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Rheology of dense fiber suspensions: Origin of yield stress, shear thinning,
and normal stress differences
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We explain the origins of yield stress, shear thinning, and normal stress differences in
rigid fiber suspensions. We investigate the interplay between the hydrodynamic, noncontact
attractive and repulsive, and interfiber contact interactions. The shear-thinning viscosity
and finite yield stress obtained from the Immerse Boundary Method simulations are in
quantitative agreement with experiential results from the literature. In this study, we
show that attractive interactions result in yield stress and shear thinning rheology in the
suspensions of rigid fibers. This is an important finding, given the ongoing discussion
regarding the origin of the yield stress for suspensions of fibers. The ability of the proposed
model to quantitatively predict the rheology is not limited to only shear thinning and yield
stress but also extends to normal stresses.
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I. INTRODUCTION

Fiber suspensions are widely encountered in natural and industrial applications, with examples
in paper and pulp production, biomass solutions, and chemical processing [1–5]. Under shear,
these suspensions display several non-Newtonian properties such as the Weissenberg effect [6,7],
shear thinning [8–10], nonzero normal stresses [11,12], and yield stress [10]. Specifically, shear
thinning in fiber suspensions has been an active area of research, and consequently, the literature
provides many phenomenological explanations, such as the increase in the effective particle size
due to the presence of electric double layer [13], excluded volume interactions between rigid
fibers [14], elastic bending of flexible microsized or nanosized fibers [15,16], fiber aggregation [17],
and nonlinear lubrication force [18]. However, not much attention has been paid in utilizing these
phenomenological explanations to develop robust numerical models that can capture the underlying
physics and consequently, predict suspension rheological properties.

Non-Newtonian rheology arises from a variety of interactions such as hydrodynamics, cohe-
sive [19,20], contact [21,22], and is influenced by the physical properties of fibers, e.g., roughness,
shape, size distribution, etc. [23,24]. Each of these interactions leads to a corresponding stress scale
that is competing with hydrodynamic stress. The competition between these stress scales could lead
to a rate-dependent rheological behavior [25,26]. Among these different interactions between fibers,
the influence of short-range hydrodynamic forces and direct mechanical contact has been understood
through theoretical modeling [27,28] and numerical simulations [21,29]. However, there is little
documentation on the study of fiber suspensions with noncontact interactions, even though van
der Waals forces [30], depletion forces due to dissolved noninteracting polymers [31], presence of
external fields [32] can lead to attractive forces between fibers. Therefore, it is crucial to understand
the effect of attractive and repulsive forces in fiber suspensions as they produce nonlinear scaling of
the shear stress with shear rate. Earlier efforts, including experiments on an attractive system with
nanofibers, show that the interplay between electrostatic repulsion and the van der Waals attraction
governs the degree of fiber flocculation and yielding behavior [33,34]. Moreover, shear thinning was
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observed due to adhesive interactions in the suspension of rigid microsized rodlike particles such as
polyamide (PA) [35] and ceramic fibers [36]. However, the role of noncontact interactions remained
unclear. Lately, a theoretical model of aggregated fiber suspensions, considering the adhesive force
between fibers, shows a good match with experiments on the rigid fiber suspensions [10,37]. This
model included fitting parameters, which were obtained from experimental data. None of these
explanations describe the behavior of normal stresses, and so their applicability is limited.

The apparent yield stress, i.e., the minimum stress required to begin the flow, is considered one of
the most important rheological properties of fiber suspensions. The yield stresses in the suspensions
rise as the volume fraction increases, and they are more noticeable for greater aspect ratios [12,38].
A recent theoretical model that considered attractive interactions between fibers in the dilute regime
predicted the Bingham law for the shear stress, with apparent yield stress proportional to the square
of volume fraction (φ2) [37]. The shear stress for suspensions of larger-sized rigid fibers also follows
the Bingham law, but the yield stress rises with higher power laws in φ than predicted in previous
studies [38]. The origin of yield stress has been attributed to adhesive contacts even though the fiber
size was large [35]. As pointed out in Tapia et al. [38], recent experimental studies failed to come
to a conclusion on whether the fiber size or the attractive forces are responsible for the yield stress
and mentioned the necessity of further investigation to pinpoint the origin of the yield stress.

As there is no clear explanation of the shear thinning and yield stress in fiber suspensions, we
provide a predictive model in this paper. Our proposed model incorporates short-range interactions
via attractive and repulsive interactions along with contact interactions that quantitatively capture
shear thinning rheology and yield stress in the fiber suspensions, and elucidate the effect of
noncontact interactions. Moreover, our model not only explains the yield stress and shear thinning
behavior but also accurately predicts the normal stresses, which further strengthens the validity of
our model. Lastly, we demonstrate the versatility of the proposed model by capturing the effect
of changing surface properties by accurately modeling the contact dynamics. To the best of the
authors’ knowledge, this is the first computational study to quantitatively capture the experimentally
observable rheological behavior (relative viscosity ηr , first normal stress coefficient α1, second
normal stress coefficient α2, and yield stress σy) of fiber suspensions and demonstrate the underlying
physical mechanism.

II. SIMULATION METHODOLOGY

We perform direct numerical simulations of neutrally buoyant fibers with aspect ratio A = l/d ,
where l is the length and d is the diameter of the fiber, in a shear flow generated by the top and
bottom parallel walls moving in opposite directions with a velocity U∞ = γ̇ l generating an imposed
shear rate γ̇ , as shown in Fig. 1. Here, l is the length of the fiber.

The suspending fluid is incompressible Newtonian with a viscosity η, and its flow is governed
by the Navier-Stokes equations written in a dimensionless form:

∂u
∂t

+ ∇ · (u ⊗ u) = −∇p + 1

Re
∇2u + f, (1)

∇ · u = 0, (2)

where u is the dimensionless velocity field, p is the dimensionless pressure, f is the dimensionless
volume force to account for the suspending fibers, and Re = ργ̇ l2/η is the Reynolds number, where
ρ is the fluid density, l is the characteristic length scale which is also the fiber length. We model the
fibers as in-extensible slender bodies. So, their motion for the neutrally buoyant case is described
by the Euler-Bernoulli beam equation as [24]

∂2X
∂t2

= ∂2Xfluid

∂t2
+ ∂

∂s

(
T

∂X
∂s

)
− B

∂4X
∂s4

− F + F f , (3)

where s is the curvilinear coordinate along the fiber, X = (x(s, t ), y(s, t ), z(s, t )) is the position of
the Lagrangian points on the fiber axis, T is the tension, B is the bending rigidity, F is the fluid-solid
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FIG. 1. Simulation setup of the shear flow of a fiber suspension. The top and bottom walls move with

velocities U∞ = γ̇ l in the directions shown by the arrows. γ̇ is the imposed shear rate, and l is the length of
the fibers. Here, x is the flow direction, y is the gradient direction, and z is the vorticity direction.

interaction force, and F f is the net interfiber interaction. The fibers are considered inextensible,
expressed as [39,40]

∂X
∂s

.
∂X
∂s

= 1. (4)

We use the immersed boundary method (IBM) [41] to couple the motion of fluid and solid fibers.
For the details of the numerical method, readers are referred to the Supplemental Material [42].

In the numerical simulation, the hydrodynamic interactions are well resolved with IBM. How-
ever, a fine Eulerian mesh is required to capture the short-range lubrication interactions that
increase the computational cost. So, we use lubrication correction to calculate the short-range
lubrication interactions when the inter-fiber gap is below a certain threshold. In addition, various
noncontact and contact interactions can be readily incorporated in the net interfiber interaction,
F f = Flc + Fc + Fcons, where F f is split into the lubrication correction Flc [43], contact force Fc,
noncontact conservative force Fcons = FA + FR, where FA is the van der Waals attractive force,
and FR is the repulsive force of electrostatic origin. The implementation details of the lubrication
correction Flc can be found in the Supplemental Material [42]. The expressions for attractive and
repulsive interactions are readily available from theoretical analyses and previous experimental
measurements [36,44]. The attractive force of van der Waals origin acts normally to the fiber
surfaces and is modeled as |FA| = FA/(h2 + H2), where h is the interfiber surface separation and
H is a small number, which is fixed to 0.01 to prevent the divergence in |FA| when h → 0 (during
contact). The strength of the attraction is controlled by FA, which determines the magnitudes of
the attractive force in contact. The repulsive force FR also acts in the normal direction to the fiber
surfaces but is opposite to the attractive force. FR decays with the interfiber separation h over the
Debye length κ as |FR| = FR exp(−h/κ ) [20,25]. The contact between the fibers occurs when the
interfiber separation distance h becomes smaller than the height of surface asperity hr as shown in
Fig. 2. Specifically, the single-asperity model of surface roughness has been widely used owing to its
simplicity and effectiveness [22,45–48]. Hence, we take the same approach and model the asperity
as a hemispherical bump on the fiber surface. Actual asperities might not be just hemispherical
and can come in various geometries [49]. However, on average, we can model their behavior by
approximately assuming them hemispherical as routinely done in the tribology literature [50].
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FIG. 2. A sketch of the roughness model, l and d are the length and diameter of the fiber, respectively, hr

is the asperity height, and δ = h − hr is the surface overlap. Contact occurs when δ � 0. Dots along the axes
of the fibers indicate Lagrangian points.

Finally, we split the contact force Fc into the tangential (FC
t ) and normal (FC

n ) components. The
normal contact force is modeled using a Hertz law, |FC

n | = −kn|δ|3/2, where δ = hr − h is the
asperity deformation, and kn is the normal stiffness, which is a function of the fiber material
properties [22,48]. The Coulomb’s friction law gives the tangential force, |Ft | = μ|Fn|, where the
coefficient of friction μ = 0.4 in the current work unless mentioned otherwise. The typical value of
μ is 0.3–0.5 as measured experimentally for the polymer fibers [51,52]. Even though little is known
about the friction mechanics at the nanoscale, the Coulomb friction allows a correct prediction
for flows of colloidal nanoparticles [53] or hard-sphere suspensions [45]. We use a repulsive force
magnitude as the characteristic force to scale the various forces. Consequently, the characteristics
shear rate scale is γ̇0 = FR/πηd2 and the corresponding shear stress scale is σ0 = FR/πd2.

We calculate the bulk stress (�i j) by volume averaging the viscous fluid stress and stress gen-
erated by the presence of fibers [54] and interfiber interactions. There are three main contributions
to the bulk stress: (1) the hydrodynamic contribution, �h

i j , (2) the contact contribution, �c
i j , and (3)

the noncontact contribution, �nc
i j . The calculation of bulk stress, including different contributions, is

described in the Supplemental Material [42]. Rheological properties can be quantified from the bulk
stress, e.g., the relative viscosity, ηr = σxy/ηγ̇ , where σxy is the total shear stress in the suspension.
As shown in Fig. 1, x is the flow direction, y is the gradient direction, and z is the vorticity direction.
Hence, the first and second normal stress coefficients are defined as α1(φ) = (σxx − σyy)/σ and
α2(φ) = (σyy − σzz )/σ , where φ is the volume fraction of fibers defined as φ = Nπ

4ν(A)2 , where

ν = V/l3. Here V is the total volume (5l×8l×5l ) of the simulation cell, and N is the total number of
fibers in the simulation domain. Moreover, the dimensionless fiber bending rigidity B̃, is defined as
B̃ = EI/ηγ̇ l4, where E is the modulus of elasticity of the fiber and I the second moment of inertia
around the fiber axis.

III. RESULTS AND DISCUSSION

A. Shear-rate-dependent rheology

We start our analysis by demonstrating the accuracy of the proposed model by directly comparing
the calculated relative viscosity and shear stress with experimental measurements of neutrally

TABLE I. Characteristics of the fiber suspension used in the study of Bounoua et al. [37].

Material Length l (µm) Diameter d (µm) Aspect ratio A Density (g/cm3)

500 15.2 ± 0.5 33 ± 1.0 1.340 ± 0.001
500 27.8 ± 0.5 18 ± 0.5 1.090 ± 0.001

PA 300 30.0 ± 1.0 10 1.090
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TABLE II. Range of parameters explored in this study.

Re A B̃ γ̇

γ̇0
φ

1 10,18,33 5.0 0.01–100 0.01–0.25

buoyant polyamide (PA) fiber suspensions, which exhibit a yield stress and shear thinning viscos-
ity [10,37]. PA fibers were suspended in a Newtonian fluid (a mixture of UCON oil 75H90000 in
distilled water) at different volume fractions ranging from 1% to 17%, depending on the fiber aspect
ratio. Moreover from the experimental study, we find the Reynolds number Re = 4×10−3, aspect
ratio A = 10, 18, 33, and dimensionless bending rigidity B̃ in the range of 4 − 4×104 [19,37].
The roughness (hr) of the fibers has been measured using atomic force microscopy, having values
hr = 5 ± 2 nm and hr = 14 ± 4 nm for the aspect ratio A = 18 and A = 33, respectively [10]. The
dimensionless roughness calculated as εr = hr/d is 0.0003 and 0.001 for aspect ratios 18 and 33,
respectively, corresponds to smooth fibers. The details of the fibers and suspending fluid used in the
experiment is reported in Table I [10]. In our numerical simulations, due to time-step constraint at
very low Reynolds number, we fix Re = 1. Moreover, we have chosen the value of the fiber bending
rigidity B̃ = 5.0, for which fiber remains rigid in the numerical simulations. Finally, the roughness
of the fibers is fixed to εr = 0.003 for aspect ratio 10 and 18, and εr = 0.001 for aspect ratio 33 to
mimic the experimental fibers. The parameters chosen in our simulations are reported in Table II.

The numerical and experimental comparison of the relative viscosity and flow curves in Figs. 3(a)
and 3(b) for the aspect ratios A = 18 and A = 33 shows that the proposed computational model does
an excellent job capturing the rate-dependent rheological behavior. We notice that the high shear
plateaus of the relative viscosity shift to higher shear rate values as the volume fraction increases.
We consider the bending rigidity, B̃ of fiber to be 5.0, which ensures negligible bending of the fiber
that mimic PA fibers used in the experiment. To illustrate that the fibers in the simulations remain
rigid as in the experimental setting, we have calculated the mean distance between two ends of each
fiber, where the average is performed over time and the number of fibers. Also, to visualize, we
display the fibers colocated with their center positioned at the origin of the axis, i.e., we shift their
centers to the origin and plot fibers in the same graph as shown in Fig. 4. Here, the solid red line

(b)(a)

FIG. 3. Experimental and numerical comparison of relative viscosity ηr (red symbol) and shear stress (blue
symbol) versus the nondimensional shear rate at different volume fractions: fibers with an aspect ratio (a) A =
18; (b) A = 33. Filled symbols with dashed lines show the numerical data. Hollow symbols correspond to
experiments, and solid lines in the shear stress curve denote the best fit with the Herschel–Bulkley model
equation (5) for numerical data. Experimental shear rate and shear stress have been scaled by γ̇0 = 2.5 and σ0 =
0.7, respectively. Inclusion of attractive and repulsive interactions along with interfiber contact interactions
quantitatively reproduce the experimentally observed shear-thinning viscosity and shear stress [10].
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FIG. 4. Colocated filaments projected on the shear plane for dimensionless shear rate (a) γ̇ /γ̇0 = 0.01,
(b) γ̇ /γ̇0 = 5. The solid black line shows the average orientation of the fibers with respect to the wall. As the
shear rate increases, fibers align more with the flow direction. The solid red line represents the circles with
a diameter equal to the fiber length; and the blue dashed line is the circle with a diameter equal to the mean
end-to-end distance for each case. The solid red line coincides with the blue dashed line, confirming that the
fibers are rigid. All simulations are performed with volume fraction φ = 0.17, and aspect ratio A = 18.

represents the circles with a diameter equal to the fiber length, and the blue dashed line is the circle
with a diameter equal to the mean end-to-end distance for each case. The solid red line coincides
with the blue dashed line, confirming that the fibers remain rigid. Moreover, we calculate the average
orientation of the fiber with the flow direction as shown by the solid black line. As the shear rate
increases, they align more with the flow direction [Figs. 4(a) and 4(b)], eventually decreasing the
hydrodynamic contributions. Moreover, the overall resistance of the suspension decreases as a result
of the alignment of the fibers more with the flow direction, lowering the relative viscosity. The
origin of the shear thinning rheology will be explained in detail in the next section. From the
computational flow curve (blue symbols) in Fig. 3, we observe that our numerical model does
reproduce the low shear plateau, ( γ̇

γ̇0
< 0.10), reminiscent of the yield stress and the linear segments

of the flow curve at high dimensionless shear rates, ( γ̇

γ̇0
> 0.10), observed in experiments. Due

to this trend in the flow curve, the shear stress of the fiber suspensions can be described by the
Herschel–Bulkley model as

σ

σ0
= σy + k

(
γ̇

γ̇0

)n

, (5)

where σy is the dimensionless yield stress, k is the consistency index, and n < 1 is the shear thinning
index. The solid lines in the flow curve (Fig. 3) demonstrate the best fit to the Herschel-Bulkley
model for the computational data. The yield stress σy and the fitting parameter are provided in
Table III. The yield stress for a given volume fraction is higher for fibers with a higher aspect
ratio. Furthermore, as the volume fraction rises, the yield stress increases for a fixed aspect ratio.
To analyze the concentration dependence of the yield stress, we plot the yield stress for different
volume fractions in Fig. 5(a). It is clear that σy has a weak dependence on φ in dilute and semidilute
regimes (φ � 0.10 for A = 10 and φ � 0.05 for A = 18); the dependence is seen to increase more
rapidly with φ for concentrated regimes.

Moreover, to measure the possibility of the nematic ordering in the suspension, we calculate On-
sager’s dimensionless concentration, defined as C = 0.25πL2DV , which is numerically equivalent
to solid volume fraction φ multiplied by the aspect ratio A (C = Aφ) [55–57]. The dimensionless
concentrations for isotropic (CI , above which the isotropic phase is not stable) and nematic phase
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TABLE III. Herschel-Bulkley parameters [Eq. (5)] for different vol-
ume fractions for aspect ratios 18 and 33.

A φ σy k n

0.05 0.1898 1.409 0.9975
0.11 0.8571 2.301 0.9865

18 0.17 2.9280 7.608 0.9851
0.05 0.1903 1.882 0.9935
0.09 1.5870 3.028 0.9255

33 0.11 6.5000 4.580 0.9218

(CN , above which the nematic phase is stable) are calculated to be 3.29 and 4.19, respectively. For
concentration between CI < C < CN , isotropic and nematic phases coexist [58,59]. The maximum
volume fraction we have simulated for our study is 0.25, 0.19, and 0.09 for aspect ratio A = 10, 18,
and 33, respectively. The corresponding Onsager’s dimensionless concentration can be calculated as
2.50, 3.42, and 2.97 for A = 10, 18, and 33, respectively. So, we can conclude that only for A = 18
we have performed a simulation in a state when the isotropic phase is unstable. Other cases we have
simulated can be considered isotropically stable. More discussion on nematic order parameter [60]
can be found in Supplemental Material Fig. S7 [42]. Since nematic phase stability is not the focus
of the study, hence not pushed further. The dependence of yield stress σy on φ can be well described
using the relation proposed by [61]

σy = σc

⎡
⎣

φ

φ0
y

− 1

1 − φ

φm
y

⎤
⎦

1
β

, (6)

where φ0
y is a threshold volume fraction, from which the architecture of a concentrated suspension

can sustain some external forces, and a certain stress has to be imposed on to initiate the flow [61].
In addition, φm

y denotes the maximum volume fraction at which the yield stress diverges and
beyond which the suspension does not move at any applied stress. So, we need a model with two
characteristic volume fractions to capture the variation of yield stress with volume fraction. The
fitting parameters are provided in Table IV. The threshold volume fraction φ0

y and maximum volume

(b)(a)

FIG. 5. (a) Yield stress σy as a function of volume fraction. The solid line shows the best fit of the data to
Eq. (6). (b) Yield stress σy as a function of rescaled volume fraction. Rescaling the volume fraction φ by φm

y

leads to the collapse of data (solid line in Fig. 5(b)) indicating that it is the ratio of φ to φm
y that determines the

suspension rheology.
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TABLE IV. Fitting parameters of Eq. (6) for aspect ratios, A = 10, 18,
and 33.

A φ0
y φm

y σc β

10 0.05 0.40 0.17 0.8200
18 0.03 0.30 0.14 0.8015
33 0.017 0.16 0.09 0.7473

fraction φm
y decreases with the aspect ratio. The percolation threshold volume fraction is considered

to be 0.7/A [62,63]. For aspect ratio A = 10, 18, and 33, the percolation threshold is calculated as
0.070, 0.370, and 0.021, respectively. For the aspect ratios studied in this study, φ0

y is in the dilute
regime, and below the threshold of the percolation limit. However, as the volume fraction increases
over 0.7/A, we expect percolation in the suspension.

From the data presented in Table IV, we notice that for A = 10, 18, and 33, Aφm
y = 4.0, 5.4, and

5.0, respectively. The relatively constant Aφm
y value for A = 18 and 33 matches with Philipse [58]

prediction gathered from a large number of experimental systems that the packing volume φm
y

obeys Aφm
y = 5.4 ± 0.2 for A � 20 [58]. Moreover, for A = 10, Aφm

y is found to be 4.0, which
also matches Philipse experimental data [58,64]. So, according to the Philipse [58] study, we can
conclude that the jamming of the system studied here is a geometrical property and jams at the
frictionless random close packing limit of fiber. Moreover, we have used a small value for coefficient
of fiction (μ = 0.4), hence it can be considered almost frictionless. A higher coefficient of friction,
which can arise due to higher roughness on the fiber surface, results in a lower jamming fraction
than the frictionless one. We have investigated the effect of roughness on jamming volume fraction
in our previous study [21].

Figure 5(b) shows the data after rescaling the volume fractions of Fig. 5(a) by φm
y , which leads

to the collapse of the data. Hence, the ratio of φ to the maximum volume fraction φm
y at which

the yield stress diverges determines the suspension rheology. Hence, φ/φm
y can be used as a design

parameter for tuning the fiber suspension rheology, as it is easier to measure and control compared
to other parameters, like size distribution, roughness, and friction in real-world suspensions. In the
next section, we focus on the origin of shear thinning and yield stress to understand the underlying
mechanism and control the rheological response.

B. Origin of shear thinning and yield stress

We focus on the origin of yield stress, especially with increasing the attractive force, in an attempt
to acquire a more mechanistic understanding of the shear thinning behavior. Figure 6 depicts the
effect of varying the attractive force magnitude on the rheology of a fiber suspension. The aspect
ratio and volume fraction are fixed at 18% and 17%, respectively. We do not observe yield stress in
the suspension for FA = 0. With an increase in the magnitude of the attractive force, the slope of the
shear thinning curve at low shear rate increases, which leads to a rise in the yield stress, as shown
in Fig. 6(a). With the increase in FA, the separation distance h below which the conservative force is
repulsive decreases (shown in Supplemental Material Fig. S3 [42]). At a sufficiently high attractive
force, the position of zero force and cutoff separation for lubrication (d/4) are the same, bringing
fibers into direct frictional contact. These frictional contacts can withstand applied shear stress,
increasing the yield stress and viscosity. The role of noncontact interactions can be better understood
by separating the hydrodynamic, contact, and noncontact (attractive+repulsive) contributions to
viscosity [Figs. 6(b) and 6(c)]. The hydrodynamic contribution to the overall viscosity is negligible
for the conditions under consideration. The data plotted here shows an increase in the contact
contribution to the relative viscosity as the attractive force increases. At low attractive force values,
the noncontact forces contribute the most to the overall viscosity, while contact contributions take
over at higher shear rates. Even though the attractive force is the cause of the yield stress and must
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(a) (b)

(c) (d)

FIG. 6. (a) Relative viscosity plotted as a function of dimensionless shear rate for different values of
attractive force FA. Total relative viscosity and contributions arising from hydrodynamic, conservative, and
contact forces, plotted as a function of dimensionless shear rate for A = 18, with (b) FA = 0.23FR and
(c) FA = 0.78FR. (d) The average number of fibers in contact as a function of attractive force at γ̇ /γ̇0 = 0.02.
For all cases, the volume fraction is fixed to φ = 0.17. As the attractive force increases, the relative viscosity
shifts from being dominated by the noncontact interactions to the frictional contacts induced by the attractive
force.

be large enough to generate the yield stress, we find that as the attractive force increases, the yield
stress shifts from being dominated by the noncontact attraction to frictional contacts generated by
the attractive force. Higher attractive forces pull the fibers into more direct contact, as shown in
Fig. 6(d), leading to an increase in the yield stress.

The results of this study show that as we change the volume fraction and the attractive force, the
material undergoes different rheological states, which can be demonstrated in a flow-state diagram.
Using the numerical results in the current work, we generate a flow-state diagram in the φ − FA

plane for A = 18, as shown in Fig. 7. For the range of attractive forces, the suspension is in different
states for φ < φ0

y , φ0
y < φ < φm

y , and φ > φm
y . Below an attractive force threshold (F 0

A ), no yield
stress is observed at any volume fraction. Above the threshold of attractive force, the system is
in the finite yield stress state for φ0

y < φ < φm
y . Above φ0

y , the yield stresses increase with φ and
diverge at φm

y .

C. Normal stress coefficients

In fiber suspensions, normal stress differences inevitably arise due to the presence of hydrody-
namics and interfiber interactions [12]. We compute the first and second normal stress coefficients
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Yield stress diverges

Finite yield stress

FIG. 7. The flow-state diagram shown for the volume fraction-attractive force plane showing no yield stress
(light blue), finite yield stress, and divergence of the yield stress (dark blue). φm

y line show the limits above
which a certain stress have to applied to initiate the flow, and φm

y line show the limit above which the yield
stress diverges, respectively. The solid white lines are generated by fitting equation (6) with volume fraction vs
yield stress data for different attractive forces. The dashed line shows the threshold attractive force (F 0

A ), below
which no yield stress is observed.

for A = 10, 18, and 33, and compare them with experiments [19] as shown in Fig. 8. The materials
and experimental conditions are kept the same as the ones used for the viscosity measurement [10].
Specifically, the experiments are carried out at a higher shear rate when the viscosity reached a
plateau. That is why we fix the shear rates to γ̇ /γ̇0 = 30 when the suspension viscosity reaches
a plateau in the numerical simulations. All the simulation parameters are the same as in the last
section. While the first normal stress coefficient α1 is positive, the second normal stress coefficient
α2 is negative, in quantitative agreement with the experiments in Refs. [11,12,37]. Moreover, the
magnitude of α2 is smaller than that of α1.

In addition, both normal stress coefficients decrease in magnitude with decreasing the aspect
ratio, in agreement with the experimental studies in Refs. [11,37]. The origin of the normal stress
coefficients at a high shear rate can be better understood by separating the hydrodynamic, contact,
and noncontact (attractive+repulsive) contributions to the normal stress coefficient as shown in
Figs. 8(c) and 8(d). The hydrodynamic contribution to the normal stress coefficient is negligible
for the conditions under consideration. The data presented here clearly show that normal stress
coefficients are primarily affected by contact. The normal stress coefficients of suspension increase
in magnitude as the volume fraction rise due to an increase in both the contact and noncontact
contributions. While the noncontact contribution increases weakly, the contact contribution becomes
more significant at a higher volume fraction. Moreover, to investigate the shear rate dependencies,
we measure the first and second normal stress coefficients for A = 18 and 33 as a function of the
shear rate. We observe a similar shear rate dependence for the normal stresses as we do for the
viscosity, and the data can be found in Supplemental Material Fig. S5 [42].

D. Effect of coefficient of friction on the normal stress coefficients

We have provided a quantitative explanation of the yield stress, normal stresses, and shear
thinning in the fiber suspensions. Our model does an excellent job of reproducing the experimental
data. This model can also capture and explain the effect of changing different parameters that control
rheology. As an example, we will show the capability of the model to quantify the effect of changing
fiber surface properties.

We employed our model to quantify the effect of changing fiber surface properties and compare
the results against the experimental observations by Bounoua et al. [37]. They changed the surface
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(a) (b)

(c) (d)

FIG. 8. Numerical and experimental comparison of (a) the first normal stress coefficient α1 and (b) the
second normal stress coefficient α2 as a function of volume fractions for A = 10, 18, and 33. Hollow circles
correspond to experimental data [19]. Effect of increasing the coefficient of friction μ on contributions arising
from hydrodynamic, conservative, and contact forces to the total (c) α1, (d) α2 plotted as a function volume
fractions. α1 is positive and α2 is negative in agreement with the experiments [11,12,19] at a fixed shear rate
γ̇ /γ̇0 = 30 at which the suspension viscosity reached a plateau. The data plotted here demonstrates that the
contact contribution is the dominant contributor to the normal stress coefficients at higher shear rates.

properties by washing the fibers. We hypothesize that changing the fiber surface properties will
directly modify the solid contact that can be numerically quantified by varying the coefficient
of friction. We measure the normal stress coefficients for five different volume functions (φ =
0.10, 0.11, 0.13, 0.14, 0.15) with aspect ratio A = 33, varying the coefficient of friction μ between
0.30 to 0.55. Numerical results, having μ = 0.40 and 0.48, match closely with the experiment for
washed and unwashed fibers, respectively, as shown in Figs. 9(a) and 9(b). These results demonstrate
the applicability of the proposed model to capture and quantify the effect of modifying fiber surface
properties.

The effect of friction is more pronounced on |α1| compared to |α2|. To understand the underlying
mechanism of the effect of modifying solid contact between fibers, we examine the hydrodynamic,
contact, and noncontact contributions to the normal stress coefficients for μ = 0.40 (filled symbols)
and μ = 0.55 (hollow symbols) in Figs. 9(c) and 9(d). We observe that the hydrodynamics contri-
bution is almost independent of the friction coefficient. While the noncontact contribution increases
weekly, the contact contribution increases significantly for the first normal stress coefficient α1.
The noted increase in the magnitude of α1 is, therefore, solely due to the increase in the contact
contribution. For the second normal stress coefficient α2 in Fig. 9(d), a similar conclusion holds:
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(a) (b)

(c) (d)

FIG. 9. (a) First normal stress coefficients α1 and (b) second normal stress coefficient α2 as a function of
volume fraction φ for different values of friction coefficient μ. Filled symbols with dashed lines show the
numerical data. The black and red hollow circles show experimental values for unwashed and washed fibers,
respectively [19]. The aspect ratio of the fibers was fixed to A = 33. The effect of friction on the normal stress
coefficients is significant, with a rise in |α1| and |α2|. Hydrodynamic, contact, and noncontact contributions to
(c) first normal stress coefficient α1 and (d) second normal stress coefficient α2 as a function of volume fraction
φ for friction coefficient μ = 0.40 (filled symbols) and μ = 0.55 (hollow symbols). As the volume fraction
increases, the contact contribution increases significantly, leading to an increase in the magnitude of the normal
stress coefficients.

the friction weakly affects the hydrodynamic and noncontact contributions while it significantly
increases the contact contribution.

IV. CONCLUSION

Our research provides fundamental insights into the complex rheological behavior of fiber
suspensions based on balances between hydrodynamic, conservative, and contact forces. In this
work, we provided the first quantitative explanation of the origin of yield stress, shear thinning, and
normal stress differences in fiber suspensions by focusing on contact and noncontact contributions.
Comparing the relative viscosity, the first normal stress coefficient α1, and the second normal stress
coefficient α2 with experimental measurements corroborate the proposed model. We demonstrated
that the attractive interaction of van der Waals origin results in yield stress. Moreover, we explored
the divergence of the yield stress as the suspension volume fraction, φ approaches the maximum
flowable limit, φm

y . Rescaling volume fraction, φ by the jamming volume fraction, φm
y collapsed

the yield stress data for varying aspect ratios on a single curve, denoting that changing the fiber
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aspect ratio affects the maximum volume fraction at which the yield stress diverges. In addition, we
demonstrated that the degree of shear thinning and yield stress depends on the strength of attractive
force, which can be regulated in principle by fiber size, microstructure, chemistry at solid-fluid
interfaces, and fluid and solid phase parameters such as dielectric properties [65,66].

The first and second normal stress coefficients were compared with experiments for different
aspect ratios and volume fractions to explore the dilute, semidilute, and concentrated regimes. The
results showed that the first normal stress coefficient α1 is positive and the second normal stress
coefficient α2 is negative, in agreement with available experiments [11,12,19]. As expected, the
contact contribution is the dominant contribution to the normal stress differences at higher shear
rates because noncontact contributions become less and less important as the shear rate increases.

A direct comparison of normal stress coefficients with the experiment was performed when the
fiber surface was modified. We captured the impact of changing fiber properties by modifying
the frictional contact by changing the coefficient of friction. Interestingly, the friction appeared
to act primarily through the contact stresses, as the hydrodynamic and noncontact stresses were
unaffected by friction. Our results demonstrated the importance of accurately modeling the interfiber
interactions to capture the experimentally observed shear-rate-dependent rheological behavior of
fiber suspensions. Due to the complexity of attractive and friction forces at the microscopic scale
and the number of parameters that are potentially relevant in the surface physical chemistry, the
next step would be to quantitatively determine the attractive and frictional force from colloidal
probe AFM measurements.
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