, contours of the latter have been
superimposed onto the low-rank maps in Fig. 2. Low-rank behavior for the SPOD modes is observed
for high-aspect-ratio structures, i.e., λx > λy, in Fig. 2(a). The first pair of SPOD modes is dominant
for the longest structures with a spanwise wavelength of λ+

y ≈ 103. The SPOD modes are also low
rank for structures clustered around (λ+

x , λ+
y ) = (1000, 100) although for the wave speed under
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consideration these structures are not particularly energetic. There is less agreement, therefore,
between the kinetic energy contours and the low-rank map for the SPOD modes.

The low-rank maps for the standard and eddy resolvents in Figs. 2(b) and 2(c), respectively,
are remarkably different. The standard resolvent does not predict well the low-rank behavior of
SPOD modes. In fact, the flow is generally of much higher rank than the predictions of the standard
resolvent. There is, nonetheless, excellent agreement between the low-rank map of the standard
resolvent and the turbulent kinetic energy spectrum. This suggests that the standard resolvent is
good at identifying linear amplification mechanisms which translate into high energy production
and, therefore, turbulent kinetic energy. The eddy resolvent, meanwhile, predicts well the low-rank
behavior of the SPOD modes. Nonetheless, the eddy resolvent is of lower rank for structures with
spanwise wavelengths of λ+

y = 100 than the SPOD modes.
It can be remarked that the addition of eddy viscosity significantly alters the linear mechanisms

identified by the standard resolvent. Although not shown here for the sake of brevity, the eddy
resolvent is low rank for spanwise wavelengths of λ+

y = 80 and λy = 3.5 regardless of the wave
speed selected. As such, eddy analysis is less successful in identifying the energetic scales for a
specified wave speed but can predict more accurately the rank of the SPOD modes. These results,
notwithstanding, do not quantify the accuracy of resolvent or eddy analysis in predicting flow
structures in turbulent channel flow. It will be seen that the two peak spanwise wavelengths identified
by the eddy resolvent low-rank maps provide a valuable clue in identifying the types of structures
that the eddy resolvent predicts with good accuracy.

B. Projection of resolvent modes onto SPOD modes

The objective of this section is to quantify the accuracy of standard and eddy resolvent analysis
by projecting the leading SPOD mode v̂1(k) from DNS onto the leading resolvent ψ̂1(k) and eddy
ψ̂

e
1(k) modes. Similar analyses have been performed in Refs. [23] and [16] for turbulent pipe flow

and turbulent jets, respectively. To account for the pairing of resolvent and eddy modes, the leading
SPOD mode is projected onto both the first and second resolvent and/or eddy modes:

γ (k) =

√√√√(
〈v̂1(k), ψ̂1(k)〉

‖v̂1(k)‖ · ‖ψ̂1(k)‖

)2

+
(

〈v̂1(k), ψ̂2(k)〉
‖v̂1(k)‖ · ‖ψ̂2(k)‖

)2

, (17a)

γ e(k) =

√√√√(
〈v̂1(k), ψ̂

e
1(k)〉

‖v̂1(k)‖ · ‖ψ̂e
1(k)‖

)2

+
(

〈v̂1(k), ψ̂
e
2(k)〉

‖v̂1(k)‖ · ‖ψ̂e
2(k)‖

)2

. (17b)

Both γ (k) and γ e(k) have a maximum value of unity, which indicates perfect alignment between
SPOD and resolvent and/or eddy modes. A value of zero indicates that the mode shapes are
orthogonal. It should be noted that nearly identical results are obtained if γ and γ e are computed
using the second SPOD mode since the SPOD modes come in pairs. For the sake of brevity, these
results have been omitted.

Figure 3 illustrates γ for 180 < λ+
x < 3400 and 80 < λ+

y < 1700. These scales contain most of
the kinetic energy in the flow and include structures associated with the near-wall cycle. Streamwise-
constant modes are discussed in greater detail in Sec. V. The colorbar in Fig. 3 is restricted to a range
[0.5, 1] to facilitate identification of scales where there is significant overlap between the SPOD and
resolvent modes. Each panel in Fig. 3 represents a different wave speed and contains contours of
the turbulent kinetic energy spectrum at the wall-normal location where U + = c+. The lowest wave
speed considered is c+ = 10.3 in Fig. 3(a) and c+ increases at increments of approximately 1.7,
culminating in a wave speed of c+ = 18.9 in Fig. 3(f). The lower bound on c+ is motivated by the
near-wall streaks being most energetic at a wall-normal location of z+ = 15 where U + ≈ 10 [1].
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FIG. 3. Projection of the leading SPOD mode onto the leading pair of resolvent modes for various wave
speeds. Contours of the turbulent kinetic energy spectrum at the wall-normal location where c+ = U + are
denoted in black.

The upper bound on c+ is chosen since it is approximately c+ = U +
CL − 2, which translates to a

wall-normal location of z = −0.5.
Figure 3 shows that there is good agreement between the leading SPOD and resolvent modes

for c+ = 10.3. Despite some outliers, Fig. 3(a) indicates that the highest projections are for modes
that satisfy kx < ky. This is consistent with the results of Ref. [23] which noted that the lift-up
mechanism leads to large amplification for high-aspect-ratio scales where /AR = ky/kx. The scales
that have high projection coefficients are approximately the same as those that are energetic at the
wall-normal location where c+ = U + = 10.3. As the wave speed increases, however, the values
of γ decline quite significantly, indicating poorer predictions of the mode shapes from resolvent
analysis. For the highest wave speed in Fig. 3(f), γ < 0.5 for most scales and the maximum values
of γ do not coincide with the most energetic scales.

Figure 4 presents the projection coefficient for the eddy resolvent. There is significantly better
agreement between the leading SPOD and eddy modes at all wave speeds in comparison to the
standard resolvent in Fig. 3. There are, however, some similarities between γ and γ e. First, the
highest values of γ e are obtained for high-aspect-ratio structures. Second, the wave speed has a
major influence on γ e. For c+ = 10.3, the SPOD and eddy modes are in good agreement for scales
associated with the near-wall streaks. As such, the scales for which γ e > 0.9 coincide with the
turbulent kinetic energy spectrum at z+ = 15, i.e., the wall-normal location where c+ = U + = 10.3.
For the next four wave speeds in Figs. 4(b)–4(e), the SPOD and eddy modes are in good agreement
for scales with large λ+

x ; however, these are not necessarily the most energetic scales at the
corresponding wall-normal location. In Fig. 4(d), for example, the highest values of γ e do not
coincide with the maximum turbulent kinetic energy. For c+ = 18.9 in Fig. 4(f), there is good
agreement between high values of γ e and the turbulent kinetic energy. One final observation is
that there are two spanwise wavelengths for which high values of γ e are observed at higher wave
speeds: λ+

y ≈ 80 and λy ≈ 3.5. This is consistent with the SPOD and eddy resolvent low-rank maps
in Fig. 2 and suggests that scales for which the eddy resolvent is low rank are scales for which eddy
analysis predicts well the leading SPOD modes.
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FIG. 4. Projection of the leading SPOD mode onto the leading pair of eddy modes for various wave speeds.
Contours of the turbulent kinetic energy spectrum at the wall-normal location where c+ = U + are denoted in
black.

C. Frequency response

The previous sections show that there is a trade-off when eddy viscosity is added to the resolvent
operator. On one hand, eddy viscosity distorts the linear dynamics of the operator such that the
low-rank map resembles less the turbulent kinetic energy spectrum. On the other hand, the eddy
modes have larger projections onto SPOD modes than their resolvent mode counterparts. Although
these comparisons have been studied for a variety of wave speeds, the impact of eddy viscosity on
the resolvent frequency response has yet to be analyzed. In order to be consistent with previous
sections, the frequency response is considered from a wave speed point of view. The impact of
eddy viscosity can be better appreciated by considering a single wavenumber pair initially before
investigating all energetic wavenumber pairs as done in the previous sections. The wavenumber pair
(kx, ky) = (4, 30), which corresponds to (λ+

x , λ+
y ) = (864, 116), is selected as it corresponds to the

near-wall streaks in the DNS used in this study.
To gain a better understanding of what the addition of eddy viscosity does to modify the

frequency response of the resolvent operator, we look at a range of eddy-viscosity-based models,
where the strength of the eddy viscosity is gradually increased from zero (equivalent to the standard
resolvent) to the full eddy viscosity. The strength of the eddy viscosity is adjusted artificially by
introducing the scaling factor S such that Eq. (10) becomes

νT (z) = ν

2

[
1 + S

{
κ2Re2

τ

9
(1 − z2)2(1 + 2z2)2

(
1 − exp

[
(|z| − 1)

Reτ

A

])2
}]1/2

+ ν

2
, (18)

where S ∈ [0, 1]. Setting S = 0 or S = 1 is equivalent to standard resolvent or eddy resolvent
analysis, respectively. A similar parameter was introduced in Ref. [41] to derive a scale-dependent
eddy viscosity for linear estimation of a turbulent channel flow at Reτ = 2003. The first singular
value σ1 is plotted against c+ in Fig. 5 for various strengths of eddy viscosity, i.e., different values
of S . As the value of S increases, both the maximum amplification and the most amplified wave
speed decrease. For this particular scale, moreover, the maximum amplification declines by a factor
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FIG. 5. Most energetic wave speed for (kx, ky ) = (4, 30) as a function of different strengths of the eddy
viscosity as denoted by S.

of 10 and the most amplified wave speed slows down substantially from c+ = 15.5 to c+ = 9.5.
A crude explanation for this behavior is that the damping supplied by eddy viscosity results in
slower, less amplified structures. Since standard resolvent analysis has absolutely no damping other
than molecular viscosity, the structures are allowed to convect more quickly. It can, therefore, be
expected that for an arbitrary scale the most amplified wave speed predicted by standard resolvent
analysis is going to be greater than that predicted by eddy resolvent analysis.

This hypothesis is tested in Fig. 6, which compares the wave speed corresponding to the
maximum λ1 from DNS (SPOD) to the most amplified wave speed predicted by the standard and
eddy resolvent for the most energetic wavenumber pairs (these will be referred to as the maximum
wave speed). The only similarity among the three panels is that the maximum wave speed is
primarily governed by the spanwise wavenumber. Wider structures, i.e., those with small spanwise
wavenumbers, travel faster than relatively less wide structures. The streamwise wavenumber plays
a bigger role in DNS and the standard resolvent than it does for the eddy resolvent. Figures 6(a) and
6(b) show that for fixed ky, the maximum wave speed increases as a function of kx. Thus, the trend
for kx is different from ky in that longer structures, i.e., those with smaller kx, travel slower, while
wider structures, i.e., those with smaller ky, travel faster. Another interpretation of these trends is
that higher-aspect-ratio structures convect more slowly and are thus more energetic closer to the
wall. Lower-aspect-ratio structures, meanwhile, convect more quickly and are thus more energetic

FIG. 6. Wave speed corresponding to the maximum λ1 computed from (a) DNS compared to the most
amplified wave speed predicted by the (b) standard resolvent and (c) eddy resolvent.
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FIG. 7. Difference between the most amplified wave speed predicted by the (a) standard resolvent and
(b) eddy resolvent compared to the wave speed corresponding to the maximum λ1 computed from DNS.

away from the wall. These trends are consistent with observations from Ref. [42] among others who
report aspect ratios of approximately /AR = 8 for near-wall coherent motions and /AR = 2–3 for
large-scale outer motions.

Figure 7 plots the difference between the maximum wave speed predicted by the standard and
eddy resolvents and that of DNS. Red squares indicate that the maximum wave speed is too high
and blue squares that the maximum wave speed is too low. It is striking how large the differences
are particularly for the relatively small Reynolds number considered in this study which restricts the
range of wave speeds that can be expected in the flow. Figure 7(a) shows that the most amplified
structures in standard resolvent analysis travel faster than their true speeds, whereas in Fig. 7(b),
the most amplified structures in eddy resolvent analysis travel slower. Despite the large differences
between DNS and the linear analyses, there are two regions in Fig. 7(b) where the discrepancy is
small. The first is denoted by the dashed, black rectangle and corresponds to small values of both
kx and ky, where c+ ≈ 18.9. The second is denoted by the solid black rectangle, which contains
wavenumber pairs in the range (kx, ky) = (1 � kx � 5, 30 � ky � 34) where c+ ≈ 10. As will be
discussed in the next section, the reasons for why these two wavenumber regions are estimated
reasonably well by the eddy resolvent can be related back to the wall-normal profile of the eddy
viscosity νT (z).

V. MODE SHAPES AND THE CESS EDDY VISCOSITY PROFILE

The previous section analyzed the linear predictions of the standard and eddy resolvents using
scalar quantities such as the low-rank maps, projection coefficients, and maximum wave speeds.
This section considers the wall-normal profiles of both mode shapes in Sec. V A and the Cess eddy
viscosity profile itself in Sec. V B to predict the agreement between SPOD and resolvent and eddy
modes at higher Reynolds numbers.

A. SPOD, resolvent, and eddy modes

The SPOD, resolvent, and eddy mode shapes are compared for four wavenumber triplets that are
described in Table II. Mode 0 is a streamwise-constant mode and its most energetic frequency is ω =
0. The other wavenumber pairs are chosen such that modes 1, 2, and 3 have their peak energy around
z = −0.5, z = −0.75, and z+ = 15, respectively. The maximum wave speed from SPOD is reported
as c+

max,SPOD. Table II reports c+
max,resolvent and c+

max,eddy, the maximum wave speeds identified by
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TABLE II. The wavenumber triplets for modes 0–3 along with predictions from resolvent and eddy analysis.

Mode kx ky c+
max,SPOD c+

max,resolvent c+
max,eddy γ γ e γ95 γ e

95

0 0 4 ω = 0 ω = 0 ω = 0 0.898 0.978 6 2
1 1 2 18.5 19.0 18.5 0.663 0.956 36 2
2 2 8 16.8 20.5 13.8 0.586 0.877 56 6
3 4 30 10.1 15.3 9.50 0.864 0.950 40 2

resolvent and eddy analysis, respectively. The wave speed selected for plotting purposes, however,
is kept fixed at c+

max,SPOD. The purpose of comparing c+
max,SPOD and c+

max,eddy is to emphasize that the
eddy resolvent produces good predictions when c+

max,SPOD ≈ c+
max,eddy. The parameter c+

max,resolvent,
meanwhile, does not provide information about the quality of predictions from standard resolvent
analysis. Finally, Table II quantifies the number of resolvent modes needed such that√√√√ γ95∑

i=1

(
〈v̂1(k), ψ̂i(k)〉

‖v̂1(k)‖ · ‖ψ̂i(k)‖

)2

> 0.95, (19a)

√√√√ γ e
95∑

i=1

(
〈v̂1(k), ψ̂

e
i (k)〉

‖v̂1(k)‖ · ‖ψ̂e
i (k)‖

)2

> 0.95. (19b)

Figure 8 presents the SPOD, resolvent, and eddy mode for mode 0. As indicated in Table II,
both the standard and eddy resolvents correctly identify ω = 0 as the most amplified frequency.
The projection coefficients γ and γ e are also large for this choice of k. The number of resolvent
or eddy modes needed to achieve γ = 0.95, therefore, is γ95 = 6 and γ e

95 = 2, respectively. The
agreement between the resolvent and SPOD modes themselves, however, is not as compelling as
γ = 0.898 might suggest. Although the streamwise velocity component is predicted reasonably
well, the spanwise and wall-normal components are significantly underestimated due to the high
non-normality of the resolvent operator [43,44]. The eddy resolvent is also non-normal but the
addition of eddy viscosity results in a more normal operator [8]. Since the streamwise component is
also dominant for the SPOD mode, it has a disproportionate influence on γ thus resulting in a higher
value than might be expected from visual inspection of the mode shapes. The agreement between
the SPOD and eddy modes, on the other hand, is better for all velocity components, resulting in
γ e = 0.978.

FIG. 8. The (a) streamwise, (b) spanwise, and (c) wall-normal components of the leading SPOD, resolvent,
and eddy modes for mode 0 for which k = (0, 4, ω = 0).
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FIG. 9. The (a) streamwise, (b) spanwise, and (c) wall-normal components of the leading SPOD, resolvent,
and eddy modes for mode 1 for which k = (1, 2, 18.5).

Mode 1 is an energetic structure in the outer region of the flow with a wavenumber triplet of
k = (1, 2, 18.5). Table II shows that c+

max,SPOD = 18.5 and this is in good agreement with predictions
from standard and eddy resolvent analysis. Figure 9 illustrates that while the resolvent modes do
not agree well with the SPOD modes, the eddy modes show reasonable agreement with SPOD.
This is reflected in the projection coefficients as γ e = 0.956 is higher than γ = 0.663. It also
takes significantly fewer eddy modes to reconstruct the leading SPOD mode since γ e

95 = 2 whereas
γ95 = 36. It was observed in Refs. [8,13,45] that, when using resolvent modes, many suboptimal
modes are needed to reconstruct the velocity field for high-aspect-ratio structures. One reason is
that the streamwise and spanwise components of velocity are highly localized in the wall-normal
direction due to the critical-layer mechanism [1,13,22,46,47]. The eddy modes, on the other hand,
are smoothed out in z by the eddy viscosity. Another factor is that, similar to mode 0, the wall-normal
velocity component is underestimated by resolvent analysis as seen in Fig. 9(c). The agreement
between the SPOD and eddy modes, meanwhile, is very good for all velocity components and
wall-normal locations except the near-wall region of the streamwise component, as seen in Fig. 9(a).

Mode 2 is another structure in the outer region of the flow with a wavenumber triplet of k =
(2, 8, 16.8). The streamwise velocity component is most energetic at z = −0.75 which is closer to
the wall in comparison to z = −0.5 for mode 1. Neither standard nor eddy resolvent analysis is
capable of predicting the maximum wave speed for mode 2. Consistent with the trends observed
in Fig. 7, the standard resolvent predicts a wave speed that is too fast while the eddy resolvent
predicts a wave speed that is too slow. As explained earlier, for plotting the resolvent and eddy
modes in Fig. 10, c+

resolvent and c+
eddy are chosen to be the maximum wave speed as identified by

FIG. 10. The (a) streamwise, (b) spanwise, and (c) wall-normal components of the leading SPOD, resol-
vent, and eddy modes for mode 2 for which k = (2, 8, 16.8).
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FIG. 11. The (a) streamwise, (b) spanwise, and (c) wall-normal components of the leading SPOD, resol-
vent, and eddy modes for Mode 3 for which k = (4, 30, 10.1).

SPOD, i.e., c+
max,SPOD. It can be remarked that the projection coefficients belie the true agreement

between various mode shapes. When considering the resolvent modes, although γ = 0.586 seems
low, the modes still capture the wall-normal location of the peak streamwise energy reasonably well.
However, similar to mode 1, the modes are localized about the critical layer and the wall-normal
component is underestimated, resulting in a relatively low γ . The eddy modes appear to be in
significantly better agreement as γ e = 0.877. Unlike resolvent analysis, however, the wall-normal
locations of the peaks in streamwise and spanwise energies of the eddy modes fall below their
true locations, a trend that becomes more apparent for higher Reynolds numbers (see Ref. [22]).
Even though it is not explicitly shown here for the sake of brevity, for structures with c+

max,eddy <

c+
max,SPOD, the peak streamwise and spanwise energies of the eddy mode are located below the correct

wall-normal location identified by SPOD. Mode 2, consequently, is the only wavenumber triplet
for which γ e

95 = 6 since suboptimal modes are required to “lift” the structure to its proper height.
Fifty-eight modes, meanwhile, are required for resolvent modes to achieve γ = 0.95.

Figure 11 considers mode 3, which is representative of the near-wall cycle. The agreement
between the SPOD and resolvent wave speeds is poor but agreement between the mode shapes
is high as γ = 0.864. Similar to mode 0, the streamwise velocity component is the dominant
component for mode 3, thus relegating the influence of the other two velocity components in
computing γ . As seen in Table II, the eddy resolvent is close to identifying the most energetic wave
speed. Furthermore, the SPOD and eddy mode shapes in Fig. 11 are in very good agreement for
the streamwise velocity component and good agreement for the spanwise and wall-normal velocity
components, resulting in γ e = 0.950. It is clear, furthermore, that eddy modes are a more efficient
basis since γ e

95 = 2 compared to γ95 = 40.

B. Cess eddy viscosity and effective Reynolds number

In this section, the Cess eddy viscosity profile is studied in greater detail in order to predict
the agreement between SPOD and resolvent and/or eddy modes at higher Reynolds numbers. The
profiles are obtained for a range of Reynolds numbers using Eq. (10). It is particularly interesting
to look at the profiles around z+ = 15 and z = −0.5 due to the good agreement between SPOD
and eddy resolvent analysis for modes 1 and 3 that have their peak energies at these wall heights.
In Fig. 12(a), the eddy viscosity profiles are premultiplied by Reτ , resulting in a collapse near the
wall. The profiles for Reτ = 180 and Reτ = 550 begin to diverge from the other Reynolds numbers
around z+ = 10 and z+ = 20, respectively, but the agreement among all profiles is good, particularly
around z+ = 15. This wall-normal location is important since it coincides with the location of the
structures associated with the near-wall cycle that travel at a wave speed of c+ = 10. It therefore
seems reasonable to assume that, for all Reynolds numbers, the eddy resolvent will correctly predict
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FIG. 12. Wall-normal profiles of (a) Reτ νT and (b) νT for various Reτ .

the structures that are located at these wall heights of z+ ≈ 15 and therefore convect at wave speeds
around c+ = 10.

In Fig. 12(b), νT (z) is plotted in outer units for Reynolds numbers in the range 180 � Reτ �
20 000. The profiles for all Reynolds numbers other than Reτ = 180 are virtually indistinguishable
in the outer region. The largest differences occur near and at the walls where νT (±1) = ν. The
maximum value of νT is 0.08 and occurs at z = ±0.5. Mode 1, for which the eddy resolvent
gives good predictions, was also found to be most energetic at this wall height of z = ±0.5. Since
νT at z = ±0.5 remains roughly constant with Reynolds number, it can be hypothesized that the
eddy mode shapes for wavenumbers with c+

max = U +(±0.5) ≈ U +
CL − 2 are unaffected by Reτ .

This hypothesis is tested in Fig. 13, where the mode shapes of structures with c+
max ≈ U +

CL − 2
are compared across different Reτ . A second hypothesis, which is also tested in Fig. 13, is that
the wall-normal-varying eddy viscosity νT (z) can be replaced by a constant eddy viscosity model,
i.e., νT = ReT , where ReT is the effective Reynolds number. For the case of a turbulent jet,
Refs. [14,16,48] showed that a constant eddy viscosity model can improve the agreement between
SPOD and eddy modes.

Figure 13 compares the mode shapes for k = (1, 2,U +
CL − 2) from standard resolvent analysis,

eddy resolvent analysis, and eddy resolvent analysis setting ReT = 1/(max(νT )) = 12.5 as done
in Ref. [49]. If νT = ReT , then only the mean profile is affected by changes in Reynolds number.

FIG. 13. Mode shapes for k = (1, 2,U +
CL − 2) from (a) standard resolvent analysis, (b) eddy resolvent

analysis, and (c) eddy resolvent analysis setting ReT = 12.5. The Reynolds numbers range from Reτ = 180 up
to Reτ = 20 000.
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FIG. 14. Mode shapes for (k+
x , k+

y , c+) = (2π/1000, 2π/100, 10) from (a) standard resolvent analysis,
(b) eddy resolvent analysis, and (c) eddy resolvent analysis setting ReT = 12.5. The Reynolds numbers range
from Reτ = 180 up to Reτ = 20 000.

All sets of modes are computed for the same Reynolds numbers that appeared in Fig. 12 and are
normalized by the maximum value of the streamwise velocity component. The resolvent modes in
Fig. 13(a) are influenced heavily by the choice of Reτ . The streamwise and spanwise velocity com-
ponents become increasingly localized about the critical layer at z = −0.5 as the Reynolds number
increases. The shape of the wall-normal component, on the other hand, is roughly constant but
its magnitude relative to the wall-parallel velocity components decreases with increasing Reynolds
number.

The impact of Reynolds number on the eddy and constant ReT modes in Figs. 13(b) and 13(c)
is negligible. The only difference among the eddy modes in Fig. 13(b) is that for Reτ = 180, the
streamwise and spanwise velocity components are less attached to the wall in comparison to the
other profiles which appear more blunt, i.e., flatter, near the wall. A similar difference emerges
between the eddy and constant ReT modes in that neither the streamwise nor spanwise components
exhibit blunt behavior near the wall for any Reynolds number considered. The agreement between
eddy and constant ReT modes, nonetheless, is remarkable given that the constant eddy viscosity
model is so simple.

The applicability of the constant eddy viscosity model, however, is limited to scales that have
maximum streamwise energy at z = ±0.5. Figure 14 compares the mode shapes for (k+

x , k+
y , c+) =

(2π/1000, 2π/100, 10), which are representative of the near-wall cycle, from standard resolvent
analysis, eddy resolvent analysis, and eddy resolvent analysis setting ReT = 1/(max(νT )) = 12.5.
The Reynolds number has little impact on the resolvent and eddy modes but has a major impact
on the constant ReT modes. As the Reynolds number increases, the mode shapes become increas-
ingly less localized about the critical layer. The location of the peak energy of all three velocity
components, furthermore, gradually shifts closer to the channel centerline and away from the wall.
Although it is not shown in the interest of brevity, the same trends can be observed for other values
of ReT . The wall-varying profile of the eddy viscosity near the wall, consequently, is essential to
capture the correct mode shapes for wavenumber triplets that are associated with the near-wall cycle.

VI. NONLINEAR ENERGY TRANSFER AND EDDY VISCOSITY

The improved agreement between SPOD and eddy modes indicates that eddy viscosity is able to
partially model the effect of f̂ for particular scales such as modes 1 and 3. In this section, the energy
dissipation and transport that are introduced by the eddy viscosity are examined in greater detail
to explain the success or failure of eddy analysis in predicting the correct structures. Section VI A
considers the effect of the wall-normal-varying effective Reynolds number νT (z) − ν and also the
eddy viscosity gradient ν ′

T = dνT /dz. In Sec. VI B, the dissipation and transport are examined
across wall heights in order to determine how they affect the eddy mode shapes. It is demonstrated in

064601-17



SEAN SYMON et al.

Sec. VI C that artificially adjusting the eddy viscosity gradient can significantly manipulate the eddy
mode shapes, particularly in the near-wall region. Section VI D discusses the types of interactions
that are modeled by the eddy viscosity.

A. Eddy dissipation and transport

As explained in Ref. [8], the addition of eddy viscosity introduces new dissipation and transport
terms into the kinetic energy balance for each scale. These terms can be derived by expanding the
viscous term in Eq. (9) and Fourier-transforming in the homogeneous directions

∇ · [νT (∇û + ∇ûT )] = νT ∇2û + (∇ · νT )(∇û + ∇ûT ), (20)

where factors of 1/Reτ and 1/ν have been ignored to simplify the analysis. Rewriting Eq. (20) in
index notation, taking the inner product with respect to ui, averaging the final expression in time, and
then isolating the contribution of the eddy viscosity gives the additional dissipation and transport
terms introduced by eddy viscosity as

Êdd (kx, ky, z)

= −νt (z)
∂ ûi

∂x j

(
∂ û∗

i

∂x j
+ ∂ û∗

j

∂xi

)
︸ ︷︷ ︸

D̂(kx,ky,z)

+νt (z)
∂

∂x j

[
ûi

(
∂ û∗

i

∂x j
+ ∂ û∗

j

∂xi

)]
︸ ︷︷ ︸

V̂ (kx,ky,z)

+dνt (z)

dz
ûi

(
∂ û∗

i

∂z
+ ∂ŵ∗

∂xi

)
︸ ︷︷ ︸

Ĝ(kx,ky,z)

, (21)

where i, j = 1, 2, 3 and νt = νT − ν. The term D̂ is the dissipation due to eddy viscosity and this
term is guaranteed to be negative at all wall-normal locations. V̂ + Ĝ is transport introduced by the
eddy viscosity, with V̂ the transport due to the wall-normal profile of νt and Ĝ the transport due
to the wall-normal gradient of eddy viscosity, dνt/dz. The combined effect of eddy viscosity is
Êdd = D̂ + V̂ + Ĝ and, without eddy viscosity, Êdd = 0.

B. Positive and negative energy transfers

It is guaranteed that D̂ is real and negative at all wall-normal locations, but this is not the case for
the transport term V̂ and Ĝ since V̂ + Ĝ has to integrate to zero over the wall-normal direction. For
instance, it can be shown that Ĝ is likely to be positive near the wall. If the final term of Eq. (21) is
expanded in full, then Ĝ becomes

Ĝ = dνt

dz
û
∂ û

∂z
+ dνt

dz
v̂
∂ v̂

∂z
+ 2

dνt

dz
ŵ

∂ŵ

∂z
+ dνt

dz
û
∂ŵ

∂x
+ dνt

dz
v̂
∂ŵ

∂y
. (22)

Assuming that the streamwise velocity component is significantly stronger than the spanwise and
wall-normal components, i.e., û � v̂, ŵ, then Eq. (22) can be approximated as

Ĝ ≈ dνt

dz
û
∂ û

∂z
. (23)

For the lower wall, û = 0 due to the no-slip condition and both û and ∂ û
∂z must be either both positive

or negative moving away from the wall. In either case, the product of û and ∂ û
∂z is positive. As shown

in Fig. 15, dνt
dz > 0 near the lower wall so the product of all three terms that appear in Eq. (23) is

positive in the near-wall region. Although several approximations have been made to arrive at this
result, it is significant because V̂ and Ĝ attempt to model nonlinear transport processes. If V̂ or Ĝ
can have significant positive values near the wall as implied here, then it would imply that eddy
viscosity models significant energy transport towards the wall. It is then important to understand
how this transport towards the wall compares to DNS.

Before examining profiles of D̂(z), V̂ (z), and Ĝ(z) for specific scales, it is worth commenting
further on the eddy viscosity gradient profiles in Fig. 15. Similar to the νT profiles in Fig. 12, it can
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FIG. 15. Wall-normal profiles of the eddy viscosity gradient ν ′
t for various Reτ .

be observed that Reτ has a negligible impact on ν ′
t for most wall-normal locations. The maxima and

minima of profiles become more extreme and closer to the wall as Reτ increases. This localization
suggests that Ĝ(z) is likely to be more concentrated in the near-wall regions and have a larger
magnitude for higher Reynolds numbers.

Figure 16(a) compares Q̂(z) = −ûi
∂

∂x j
ûiu j , the time-averaged nonlinear transfer from DNS, for

(kx, ky) = (0, 4) with Êdd (z) in Fig. 16(b). Since the DNS results are averaged in time, they include
contributions from all frequencies (wave speeds), whereas the eddy predictions are for the most
energetic frequency only. This is a reasonable approximation since ω = 0 dominates over all other
frequencies (recall that wave speed is ill defined for kx = 0 modes). There is good agreement
between Q̂(z) and Êdd (z) at nearly all wall-normal locations other than the near-wall region. In the
region very close to the wall Êdd (z) correctly predicts positive energy transfer, but its magnitude
is too large. In Fig. 16(c), Êdd (z) is split into the contributions from D̂(z), V̂ (z), and Ĝ(z). From
Fig. 16(c) we see that Ĝ(z) is responsible for the positive contributions to Êdd (z), as predicted by
Eq. (23), and that D̂(z) and V̂ (z) account for the bulk of the negative contributions. Close to the wall
V̂ (z) does have a positive contribution towards Êdd (z); however, this contribution is insignificant
in comparison to Ĝ(z).

FIG. 16. (a) Time-averaged nonlinear transfer from DNS for (kx, ky ) = (0, 4) compared to (b) Êdd (z) and
(c) its components for ω = 0.
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FIG. 17. (a) Time-averaged nonlinear transfer from DNS for (kx, ky ) = (4, 30) compared to (b) Êdd (z)
and (c) its components for c+ = 10.

Figure 17(a) compares Q̂(z) for (kx, ky) = (4, 30) with Êdd (z) in Fig. 17(b). The eddy predic-
tions are for the most energetic wave speed c+ = 10. Good agreement can be observed between Q̂(z)
and Êdd (z) although Êdd (z) is most negative at z+ = 20 instead of z+ = 15. Similar to the previous
scale considered in Fig. 16, Êdd (z) overestimates the positive energy transfer in the near-wall region
which, as seen in Fig. 17(c), is mainly driven by Ĝ(z).

It can be concluded that the eddy viscosity gradient plays an important role in modeling positive
energy transfer processes. The predicted Êdd (z), nonetheless, exceeds the true nonlinear transfer
in the near-wall region. The next section considers the effect of artificially weakening the eddy
viscosity gradient to analyze its impact on the resulting mode shapes.

C. Artificially adjusting the eddy viscosity gradient

In this section, the strength of the eddy viscosity term is altered by introducing a scaling factor G
such that Eq. (20) becomes

∇ · [νT (∇û + ∇ûT )] = νT ∇2û + G(∇ · νT )(∇û + ∇ûT ), (24)

where G � 0 controls the strength of the eddy viscosity gradient term. Figure 18 illustrates the
impact of artificially adjusting G for mode 0. It can be seen that as G increases, the peak energy
of the streamwise and spanwise velocity components shifts closer to the wall. The shape of the
wall-normal velocity component is less affected but its magnitude decreases. It can be reasoned that
increasing G results in greater positive energy transfer in the near-wall region. The energy of the
modes, consequently, is redistributed towards the wall and to the wall-parallel velocity components.
For some scales, G is too strong, resulting in too much energy in the streamwise and spanwise

FIG. 18. Leading eddy modes for k = (0, 4, 0) for various strengths of the eddy viscosity gradient G.
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FIG. 19. Leading eddy modes for k = (1, 2, 18.5) for various strengths of the eddy viscosity gradient G.

velocity components near the wall as seen for mode 2 in Sec. V A. These biased mode shapes
explain why linear-based estimation techniques that use an eddy viscosity model, e.g., Refs. [41,46],
overpredict the strength of fluctuations in the near-wall region when measurements are known in the
logarithmic region. The biased mode shapes are also consistent with Ref. [21], which found that the
eddy viscosity model underestimates fluctuations when using wall-based measurements.

Figure 19 presents the effect of G on the mode 1 shapes. Unlike mode 0, G has almost no impact
on the structures although the spanwise component becomes slightly less energetic relative to the
other velocity components as G increases. The main difference occurs in the streamwise velocity
component very close to the wall. The inset of Fig. 18 shows that the mode shape becomes flatter
or more blunt as G increases. Similar to mode 0, the flatter profiles can be attributed to Ĝ injecting
energy in this region of the flow. This also explains why the constant eddy viscosity model, which
has a wall-normal gradient of zero everywhere, was not able to reproduce the near-wall behavior in
Fig. 13(c) that appeared in Fig. 13(b).

D. Discussion

The previous sections have analyzed the energy transfer processes that can be modeled by the
Cess eddy viscosity profile. This section aims to contextualize these results with respect to recent
low-order modeling efforts in the literature. One key challenge is to identify the smallest subset of
nonlinear interactions that are needed to sustain a wall-bounded turbulent flow at high Reynolds
numbers. The generalized quasilinear (GQL) approximation [50], in particular, is able to reproduce
key statistical features of wall-bounded turbulence [30]. The GQL approximation decomposes the
flow into a low-wavenumber group and a high-wavenumber group. Nonlinear interactions involving
the high-wavenumber group are removed. If the low-wavenumber group is restricted to the mean
flow, the quasilinear approximation (QLA) is recovered [51–54].

Reference [30] has shown that the GQL approach retains triadic interactions that are responsible
for the scattering mechanism and inverse energy transfer in the near-wall region. The former can
be attributed to low-high wavenumber interactions that feed into high wavenumbers while the latter
arise from high-high wavenumber interactions that feed into low wavenumbers. It is posited that
the negative energy transfer modeled by eddy viscosity through D̂ can be interpreted as a scattering
mechanism that removes energy from larger scales and redistributes it to smaller scales. The positive
energy transfer introduced by Ĝ, on the other hand, models the inverse energy transfer in the near-
wall region. The combined effect of these two transfers, therefore, encapsulates the effect of small
scales on the large scales.

VII. CONCLUSIONS

The predictions of resolvent analysis with and without eddy viscosity have been evaluated
for a friction Reynolds number of Reτ = 550. The eddy resolvent predicted better the low-rank
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behavior of SPOD modes in comparison to the standard resolvent. The low-rank map of the
standard resolvent, however, was able to predict well the turbulent kinetic energy spectrum. In all
other metrics, nonetheless, predictions from the eddy resolvent agreed better with DNS over the
standard resolvent. The highest projection coefficients were obtained for eddy modes with wave
speeds of c+ = 10 and c+ = 18.9. These correspond to structures associated with the near-wall
cycle and structures that are most energetic at z = ±0.5. The maximum wave speed identified by
the eddy resolvent was also found to match that of DNS for these two types of structures. For
most wavenumber pairs, however, both standard and eddy resolvent analysis failed to predict the
maximum wave speed. Resolvent analysis overestimated the correct wave speed while eddy analysis
underestimated the correct wave speed.

The importance of wave speed on the projection coefficients motivated the selection of specific
scales for comparing the SPOD modes to the resolvent and eddy modes. Consistent with previous
studies, resolvent modes tended to be localized around the critical layer [1] and the streamwise ve-
locity component was too strong relative to the spanwise and wall-normal velocity components. All
three velocity components of the eddy modes, meanwhile, matched their SPOD counterparts for the
wave speeds of c+ = 10 and c+ = 18.9. For other wave speeds, eddy resolvent analysis predicted
structures that were energetic closer to the wall than the SPOD modes. It was concluded that for
higher Reynolds numbers, SPOD and eddy modes will agree for c+ = 10 and c+ = U +

CL − 2 due to
the invariance of the Cess profile in the near-wall region up to z+ = 15, when it is premultiplied by
Reτ , and in the outer region where it is maximum at z = ±0.5. Modes for c+ = U +

CL − 2 could also
be obtained with reasonable accuracy by setting νT = ReT = 12.5.

Finally, there was an investigation into the energy dissipation and transport terms that are
modeled by the Cess profile. The eddy dissipation acts as an effective Reynolds number that varies
spatially. Similar to dissipation, this effective Reynolds number term is guaranteed to be real and
negative. The eddy transport term, on the other hand, has two contributions: one that originates
from the wall-normal profile of eddy viscosity and the second that originates from the wall-normal
gradient of the eddy viscosity. This term that originates from the eddy viscosity gradient tends to
be positive in the near-wall region. The combined effect of these energy transfer processes models
well the actual nonlinear transfer taking place in DNS, although the positive energy transfer near
the wall is overestimated. This explains the tendency for eddy modes to be too energetic near the
wall.

In order to further improve predictions from resolvent analysis, the Cess profile could be replaced
with a scale-dependent eddy viscosity. Reference [16], for example, solved an inverse problem to
find the eddy viscosity profile that maximized the projection of the leading resolvent mode onto
the leading SPOD mode. The drawback of this approach is that it requires sufficient data in order
to compute the leading SPOD mode. As such, other approaches have modified the Cess profile
for individual scales using scaling arguments [41] or a stochastic approach to model background
turbulence that can inject or dissipate energy of coherent waves [26,55]. Regardless of the approach
selected, the Cess profile provides a good initial condition for optimizing an eddy viscosity [56] or
modeling the effect of nonlinear terms [57] which can improve estimating turbulent channel flows
using resolvent analysis.
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APPENDIX A: LINEAR OPERATORS

After elimination of the pressure, the linearized Navier-Stokes equations can be rewritten for the
wall-normal velocity ŵ and wall-normal vorticity η̂ = ikyû − ikx v̂. The matrices A, B, and C that
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FIG. 20. Comparison of the mean velocity, eddy viscosity, and wall-normal of the eddy viscosity profiles
from DNS to the Cess profiles.

appear in Eq. (4) are

A = M
[

LOS 0
−ikyU ′ LSQ

]
, (A1a)

B = M
[−ikxD −ikyD −k2

iky −ikx 0

]
, (A1b)

C = 1

k2

⎡⎣ikxD −iky

ikyD ikx

k2 0

⎤⎦. (A1c)

The boundary conditions are enforced on both walls as ŵ(±1) = ∂ŵ(±1)/∂z = η̂(±1) = 0.
Both D and ′ represent differentiation in the wall-normal direction and k2 = k2

x + k2
y . The mass

matrix M is defined as

M(kx, ky) =
[
�−1 0

0 I

]
, (A2)

where � = D2 − k2 and I is the identity matrix. The Orr-Sommerfeld LOS and Squire LSQ operators
(Refs. [11,58]) are

LOS = −ikxU� + ikxU
′′ + (1/Reτ )�2, (A3a)

LSQ = −ikxU + (1/Reτ )�. (A3b)

With the addition of eddy viscosity, they become

LOS = −ikxU� + ikxU
′′ + νT �2 + 2ν ′

TD� + ν ′′
T (D2 + k2), (A4a)

LSQ = −ikxU + νT � + ν ′
TD. (A4b)

APPENDIX B: DNS EDDY VISCOSITY PROFILE

In addition to the Cess eddy viscosity profile, it is possible to compute νT directly from the DNS
mean profile using [59]

νT = − z

dU +/dz
. (B1)

The values of dU +/dz near the center of the channel approach zero so a 12th-order polynomial is
fit to the νT computed from Eq. (B1) in order to obtain a smooth profile.

The mean profile obtained by integrating Eq. (B1) with the Cess eddy viscosity is compared to
the DNS mean velocity profile in Fig. 20. Very good agreement can be observed between the two
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FIG. 21. Comparison of the first eddy resolvent modes using the DNS and Cess eddy viscosity profiles for
mode 1.

profiles. The Cess eddy viscosity profile and its wall-normal gradient are compared to the profiles
computed from the DNS mean profile in Figs. 20(b) and 20(c), respectively. There is good agreement
overall between the two sets of profiles. The Cess and DNS eddy viscosity profiles diverge in the
center of the channel. The wall-normal gradients of the profiles also diverge near the center of the
channel and near the local maximum at z = −0.9.

Despite these differences, the choice of eddy viscosity (Cess or DNS) has a negligible impact
on the resulting resolvent modes. Figure 21 compares the resolvent modes for mode 1, which is
most likely to be impacted by the differences between the profiles. It can be seen that the resolvent
modes are nearly identical. It can be concluded that the resolvent modes are not very sensitive to
the choice of eddy viscosity profile as long as the maximum of νT and its wall-normal gradient are
approximated reasonably well.
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