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Dynamics, wakes, and regime transitions of a fixed angular particle
in an unbounded inertial flow. II. From tetrahedron to sphere
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In this study, we investigate an unbounded Newtonian fluid flow past a stationary
Platonic polyhedron. To reveal the effects of the particle angularity and angular position on
the flow regime transitions, we select the three following different angular positions of the
Platonic polyhedrons: a face facing the flow (F), an edge facing the flow (E), and a vertex
facing the flow (V). We consider all five Platonic polyhedrons whose sphericity increases
with the number of faces and a sphere as an asymptotic polyhedron of sphericity 1 featuring
an infinite number of faces. Two well-known regime transitions are studied as a function
of the particle sphericity, the particle angular position and the particle Reynolds number
Re: the loss of symmetry in the particle wake region and the loss of stationarity of the
flow. In the multiplanar symmetry regime, the flow symmetry in the particle wake region
is highly related to the particle front surface. The number and orientation of particle front
surface edges determine the wake vorticity pattern. With increasing Re, the steady flow
past an angular particle transitions to a planar symmetry regime for all particle shapes and
all particle angular positions. The plane of symmetry in the planar symmetry regime selects
one of the axis in the multiplanar symmetry regime, and its direction may change in time
and/or with Re. In the unsteady regime, we notice a wide variety of periodic hairpin vortex
shedding modes. These vortex shedding modes are determined by the shape of the flow
recirculation region, which itself is a reflection of the angularity and the angular position
of the particle. Furthermore, we present an in-depth analysis of the hydrodynamic forces
exerted on the Platonic polyhedrons at the vertex angular position (V) for a wide range of
Reynolds numbers 100 � Re � 500. We attempt to understand and explain the significant
variations in the flow regime transitions brought by the particle angularity and the particle
angular position.

DOI: 10.1103/PhysRevFluids.8.064305

I. INTRODUCTION

The generic problem of inertial flows past a three-dimensional bluff body has been investigated
for decades due to its omnipresence in engineering applications and human activities such as
particulate air pollution, river sedimentation, and ocean dynamics [1–4]. The dynamics and path
instability of particles such as solid spheres [5], cubes [6,7], oblique bodies [8], disks [9,10], or
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spheroidal bubbles [11] have been a focus of many recent researches. For freely moving particles
in a carrier fluid phase, the dynamics of one phase affect the other in various ways, leading to
complicated two-way interactions and complex flow dynamics that are difficult to decouple. In
some engineering applications, such as steady underwater vehicles in constant current, or freely
moving particles in a vertical path, the ideal scenario of steady flow past a fixed particle can be
representative. For a fixed particle in a flow, which is the focus of this study, two main features
are considered in the flow-particle interaction: (i) the regime transition and vortex structures in the
particle wake region and (ii) the hydrodynamic forces exerted on the particle by the surrounding
fluid, such as the drag force and the lift force. The understanding of these two features is beneficial
to better comprehend the overall complex behavior of particle-flow interactions in both the fixed
particle and freely moving particle cases.

Many previous studies focus on the basic configuration of a Newtonian flow past an isolated
sphere, considering its omnidirection symmetry [12–15]. In 1961, the regime transition mechanisms
were observed and discussed by Magarvey et al. [16] using dye visualization experiments of a
flow past a sphere. Johnson and Patel [17] proposed a thorough analysis of the dynamics of the
laminar flow past a fixed sphere. A symmetry-breaking process was proposed and the unsteady
vortex shedding dynamics are discussed. One hairpin vortex structure detached from the sphere
rear region, followed by another hairpin structure induced by the interaction between the near-wake
flow and the outer flow. This process repeats and a sequence of two-sided alternative hairpin vortex
shedding occurs in a constant-oriented plane.

Particles other than a sphere would experience different cross-sectional forces depending on their
angular position with respect to the incoming flow. To elucidate the effects of the particle shape and
angularity on the flow regimes, several researchers studied the flow past a fixed/moving angular
particle such as a cube or a tetrahedron, at low and intermediate Reynolds numbers [18–21]. In
soil, rock mining engineering, and powder metallurgy applications, polyhedral solids are frequently
encountered. For example, cubic particles can be used as catalysts, absorbents, and ferrofluids in the
form of meta colloids [22]. A careful investigation of a laminar flow past a fixed cube was carried out
by Saha et al. [18,23] for a low and moderate Reynolds number 20 � Reedge � 300, where Reedge

is the Reynolds number defined using the edge length of the cube. For the flow regimes studied, the
drag coefficient was found to decrease with Reedge, whereas one component of the lift coefficient
rose in the planar symmetry regime. Klotz et al. [24] investigated experimentally the wake region
behind a cube with a face facing the flow for moderate Reynolds numbers 100 � Reedge � 400.
Two flow bifurcation mechanisms were confirmed and the vorticity in the wake region was reported
to originate from corners of the bluff body for the flow regimes studied. This conclusion can be
generalized to other angular particles, that the corner-induced vorticity (edge-induced vorticity in
our study [25]) is important for the characterization of the particle wake flow regimes. Recently,
Meng et al. [26] performed a series of highly resolved body-fitting numerical simulations of flows
at small and moderate Reynolds numbers 1 � Reedge � 400. To reveal the flow regime transition
mechanisms, various physical properties in the wake region of a fixed isolated cube, such as the
streamlines, the vorticity pattern and the vortex-shedding frequency, were discussed. Four different
regimes were identified: the orthogonal symmetry-steady (OSS), planar symmetry-steady (PSS),
hairpin-vortex shedding (HS), and chaotic vortex shedding (CS) flow regime. Compared to the flow
past a sphere, the sharp edges of the angular particles can lead to a different class of flow regimes.
We shall see that most flow features in both steady and unsteady regime are dependent on the particle
geometric shape, especially the edges on the particle front surface.

Flows past a cube undergo two supercritical bifurcations with increasing Re: (i) the first regular
pitchfork bifurcation where the flow transitions from the orthogonal symmetric regime to the planar
symmetry regime and (ii) the Hopf bifurcation where the flow becomes unsteady with hairpin
vortices shed in the particle wake region [24]. The hairpin vortex shedding is reported to retain the
planar symmetry with respect to a fixed plane. Then with increasing Re, the planar symmetry breaks
and the vortex shedding begins to become chaotic [18]. The Landau’s amplitude equation [27] was
used to accurately determine the critical Reynolds numbers for the two supercritical bifurcations
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[24,26]. Apart from the sphere and cube, several investigations were carried out on the inertial flows
past a nonspherical bluff body such as a cylinder [7,28–30] and an ellipsoid [31–33].

In addition to the flow dynamics in the particle wake region, various correlations of the drag
coefficient Cd have been established from numerical and experimental data to address the needs
of industrial and engineering applications [34]. Based on a large database of experimental mea-
surements [35], Haider and Levenspiel [36] established a correlation of the drag coefficient for
nonspherical particles as a function of the sphericity and the Reynolds number, which is still widely
used today in academic research as well as in engineering activities. The drag coefficient data used to
draw this correlation, however, were obtained from freely settling particle experiments. The particles
adopt time-dependent angular positions in the flow during the free settling/rising process. Even
though it agrees well with experimental data, this correlation using only sphericity as a parameter
fails to account for the particle angular position, which has been shown to have important effects
on the fluid flow [37–39]. In 2008, Holzer et al. [40,41] obtained another correlation based on
experimental data for the drag coefficient of various nonspherical particles using both the crosswise
and lengthwise sphericity to account for the particle angular position [35,42]. This correlation was
reported to have good accuracy for general nonspherical particles, but the correlation of Haider et al.
[36] seems to be more accurate for isometric angular particles.

Richter et al. performed body-fitting numerical simulations of a fixed cube with various attack
angles in laminar flows and proposed a correlation for the drag coefficient Cd [32,39]. The significant
influence of the attack angle on the flow has been elucidated and emphasized. However, these studies
only focused on a single particle shape, the cube, and considered a narrow range of Reynolds
numbers. In Part I of this work [43], we investigated the unbounded flow past a fixed isolated
regular tetrahedron (the most angular Platonic polyhedron) at the same three angular positions as
those considered in the present work: edge facing the flow (TE), face facing the flow (TF), and
vertex facing the flow (TV). A new symmetric double-hairpin vortex shedding (DHS) regime was
noted in the TE case due to its unique angular position that features orthogonal symmetry. The
formation of the double-hairpin vortices was considered to result from the U-shape recirculation
region in the particle wake. We showed that the regime transition and vortex structures for the flow
past a tetrahedron are highly dependent on its angular position.

Regardless of the existing large body of knowledge on particle-laden flows, the effects of the
particle angularity on the flow regime transitions still remain unclear. A sound understanding of
the flow past a fixed angular particle is pivotal to future studies of freely moving angular particles
which are of vital importance in meteorology and sedimentology [44]. The current study uses a
high-fidelity finite volume fictitious domain method implemented on a Cartesian adaptive octree
grid to investigate the flow past a Platonic polyhedron in the range of Reynolds number 100 � Re �
500. The Platonic polyhedrons are five isometric convex polyhedrons with an increasing number of
polygonal faces, which are ideal candidates to describe the transition from highly angular particles to
a smooth sphere [45,46]. For all Platonic polyhedrons, we observe the vorticity symmetry breakup,
rich vortex structures and various new vortex shedding modes and provide a thorough analysis of
the exerted hydrodynamic forces at the vertex facing the flow angular position (V).

The following is how this paper is organized: Sec. II gives the numerical method and dimen-
sionless numbers involved in the current study; Sec. III describes the numerical setup, boundary
conditions as well as geometric features of Platonic polyhedrons at the three angular positions;
The validation of the numerical method and the choices of simulation parameters are presented
in Sec. IV; Sec. V elucidates the effects of particle angularity on the fluid velocity and vorticity
distribution and consequently on the flow regime transitions. We analyze the multiplanar symmetry
regime, the planar symmetry regime, the periodic vortex shedding regime and the chaotic vortex
shedding regime. A comprehensive discussion is given on the exerted hydrodynamic forces and
vortex shedding frequency for all Platonic polyhedrons at the V position; Finally, we draw conclu-
sions and perspectives for future work in Sec. VI.
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II. NUMERICAL METHOD AND DIMENSIONLESS NUMBERS

The distributed Lagrange multiplier/fictitious domain (DLM/FD) method describes a rigid body
immersed in a fluid by representing its space with a fictitious fluid domain P that is enforced to
behave as a rigid body. In the following, we use an asterisk ∗ for dimensional quantities. Considering
a cubic computational domain � with boundary �, a solid subdomain P, i.e., an obstacle is dispersed
in a Newtonian fluid of constant density ρ∗

f and viscosity μ∗
f . The fluid subdomain is denoted as

� \ P to keep the liquid and solid strictly separated (� \ P
⋂

P = 0). In many previous works, the
main features of the DLM/FD method employed in this paper have been comprehensively presented
[47–51]. For the sake of brevity, we only recall the governing equations for the fluid motion and the
combined equation of motion for the particle-fluid mixture.

A. Distributed Lagrange multiplier/fictitious domain (DLM/FD) method

The incompressible flow of a Newtonian fluid satisfies the following conservation of momentum
and mass:

ρ∗
f

(
∂u∗

∂t∗ + u∗ · ∇u∗
)

= −∇p∗ + μ∗
f �u∗ in � \ P (1)

∇ · u∗ = 0 in � \ P, (2)

where u∗ denotes the fluid velocity vector and p∗ the pressure; � is the computational domain and
P denotes the rigid particle.

The DLM/FD method relies on deriving an equation of motion for the fluid-particle mixture
by combining the weak formulation of the fluid motion equation and that of the rigid particle.
First, the weak formulation for the fluid subdomain � \ P is obtained by imposing the rigid-body
motion constraint (here the particle is stationary) on the particle surface ∂P. Then by imposing
the rigid-body motion constraint in the whole particle subdomain P, the formulation is extended to
the computational domain � and corresponds to the so-called combined equation of motion. Finally,
Lagrange multipliers λ∗ are used to relax the rigid-body motion constraint in the particle subdomain
P. Denoting W� , W0, L0, and � functional spaces of the solution satisfying boundary conditions
[51], we solve in the case of a single stationary particle P in the following constrained problem: find
u∗ ∈ W� , p∗ ∈ L2

0 and λ∗ ∈ � such that:
(1) Combined equation of motion:∫
�

ρ∗
f

(
∂u∗

∂t∗ + u∗ · ∇u∗
)

· v∗dx −
∫

�

p∗∇ · v∗dx +
∫

�

μ∗
f ∇u∗ : ∇v∗dx = −

∫
P
λ∗ · v∗dx, (3)∫

P
α∗ · u∗dx = 0. (4)

(2) Continuity equation: ∫
�

−q∗∇ · u∗dx = 0, (5)

for all v∗ ∈ W0, q∗ ∈ L2(�), and α∗ ∈ �. Finally, we rewrite Eqs. (3)–(5) in a nonvariational form
that is more amenable to a finite volume (or a finite difference) spatial discretization [50,51].

We adopt the numerical approach of Ref. [51] that implements the DLM/FD solver in
the open-source code Basilisk [52]. Basilisk offers a flexible implementation of hierarchically
refined Cartesian grids and multigrid solvers with remarkable convergence features to solve
Poisson/Helmholtz-type problems [52], as well as a second-order accurate projection algorithm to
solve Eqs. (1) and (2). In a more general problem involving freely moving particles, an additional
granular subproblem is solved using our in-house Grains3D solver [53,54] owing to its ability to
handle efficiently collisions between rigid particles of complex shape. The particle motion is not
considered here but Grains3D is used to create and position the rigid particles in the flow domain.
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Further information on the implementation and validation of the DLM/FD solver can be found in
the prior works of our group [43,49–51].

B. Dimensionless numbers

The current study involves the following essential dimensionless quantities: (i) the particle
sphericity φ, the particle Reynolds number Re, and the particle angular position as input parameters,
and (ii) the drag coefficient Cd , the lift coefficient Cl , the dimensionless vorticity ω, and the Strouhal
number St as output parameters.

The particle sphericity φ is a measure of how closely a particle shape matches a perfect sphere. It
is defined as the ratio of the surface area of a sphere S∗

sph to the surface area S∗
p of an angular particle

with the same volume:

φ = S∗
sph

S∗
p

. (6)

The closer φ is to 1, the closer the angular particle shape is to a sphere. In the following discussions,
the sphere with the same volume as the investigated angular particle is named the volume-equivalent
sphere.

The particle Reynolds number Re is defined as

Re = ρ∗
f U

∗
0 D∗

sph

μ∗
f

, (7)

where D∗
sph denotes the diameter of the volume-equivalent sphere:

D∗
sph =

(
6

π
V ∗

Platonic

)1/3

, (8)

with V ∗
Platonic the volume of the Platonic polyhedron. We would like to remind the readers that the

particle Reynolds number Re defined here is different from the edge Reynolds number Reedge used
for the previous studies of flow past a fixed cube [23,26]. Since the edge length of Platonic polyhe-
drons with the same volume has different values, we choose the diameter of the volume-equivalent
sphere D∗

sph as a characteristic length.
The drag coefficient is defined as

Cd = 8F ∗
x

ρ∗
f U

∗,2
0 πDsph

∗,2
, (9)

where F ∗
x denotes the streamwise component of the hydrodynamic force F∗ exerted on the stationary

particle defined as follows:

F∗ =
∫

∂P
[−p∗I + μ∗

f (∇u∗ + ∇u∗,T )] · n̂dS =
∫

P
λ∗dx, (10)

where n̂ denotes the outward-oriented unit normal vector to the particle surface ∂P. Please note
that in the context of the DLM/FD method and for a stationary particle [55], F∗ is computed as the
integral of the Lagrange multipliers over P in Eq. (10).

The particle lift coefficient Cl and its two components along y and z axis (Cl,y and Cl,z) are defined
similarly:

Cl,y = 8F ∗
y

ρ∗
f U

∗,2
0 πD∗,2

sph

Cl,z = 8F ∗
z

ρ∗
f U

∗,2
0 πD∗,2

sph

, (11)
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where F ∗
y and F ∗

z denote two components of the lift force. The magnitude of the lift force coefficient
Cl is defined as

Cl = (
C2

l,y + C2
l,z

)1/2
. (12)

Three components of the dimensionless vorticity are defined as

ωx = ω∗
x D∗

sph

U ∗
0

, ωy = ω∗
y D∗

sph

U ∗
0

, ωz = ω∗
z D∗

sph

U ∗
0

, (13)

with ω∗
x (ω∗

y , ω∗
z ) the corresponding component of the vorticity in the x (y, z) direction.

The Strouhal number describes the flow oscillating mechanism in the wake region of the particle:

St = f ∗
c D∗

sph

U ∗
0

, (14)

where f ∗
c denotes the dominant frequency of the vortex shedding. Note that the Strouhal number St

is therefore the dimensionless frequency using U ∗
0 /D∗

sph as the characteristic frequency scale, i.e.,
the inverse of the advective timescale, to make f ∗

c dimensionless.

III. NUMERICAL SETUP

We consider a stationary rigid Platonic polyhedron in a large fluid cubic domain with an edge
length L = L∗/D∗

sph = 40. A Newtonian fluid flows past the fixed Platonic polyhedron located at
(xp, yp, zp) = (10, 20, 20) at three different angular positions: an edge (E) facing the flow, a face (F)
facing the flow, and a vertex (V) facing the inlet flow. We refer to the cubic computational domain
boundaries (i.e., the cube faces) as left and right in the x direction, top and bottom in the y direction
and front and behind in the z direction such that � = left ∪ right ∪ top ∪ bottom ∪ front ∪ behind. u
satisfies homogeneous Neumann boundary conditions on the right boundary and Dirichlet boundary
conditions on all the other boundaries as well as on the surface ∂P on the stationary particle (no-slip
condition). Denoting U0 the inlet velocity, the complete set of boundary and initial conditions reads
as follows:

u(x, t ) = (U0, 0, 0) on � \ right, (15)

u(x, t ) = (0, 0, 0) on ∂P, (16)

∂u
∂x

(x, t ) = (0, 0, 0) on right, (17)

u(x, 0) = (U0, 0, 0) in � \ P, (18)

where x = (x, y, z) is the position vector and U0 = 1. We assign an arbitrary zero reference value to
the pressure p at the right boundary. The numerical setup is illustrated in Fig 1.

In the Cartesian octree adaptive grid strategy implemented in Basilisk, a parent cubic cell is sliced
into eight subcubes for local grid refinement [51,52]. At each time step, the Cartesian octree grid
is dynamically adapted by refining the grid in regions of strong gradient variations of any field of
interest and coarsening regions with weak gradient variations. Here our primary field of interest is
the flow velocity. A phase indicator field (0 in the fluid and 1 in the solid) is also used to guarantee
that the neighborhood of the particle surface is always at the finest grid resolution. Using both the
velocity field and the phase indicator field, we ensure that the flow structures in both the boundary
layer around the particle and the wake region are well captured. Between two successive levels,
the cell size differs by exactly a factor of 2 in the hierarchical grid. The size of the smallest cell in
the grid ought to be �x = L/2nl , with nl the maximal refinement level. Figure 2 depicts the locally
refined octree grid around the vortex structures identified by the lambda-2 isosurface [56] λ2 = −1
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FIG. 1. Numerical setup: an inertial flow past a fixed Platonic polyhedron located in a cubic computational
domain of side length L = 40, streamwise direction is x+, i.e., fluid flows from left to right.

of the flow at Reynolds number Re = 500 past a fixed cube in a vertex facing the flow position
(CV).

We use a collocation point (CP) method [47,50,57] in the DLM/FD solver to impose the rigid-
body motion constraints on the Platonic polyhedron at the discrete level on the grid. The complete
set of points is the union of interior points chosen as grid nodes located inside the particle and
surface Lagrangian points. The parallel point set is used to distribute Lagrangian points as uniformly
as possible over the particle surface. In the parallel point set, surface points are located over lines
parallel to the edges and this distribution technique has been shown to be efficient when applied
to tetrahedrons and cubes [19,20,50] and can thus be extended to all Platonic polyhedrons [25].
Figure 3 illustrates the uniform distribution of the CP points on the surface of the five Platonic
polyhedrons.

The surface of the tetrahedron (T, 4 faces), the octahedron (O, 8 faces), and the icosahedron
(I, 20 faces) is made of equilateral triangles. The parallel point set therefore forms the vertices of

FIG. 2. Wake structures identified by the isosurface of λ2 = −1 and colored by ux in the flow past the CV
at Re = 500 with adaptive grid in the x-y plane at z = zp.
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FIG. 3. Boundary points distribution on the surface of the Platonic polyhedrons.

a regular equilateral triangular mesh on each face of the particle. In contrast, the surface of the
cube (C, 6 faces) and the dodecahedron (D, 12 faces) is made up of squares and regular pentagons,
respectively. In the specific case of the dodecahedron (D), we add a point at the center of the regular
pentagon and divide the pentagon into five (almost equilateral) triangles by connecting the center
point to the face vertices. Subsequently, we distribute points on the center-vertex edges and inside
each of the five (almost equilateral) triangles using the same method we use for the faces of the
tetrahedron, the octahedron and the icosahedron.

With the adaptive grid refinement, we set the uniform surface-point-to-surface-point distance lpp

to 2�x and note that this is compatible with the size of the grid cells around the particle. Therefore,
the number of particle surface points increases with the level of grid refinement nl , providing
a more accurate description of the particle and more reliable results on the hydrodynamic force
computation.

Figure 4 presents the geometric features of the Platonic polyhedrons at the three angular posi-
tions: an edge (E), a face (F), and a vertex (V) facing the inlet flow. The front and side views of the
five polyhedrons along the three coordinate axis (x, y, and z) are depicted. For the particles of high
angularity such as the tetrahedron (T), the cube (C), and the octahedron (O), the front surface seen
by the fluid flow changes dramatically with the angular position. With the increasing sphericity φ,
the number of faces on the particle surface increases and the crosswise cross-sectional surface area
becomes closer to that of the volume-equivalent sphere, and this characterizes the dodecahedron
(D) and the icosahedron (I). Hereafter, we use the two-letter abbreviation to describe a Platonic
polyhedron at a specific angular position, for instance TE stands for a tetrahedron with an edge
facing the flow angular position and IV stands for an icosahedron with a vertex facing the flow
angular position.

The edge facing the flow angular position (E) is defined such that the two adjacent faces on
the particle front surface remain symmetric with respect to the leading edge on the streamwise
orthogonal projection in the y-z plane. In the y-z plane in Fig. 4, a single leading edge with two
adjacent faces is noted in the TE, CE, and OE cases, whereas 5 (1 leading and 4 inclined) and 9 (1
leading and 8 inclined) edges are noted on the front surface if the DE and IE cases, respectively. The
face facing the flow angular position (F) has a front face perpendicular to the streamwise x direction
of the flow. For simplicity, we keep one edge on the leading face parallel to the y or z axis. The
vertex facing the flow angular position (V) is such that a single particle vertex faces the flow. The
center of mass and the opposite vertex are aligned, except for the tetrahedron where the rear face is
orthogonal to the streamwise x direction. We see that three adjacent edges share the leading vertex
on the front surface if the TV, CV, and DV cases, whereas we count four and five adjacent edges in
the OV and IV cases, respectively.

The side views of the Platonic polyhedrons are illustrated in the fourth and fifth columns of
Fig. 4. We observe that some shapes and angular positions break the orthogonal symmetry of the
flow even in the low Reynolds number steady regime:

(1) the two angular positions of the tetrahedron (TF, TV),
(2) the vertex facing the flow cube (CV),
(3) the face facing the flow octahedron (OF),
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FIG. 4. Geometric features of the Platonic polyhedrons at the three angular positions (A.P.): E (edge), F
(face), and V (vertex) with orthogonal projection in the y-z, x-y, and x-z planes.
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FIG. 5. (a) Cd of the CV as a function of Re ( ), comparison with Richter’s correlation ( ); (b) relative
error ε between our computed results and the Richter’s correlation for 100 � Re � 500 ( ).

(4) the face facing the flow and vertex facing the flow dodecahedron (DF, DV),
(5) the face facing the flow and vertex facing the flow icosahedron (IF, IV),
Consequently, at least one component of the lateral forces is nonzero in these cases, even when

the flow regime is steady at a low Re. The magnitude of the lift coefficient Cl might still be pretty
low, in particular in the case of polyhedrons with high sphericity such as the dodecahedron and the
icosahedron. But it is important to stress that Cl is theoretically nonzero in the above cases due to
the asymmetry of the angular position. Figure 4 serves as an excellent reference to help understand
the occurring physical phenomena of the three-dimensional flow-particle interaction in different
flow regimes.

IV. VALIDATIONS

To validate the DLM/FD solver, the effects of the domain size as well as the grid resolution on the
convergence of the time-averaged drag coefficient Cd are examined in our previous work [25]. Addi-
tionally, we perform a series of simulations of the flow past a fixed cube with a square face facing the
flow (CF) at Reynolds numbers 1 � Re � 500. We use the grid resolution (nl = 12, 1/�x = 102),
with nl the maximal level of the grid refinement and 1/�x the number of smallest grid cells per
volume-equivalent sphere diameter. As a reference, we consider the correlation established by
Richter et al. [32], which provides the drag coefficient Cd for the laminar flow past a fixed cube
in the range 10 � Re � 250.

Figure 5 gives the comparison between our numerical results and Richter’s correlation. Fig-
ure 5(a) exhibits an excellent agreement (ε < 1%) between our numerical results and the reference
correlation at 10 � Re � 300. Higher relative errors (1% < ε < 10%) are noticed for 300 � Re �
500 in Fig. 5(b). However, it is important to recall that Richter’s correlation was established with
data at 10 � Re � 250 and has never been tested outside this range of Re. We also observe that
such a trend of Cd (Re) with a minimum around Re ∼ 300–350 followed by a slight increase for
larger Re and eventually a plateau agree well with computed results reported by Refs. [20,26] in the
same flow configuration and experimental data reported by Ref. [36] in the case of a freely settling
cube. Consequently, the relative errors with respect to Richter’s correlation at Re > 250 are deemed
to be irrelevant and we safely use (nl = 12, 1/�x = 102) for all computations in this work. The
generated data set with such a spatial resolution is now physically analyzed in a reliable manner
exempt from major biases stemming from spatial errors in the computations.

About time resolution, we choose the advective timescale t∗
ref = D∗

sph/U ∗
0 as the characteristic

timescale. In all our simulations, the dimensionless time step �t = �t∗/t∗
ref is bounded by 10−3 to
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control the operator splitting error. Moreover, the Courant-Friedrich-Levy condition is satisfied to
guarantee the numerical stability of the explicit treatment of the advection term in the momentum
conservation equation. In the mathematical form, the time step �t is dynamically updated at each
discrete time by

�t = min

{
10−3 , min

m

0.8�x∗
m∣∣u∗

mt∗
ref

∣∣
}

, (19)

where m denotes an index spanning all grid cells.
Simulating over a long enough physical time guarantees that the flow regimes are fully estab-

lished in our simulations. Most of our simulations run up to at least t = 400 and several cases run
up to t = 1500. Computing the flow over such long physical times enables us to perform a reliable
statistical analysis of the time behavior of the flow in unsteady cases.

V. RESULTS

To investigate the impact of the particle angularity and angular position on the flow dynamics and
regime transitions in the particle wake region, we present a regime map as a function of Reynolds
number Re and particle sphericity φ. We classify the flow into four main regimes: multiplanar
symmetry, planar symmetry, periodic vortex shedding, and chaotic vortex shedding, in increasing
order of Re. We analyze the flow characteristics, including velocity, vorticity distribution, vortex
structures, and drag/lift coefficients, for Platonic polyhedrons at the three angular positions in the
range 100 � Re � 500. This Reynolds number range encompasses the entire transition process
from steady flows to chaotic flows in the particle wake, providing a comprehensive representation
of the flow dynamics and the wake structures in these regimes.

A. Reynolds number and flow regimes

Table I summarizes the regimes of flow past a Platonic polyhedron as a function of Re. Cases in
the same regime are highlighted in the same color, with the upper and lower bounds in Re. The flow
regimes identified and investigated in this study include:

(1) Multiplanar steady symmetry regime (MSS) ( ), in which the wake flow has symmetry
around multiple planes;

(2) Planar steady symmetry regime (PSS) ( ), in which the wake flow has symmetry with
respect to a single plane;

(3) Periodic single-hairpin vortex shedding (HS) ( ), in which the shedding of vortices is
regular and periodic;

(4) Chaotic vortex shedding (CS) ( ), in which the shedding of vortices is irregular;
(5) Double-hairpin vortex shedding (DHS) ( ), a special HS in which two vortices are shed

simultaneously from the particle (TE, more specifically).
The symmetry of the particle wake flow structures is an important factor to consider in the study

of flow past an angular particle. At low Re, the flow field in the particle wake region exhibits
multiplanar symmetry, with the number of planes depending on the number of edges on the particle’s
front surface. As Re increases, the flow transitions to a PSS regime, in which the plane of symmetry
may rotate with time and Re. Prior to the chaotic shedding regime at large Re, the periodic shedding
of hairpin vortices in the HS regime is typically observed. The TE case corresponds to a unique
shape and a unique angular position that exhibits distinct behavior during the transition between
regimes. In particular, the first transition is marked by the onset of the DHS regime immediately
after the MSS regime. In the first stage (DHS-I, 190 � Re � 330), the double-hairpin shedding is
quasi orthogonally symmetric, but eventually becomes planar symmetric. After the breakup of the
planar symmetry, the hairpin vortex pairs are staggered but stay close to each other in the second
stage (DHS-II, 340 � Re � 360). At Re = 370, the shedding becomes chaotic in the CS regime.
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TABLE I. Regime transitions of the flow past a Platonic polyhedron at the three angular positions (A.P.):
multiplanar symmetry ( ), planar symmetry ( ), periodic vortex shedding ( ), chaotic vortex shedding
( ), and double-hairpin vortex shedding ( ); regime transition of the flow past a sphere: axisymmetric
regime ( ).

.

For particles with high angularity, such as tetrahedrons (T), cubes (C), and octahedrons (O),
the critical Reynolds numbers Recr of flow transition vary more with angular position than those
of particles with high sphericity (D, I). For example, the flow past the CE or the CV transitions
from the MSS regime to the PSS regime at Re = 140 and Re = 130, respectively, whereas, the
first regime transition and the merging of the vorticity tubes in the CF case is only observed at
Re = 230. The two leglike vortex tails identified by the λ2 criterion is observed in the CF case at
Re = 250, even though the vorticity patterns in the particle wake region already show clear planar
symmetry at Re = 240. Here we propose that the critical Reynolds number should lie between
230 � Recr,M→P � 240 as shown in Table I since the vorticity pattern is a more sensitive indicator
of the flow field symmetry than the λ2 pattern in the steady flow. With increasing sphericity (D, I),
the particle has more faces and more closely resembles a sphere. The angular positions have less
effects on the regime transitions. For example, the critical Reynolds numbers have similar values of
about Recr,M→P ≈ 200 for the transition from the MSS regime to the PSS regime of the flow past a
dodecahedron (D) and an icosahedron (I) at any angular position. Similar results are also obtained
for the critical Recr,P→H from the PSS regime to the HS regime. However, from the PSS regime to
the CS regime, the difference in the regime transition brought by the particle angular position is still
noticeable. It is interesting to note that at the face angular position (F), the flow past the TF becomes
chaotic at Re = 240 while the flow past the OF remains in the HS regime up to at Re = 500. Above
Re = 500, the flow past the OF will eventually become chaotic. Here, we keep our study within the
range 100 � Re � 500. We see that the particle sphericity φ and angular position are both important
factors of the flow regime transitions in the particle wake region.
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FIG. 6. Regime transition map of the flow past a Platonic polyhedron at the three angular positions (A.P.):
multiplanar symmetry ( ), planar symmetry ( ), periodic vortex shedding ( ), chaotic vortex shedding
( ), and double-hairpin vortex shedding ( ); regime transition of the flow past a sphere: axisymmetric
regime ( ).

The regime transition of the flow past a fixed sphere is illustrated in Table I for reference. With
the increase in the number of symmetry planes to infinity, we observe that the axisymmetric regime
supersedes the MSS regime in the case of the sphere. Subsequently, the PSS, HS, and CS regimes
remain in the same sequence as for the Platonic polyhedrons. Notably, the two critical Reynolds
numbers, 210 � Recr,M→P � 220 and 270 � Recr,P→H � 280, show close but slightly higher values
compared to the three angular positions of the icosahedron.

Figure 6 illustrates the regime map of the flow past a Platonic polyhedron at the three angular
positions (E, F, V) at 100 � Re � 500. We employ the same color code as in Table I for the flow
regimes. The range of Re for different flow regimes is represented by the length of the horizontal bar
in Fig. 6, ensuring clear illustration and visual emphasis. As a result of the first regular bifurcation,
the steady flow transitions from the MSS regime to the PSS regime. In Fig. 6, the MSS regime
ends between Re = 130 and Re = 200 for most cases. The critical Reynolds numbers for regime
transitions have higher values for particles with high sphericity (D, I), except for some exceptional
cases such as the CF and the OF. Due to the second Hopf bifurcation, the flow regime changes
from the PSS regime to the periodic hairpin vortex shedding (HS or DHS) regime. Usually, the PSS
regime has a narrower range of Re compared to the DHS and HS regime. The angular position has a
significant effect on the regime transitions of flow past a highly angular particle (T, C, O). In the OF
case, the flow regime remains steady at Re = 330, while at Re = 170, the flow already transitions
to the HS regime in the OV case. Similarly, the flow remains in the PSS regime at Re = 300 in
the CF case, whereas we see hairpin vortex shedding at Re = 180 in the CV case. At Re = 350, the
flow past the TE remains in the DHS regime, while the flow past an icosahedron (IE, IF, and IV), the
most spherical Platonic polyhedron, has already become chaotic. The last regime transition from the
HS/DHS regime to the CS regime is also strongly influenced by the particle angular position. The
flow past the DE transitions to the CS regime at Re = 430 while the dodecahedron (OE, OF) remains
in the HS regime up to Re = 500. These angular positions display a significant stability in their
vortex shedding structures, showcasing a critical Recr,H→C that surpasses even that of the sphere.
Despite the icosahedron having a high sphericity of φ = 0.94, it cannot be considered equivalent
to a sphere in terms of regime transition due to the noticeable differences in the Recr values. In the
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FIG. 7. Symmetry of the wake vortex structure identified by streamwise vorticity ωx (positive in red,
negative in blue, and near-zero in white) of the flow in the MSS regime past a Platonic polyhedron in the
y-z plane located at x = xp + 1.5.

following, we discuss the different flow regimes separately to gain a deeper understanding of the
flow dynamics.

B. Multiplanar symmetry regime

At low Re in the MSS regime, the flow remains steady and laminar as it passes around the
particle. The vorticity distributions, as well as the flow velocity field in the near-wake and far-wake
region, are all important factors in this steady regime.

1. Vorticity pattern and wake symmetry

At low Re in the MSS regime, when the fluid passes around the angular particle, a pair of
opposite-signed vortices is generated on a front edge of the particle. It was observed in the experi-
ments of Klotz et al. [24] for the flow past a fixed CF that four pairs of vortices were formed on the
four front edges. Here we confirm this observation by high-fidelity numerical simulation results and
notice that it can be generalized to all Platonic polyhedrons. For angular particles, the leading edges
on the front surface disrupt the flow streamlines. These vortex pairs are transported downstream
of the particle, featuring a tubelike shape in the ωx isosurfaces, preserving the information of the
particle geometry. We summarize the streamwise vorticity ωx patterns in the wake region of the
Platonic polyhedron at the three angular positions in Fig. 7. All the vorticity patterns exhibit multiple
axes (in the y-z plane, planes in 3D) of symmetry, which are determined by the geometry of the
particle front surface. For example, the TF has three pairs of opposite-signed vortices, originating
from the three leading edges on the front surface. The CF has four pairs of vortices and four axes of
symmetry, which align with the four leading edges of the square front surface. In the edge angular
position (E), the vorticity patterns show two pairs of opposite-signed vortices for all particle shapes,
as there is only one single leading edge. The DE and the IE have more complex vortex structures,
which arise from the secondary edges behind the leading edge on the particle front surface. In the
vertex angular position (V), the leading edges are not perpendicular to the upcoming stream and
the vortex pair is formed on both sides of the same edge. The number of axis of symmetry in the
vorticity patterns equals the number of leading edges on the front surface of the particle. Although
the TV and the TF have similar vorticity patterns in the wake region, the size of the vortex pairs
produced by the TV is slightly smaller than that of the TF.

When two opposite-signed vortices of similar intensity approach each other, the mutual exclusion
creates an equilibrium zone between them. At low Re, the equilibrium zone between the approach-
ing vortices is wide enough to maintain stability in the vorticity pattern. The presence of multiplanar
symmetry also results in a small or zero total lift force on the particle, depending on the particle
shape and angular position.
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FIG. 8. LIC streamlines of the flow at in the near-wake region of the Platonic polyhedron in the
y-z plane at x = xp + 1. LIC streamlines are colored by the flow velocity magnitude (from min in dark blue to
max in dark red) and particle edges are projected as white lines.

2. Near-wake structures

To more clearly illustrate the flow field in the MSS regime, we present the streamlines in line
integral convolution (LIC) in the y-z plane in the near-wake region of the Platonic polyhedron, as
shown in Fig. 8. This visualization allows us to gain a deeper understanding of the flow symmetry
in the wake region. LIC is a powerful tool for visualizing fluid velocity fields. Instead of adapting
the start and end of streamlines to a specific velocity field, the LIC conveys all structural features of
the flow such as velocity vector orientation, vortices, and in particular, the location of critical points.
The color of the velocity field shows the flow velocity magnitude, from blue to red denoting the
region with low to high velocity. The centers of the wake vortices locate at about one diameter
downstream of the particle x = xp + 1. It is clear that the multiaxis symmetry of the vorticity
patterns depicted in Fig. 7 is closely related to the symmetry of the streamlines in Fig. 8.

The LIC clearly illustrates the presence of two pairs of opposite-signed vortices in the TE case
in the y-z plane. Comparing the TF and the TV, we see that three pairs of vortices are generated
from the three leading edges of the TE. However, the vortex pairs are larger in size in the TF case
compared to that in the TV case. The difference in the size of the vortex pairs is due to the fact that
they are created by two different types of leading edges: perpendicular to the incoming flow (TF) or
inclined but nonperpendicular to the streamwise x direction. Other Platonic polyhedrons, such as the
CE, the CV and the OV, also exhibit similar structures. Particles of higher sphericity (D, I) tend to
have a more complex front surface geometry and a larger number of leading edges, which makes it
difficult to accurately depict the vortices behind the particle using streamlines. As a result, the vortex
structures in the wake region of these particles may not be as clearly visible as those of more angular
particles (such as T, C, and O). However, the symmetry axis of these higher sphericity particles are
clearly depicted. For example, behind the IV, the streamlines preserve five axes of symmetry. The
symmetry of the streamlines are aligned with the multiaxis symmetric vorticity pattern shown in
Fig. 7.

The multiplanar (axis in the y-z plane) symmetry of the wake structures is also influenced by
the particle rear surface. Although the front and the rear surface of Platonic polyhedrons are not
identical, they happen to have the same number of symmetry axis. If we modify the shape of
the polyhedrons such that they are not regular, the vorticity pattern stretches and the flow regime
transitions at a different Re from the regular Platonic polyhedrons. This is particularly true if we
modify the rear surface by changing the location of one of its vertices. For instance, if we move the
rear vertex of the TF toward the top edge by 20% D∗

sph, then the vorticity pattern changes to planar
symmetry at Re = 100. With a smaller modification of the rear vertex (moving 5% D∗

sph closer to
the top edge of TF), though, the vorticity pattern remains triaxis symmetric.
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FIG. 9. LIC streamlines of the flow at in the far-field region of the Platonic polyhedron in the y-z
plane at x = xp + 10. LIC streamlines are colored by the flow velocity magnitude (from min in dark blue to
max in dark red, same color map as in Fig. 8) and particle edges are projected as white lines.

3. Far-wake structures

In addition to the near-wake flow field, we also investigate the streamlines in the far-wake region
in the MSS regime. It is worth noting that the effects of particle angularity are not limited to the near-
wake region, as vortex structures are carried downstream up to 30 behind the particle. Figure 9 shows
all the cases in which these far-wake vortices are observed, including all three angular positions of
the tetrahedron TE/TF/TV, the CE and the CV, the OE and the OF. These far-wake vortices that
are only observed for particles with high angularity (T, C, O), retain the same axis of symmetry
as in the near-wake region of the particle. The existence of these far-wake vortices is due to the
high intensity of the edge-induced vortices that allows them to penetrate the recirculation region
and maintain their symmetry. The vorticity pattern in the y-z plane fades progressively with the
increasing distance from the particle wake. In contrast, for dodecahedra (D) and icosahedra (I), the
vortex structures in LIC are no longer visible outside of the recirculation region. The presence of
these far-wake vortices should be taken into account when simulating large numbers of angular
particles, as they have significant long-range effects.

C. Symmetry breakup

1. Planar breakup mechanism

As Re increases, the multiplanar symmetry of the flow breaks down and becomes planar
symmetric, as shown in Fig. 10. The streamwise component of the vorticity ωx is plotted in the
y-z plane on the lee side of the particle (x ≈ xp + 0.5). This plane intersects most of the particles,
except the TE, which results in a hollow region visible in the plots in Fig. 10. The distribution of ωx

is shown for all Platonic polyhedrons at the three angular positions (E, F, V). The MSS regime is
located at the top, while the PSS regime is presented at the bottom for comparison.

The symmetry breakup in the wake flow is caused by the change of the vorticity distribution
on the particle rear surface. Let us take the example of the CF case (highlighted in the red box)
in Fig. 10(b). Four pairs of opposite-signed vortices are generated from the four front edges of the
CF. At low Re, the vortices are transported along the particle rear surface downstream to the wake
region, maintaining their symmetry with respect to four axes. At the middle of the leading edge, an
equilibrium region behaves like a wall separating the two opposite-signed vortices. As Re increases,
the vortex cores become larger and this equilibrium can no longer hold. As a result, one corner-
generated vortex extends an arm toward another vortex of the same sign generated by its neighbor
corner. For example, the top right corner (blue, 1) extends a blue arm toward the top left corner
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FIG. 10. Distribution of streamwise vorticity ωx (positive in orange, negative in blue, and near-zero in
black) on the rear surface in the y-z plane located at x ≈ xp + 0.5 of the Platonic polyhedron at the three
angular positions in the flow in the MSS regime and in the PSS regime. (a) Edge, (b) Face, and (c) Vertex.

(blue, 2). This vortex arm is attached to the rear surface due to the presence of an opposite-signed
vortex, which is pushed slightly outward by the vortex arm. On the other side of the cube, a similar
but opposite-signed vortex arm connects the bottom left vortex (orange, 3) and the top left vortex
(orange, 4). Consequently, two larger vortices of opposite signs are formed on either side of the
cube in the PSS regime, which are in equilibrium with each other and symmetric with respect to the
cube diagonal. In Fig. 10(c), the OV case (highlighted in the red box) undergoes the same symmetry
breakup process: the blue vortex 1 merges with the vortex 2 and the orange vortex 3 merges with
vortex 4.

The mutual exclusion between opposite-signed vortices is the main reason for the emergence
of symmetric vorticity patterns in the MSS regime. The equilibrium region between two opposite-
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FIG. 11. Symmetry of the wake vortex structure identified by streamwise vorticity ωx (positive in red,
negative in blue, and near-zero in white) of the flow in the PSS regime past a Platonic polyhedron in the y-z
plane located at x = xp + 1.5.

signed vortices on the rear surface is wide enough to preserve the multiplanar symmetry. On the
other hand, the mutual attraction of vortices of the same sign contributes to the emergence of the
PSS regime. At a higher Re, the vortex core increases and the length of the vortex tubes grows.
The mutual attraction of vortices of the same sign leads to the merging of vortex tubes, disrupting
the multiplanar symmetry of the particle wake. The breakup of the multiplanar symmetry is mainly
due to the merging and redistribution of the vortices. With two large opposite-signed vortices on the
particle rear surface, where the pressure is relatively low and the streamlines are mainly deflected
by the pressure gradient, the edge-induced vortices are stabilized at higher Re until the onset of the
periodic vortex shedding. Please note that the vorticity distribution on the front surface of the particle
remains multiplanar symmetric in the PSS regime. The same mechanism is also observed for other
Platonic polyhedrons in Fig. 10, with the exception of the TE case. This particular shape at a special
angular position is highly symmetric, such that the vortex shedding begins while maintaining the
quasiorthogonal symmetry of the hairpin vortex structure in the DHS-I regime.

2. Planar symmetry regime

Figure 11 shows the vorticity patterns in the particle wake region in the PSS regime. Regardless
of the number of symmetry axis the particle has in the MSS regime, the vorticity pattern collapses
to a planar symmetry with respect to a single plane in the PSS regime. As previously mentioned, the
presence of two large opposite-signed vortices in this regime enhances the stability of the vorticity
distribution compared to the pattern in the MSS regime. In the edge angular position (E), the
symmetry plane is either parallel or perpendicular to the leading edge. In the face angular position
(F), after the transition to the PSS regime, the vortex structure randomly selects one of the symmetry
axis of the MSS regime, as shown in Fig. 7. The symmetry plane in the CF case is oriented at 45◦
with respect to the x-y plane. However, each of the four symmetry planes of CF in the MSS regime
can be selected in the PSS regime. With a square cross-section, the OV presents the same planar
symmetry pattern as that in the CF case.

We investigate the flow past a vertex Platonic polyhedron (V) with smaller increments of Re. In
the case of CV, OV, DV, and IV, we reveal that there exist at least two possible directions of the
symmetry plane that always contains the x axis, as shown in the last two rows (V-I and V-II) in
Fig. 11. This confirms that the symmetry plane is randomly chosen from the symmetry planes in
the MSS regime. There may also be a second direction of symmetry for the TV at a certain Re not
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considered in this study. Upon further increasing Re, the symmetry plane becomes unstable and we
observe a switch of direction at different times in the HS regime.

D. Periodic vortex shedding regime

1. Periodic vortex shedding modes

We present the diverse vortex shedding modes in the HS/DHS regime in Fig. 12. The vortex
structures are three-dimensional and presented in the view perpendicular to the x-z plane on the left
half and to the x-y plane on the right half of Fig. 12. Please note that the flow is unsteady in the HS
and DHS regimes. The vortex structures shown in Fig. 12 correspond to a snapshot at a time when
the flow regime is established.

The vortex shedding mode and frequency in the particle wake are strongly dependent on the
angular position. There is a distinct difference in the shedding modes of the tetrahedron in the three
angular positions (E, F, V). A unique double-hairpin vortex shedding (DHS) mode manifests in the
TE case, of which the formation mechanism and dynamics are discussed in our previous work [43].
Although the TF and the TV have similar shedding modes, the onset of the HS regime occurs at
different critical Reynolds numbers Recr. The CE also exhibits a particular vortex shedding mode,
in which a large bulky hairpin is accompanied by a small slim one, instead of a pair of similar-sized
hairpin structures alternatively shed as seen in the CF and CV cases. The OE and the OF present
vortex pairs that are smaller, more compact and shed at a higher frequency than that in the OV case.
It is worth noting that the OE and the TE are the only two cases in which six periods of vortex
shedding are visible in the distance of 30 downstream the particle, as depicted in Fig. 12. The CE
and the OF have a slightly lower shedding frequency, with five periods visible in the snapshots. In
contrast, the TF, TV, and OV cases manifest only three periods, half that in the OE and TE cases. It
appears that the edge angular position (E) tends to have a higher shedding frequency compared to
the other two angular positions (F, V) for particles such as the T, the C, and the O.

Particles with higher sphericity, such as the dodecahedron (D) and the icosahedron (I), have
a similar shedding frequency (four periods in the snapshot) and exhibit vortex shedding modes
analogous to that observed in the flow past a sphere. Additionally, the vortex shedding modes in the
D and I cases remain akin among all three angular positions, except for the orientation of the vortex
shedding plane. For instance, it is difficult to discern a difference in the hairpin vortices in the DV
and IE cases in Fig. 12. The particle angular position has a minimal effect on the vortex structures
and the shedding mode for these particles of high sphericity. Furthermore, we offer a supplementary
perspective of the vortex structures via a side view, detailed in Appendix B.

2. Flow velocity field

Figure 13 shows the snapshots of the streamlines in LIC in the periodic vortex shedding HS/DHS
regime. The recirculation region in the particle wake has relatively low velocity and is highlighted
in green-blue color in Fig. 13. All the Platonic polyhedrons exhibit a pair of vortices in both the
x-y plane and the x-z plane. For most of the cases investigated (except for the TE), the recirculation
region behind the Platonic polyhedron features an oval shape similar to that observed behind a
sphere. The vortex shedding is characterized by the alternating detachment of hairpin structures
from the recirculation region at different frequencies in a fixed or moving shedding plane. As
observed in the wake region of a sphere, one vortex sucks the fluid from the surrounding bulk flow
and the other opposite-signed vortex. As the volume of the vortex grows, the recirculation can no
longer hold it in place and the vortex detaches from the particle wake region, flowing downstream.
This process repeats as the opposite vortex then begins to grow and detach [58]. These vortices
detach alternatively from the recirculation region in a predictable pattern, leading to the HS regime.
The size of the vortices formed in the particle wake is limited by the volume of the recirculation
region.
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FIG. 12. Wake structures identified by the isosurface λ2 = −1 and colored by ux in the flow in the HS/DHS
regime in the x-z plane (left) and in the x-y plane (right).
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FIG. 13. LIC streamlines of the flow past a Platonic polyhedron at the three angular positions in the
HS/DHS regime in the x-y plane and in the x-z plane. LIC streamlines are colored by the velocity magnitude
(from min in blue to max in red).

The vortex shedding mode and frequency are closely related to the flow recirculation in the
wake region. In Fig. 12, we notice several cases with high shedding frequency such as TE and OE
(with six periods in the snapshot) and CE and OF (with five periods). According to our previous
study [25], the crosswise cross-sectional surface area has similar values Spp,x ≈ 1 ∼ 1.5 for the
Platonic polyhedrons at the three angular positions. Spp,x affects the drag coefficient Cd in the steady
regime, but plays a much less important role on the unsteady vortex shedding. We postulate that
two geometric properties of the particle have a significant influence on the shape of the recirculation
region: (i) the aspect ratio χ of the crosswise cross-sectional surface area and (ii) the rear surface
geometry of the particle. The particle with a larger aspect ratio χ exhibits an oval recirculation
region. Taking the example of the OE, we note that the width of the recirculation region in the
x-y plane in Fig. 13(a) is smaller than that in the x-z plane in Fig. 13(b). This is due to the fact
that the OE has a large aspect ratio χ = h/a = √

2 ≈ 1.4, where the height h denotes the distance
between two opposite vertices and a is the edge length of the octahedron. The elongated geometry
of OE exhibits a narrower recirculation region compared to that of other particles such as D and
I in the x-y plane. We observe a comparable scenario in the CE case. The aspect ratio χ = d/a
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FIG. 14. LIC streamlines of the flow in the near-wake region of the Platonic polyhedron at the three angular
positions in the HS/DHS regime in the y-z plane located at x = xp + 1. LIC streamlines are colored by the
velocity magnitude (from min in dark blue to max in dark red) and particle edges are projected as white lines.

of the CE is also equal to
√

2 ≈ 1.4, leading to a narrower recirculation region in the x-y plane in
Fig. 13(a) than that in the x-z plane in Fig. 13(b). The size of vortices is restricted by the limited
volume of the recirculation region in the x-y plane (CE, OE). Thus, the vortices need less time to
reach a threshold size for the detachment from the wake region. Consequently, we observe a higher
shedding frequency in Fig. 12.

A second factor that changes the shape of the recirculation region is the geometry of the particle
rear surface. The crosswise cross-section of the isometric particle TE has an aspect ratio χ = 1
along the y and z axis. Also, the two rear faces of the TE guide the flow to converge smoothly in
the particle wake which leads to a highly narrow recirculation region in the x-z plane as shown in
Fig. 13(b). A U-shape recirculation region manifests in the x-y plane for the flow past a TE, where
the middle section of the recirculation is much shorter than the two side arms. Consequently, the
vortices formed in the limited-size side arms have a higher frequency of shedding in Fig. 12. The
vortex pairs detach from the recirculation region easily and almost simultaneously due to the high
level of symmetry of the TE, leading to double-hairpin vortex shedding (DHS). The high shedding
frequency of the OF is deemed to be the collective effect of χ = 1.15 and the rear surface geometry.
In contrast, the OV has the same aspect ratio χ = 1 and rear surface in both the x-y and x-z plane.
The oval shape of the recirculation region in the OV case also has a slightly larger size than that in
the OF case. Consequently, we observe a lower vortex shedding frequency than that in the OF case
and the OV manifests a shedding mode similar to that observed for the sphere.

Figure 14 presents the snapshots of flow streamlines in LIC in the y-z plane. Compared to
Fig. 8, the wake streamlines shift from multiplanar symmetry to planar symmetry. In many cases,
the streamlines fluctuate, and the planar symmetry is no longer maintained. The TE maintains a
quasiorthogonal symmetry during vortex shedding, which then transitions to a planar symmetry
with increasing Re. It is the only case where the high level of symmetry of vorticity is preserved in
the unsteady regime (DHS-I). Several other particles maintain a planar symmetry in Fig. 14, such as
the DE and the DV, the OF and the IV. Please note that the planar symmetry of the streamlines for
these particles may be imperfect or even broken at other times. The fluctuations on the streamlines
in the particle wake region contribute to the unsteadiness of the vortex shedding. In some cases,
such as the IV at high Reynolds numbers Re = 340 and 370, the vortex shedding occurs in a stable
plane. In other cases, the vortex shedding plane becomes time-dependent in time and space, such as
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FIG. 15. LIC streamlines of the flow at in the far field region of the TE in the y-z plane at different
distances from the particle: (a) x = xp + 7.2, (b) x = xp + 7.4, (c) x = xp + 7.6, (d) x = xp + 7.8, (e) x =
xp + 8.0, (f) x = xp + 8.1, (g) x = xp + 9.2, and (h) x = xp + 11.6. LIC streamlines are colored by the flow
velocity magnitude (from min in dark blue to max in dark red, same color map as in Fig. 14) and particle edges
are projected as white lines.

in the TV case at Re = 200 and the CV case at Re = 230. The asymmetry of the wake streamlines,
as shown in Fig. 14, contributes to the rotation of the vortex shedding plane. The TV and the CV
exhibit a time-dependent orientation of the vortex shedding plane even at the early stage of the HS
regime. A plausible explanation is that they cannot maintain the planar symmetry of the streamlines
in the wake region during the vortex shedding.

In addition to Fig. 13, we present the recirculation region behind the Platonic polyhedrons in the
y-z plane in Fig. 14. In the TE, CE, OE and OF cases, which exhibit a relatively high frequency
of vortex shedding, the recirculation region has a markedly ovoid shape dictated by the crosswise
surface area. Moreover, in the TE and OF cases, the recirculation area is smaller than the projected
particle outline. The particles with low vortex shedding frequency present a recirculation region
with mostly a spherical or triangular shape in the y-z plane. This confirms our postulate that the
vortex shedding frequency is determined by the shape and size of the recirculation region, which
reflects the particle angularity and angular position.

3. Vortex spatial evolution

To gain deeper insight, we compare the spatial evolution of two types of vortex shedding: double-
hairpin vortex shedding (DHS) in the TE case and the single-hairpin vortex shedding (HS) in the
DV case.

Figure 15 gives the far-wake streamlines in LIC of the flow at Re = 200 past the TE in the y-z
plane, which features a double-hairpin vortex shedding (DHS). We take snapshots of an entire period
of the shedding progress in space along the streamwise x direction. First, two pairs of opposite-
signed vortices are generated from the center of the particle wake in Fig. 15(a). The hairpin vortex
pair on the left is slightly smaller than the one on the right, but both maintain symmetry with respect
to the x-y plane. A little bit farther, we notice the appearance of two circular low-velocity regions
(in light yellow), symmetric with respect to the x-z plane. These two low-velocity regions become
more evident with increasing distance x from the particle and the two pairs of vortices begin to
move away from the centerline, with their centers shifting around the rim of the two low-velocity
regions. Simultaneously, the vortices increase in size as they move toward the far end (with respect
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FIG. 16. LIC streamlines of the flow at in the far field region of the DV in the y-z plane at
different distances from the particle: (a) x = xp + 5.5, (b) x = xp + 5.6, (c) x = xp + 6.2, (d) x = xp + 7.8,
(e) x = xp + 8.8, (f) x = xp + 9.2, (g) x = xp + 11.2, and (h) x = xp + 12. LIC streamlines are colored by the
flow velocity magnitude (from min in dark blue to max in dark red, same color map as in Fig. 14) and particle
edges are projected as white lines.

to the centerline) of the low-velocity regions. As shown in Fig. 15(e), the larger vortex pair touches
the far end of the low-velocity region and then vanishes in Fig. 15(f). The same process is repeated
by the smaller vortex pair on the left in Fig. 15(f). As we move further away from the particle, we
observe an older pair of vortices created by the previous shedding process. Figure 15 highlights two
important phenomena: (i) the two hairpin vortices in the DHS regime have a slight difference in size
in the far-wake region of the particle. This difference, although subtle, is more clearly visible in LIC
streamlines behind the particle, as compared to the visualization using λ2 or ωx isosurfaces; (ii) the
velocity field downstream the TE maintains a high level of planar symmetry, which contributes to
the stability of the double-hairpin vortex structure during the shedding process.

As an illustration of the single-hairpin vortex shedding in the HS regime, the far-wake LIC
streamlines of the flow at Re = 300 past the DV in the y-z plane are depicted in Fig. 16. During
the vortex shedding process, the far-wake velocity field maintains a high level of planar symmetry.
First, a pair of small vortices are generated in the center region, accompanied by a pair of larger
vortices coming from the previous period of shedding in Fig. 16(a). A direct comparison with Fig. 15
reveals that there exists only one circular low-velocity region (in light yellow) that oscillates around
the centerline. The small vortices grow in size while moving away from the centerline, along the
rim of the low-velocity region in Figs. 16(b)–16(d). Then, the vortex pair disappears at the far end
of the low-velocity region, marking the end of the first half-period in Fig. 16(e). Subsequently, a
second pair of vortices appear in the center region. It follows a similar dynamic process as the first
vortex pair, but moves in the opposite direction as shown in Figs. 16(f)–16(h). The two circular
low-velocity regions in Fig. 15 can be attributed to the two side arms of the U-shape recirculation
region in the TE case. In contrast, we see an oval recirculation region in the wake of the DV in
Fig. 14, leading to a single low-velocity region in Fig. 16. This once again highlights the impact of
the shape and size of the recirculation region on the vortex shedding mode.

E. Recirculation and vortex shedding frequency

We plot the Strouhal number St as a function of Re in the HS regime and the early stage of
the CS regime in Fig. 17(a) and show the influence of particle angularity on the vortex shedding
frequency. St is computed using the temporal evolution of the lift coefficient along either the y axis
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FIG. 17. (a) St of Platonic polyhedrons at the vertex angular position as a function of Re; (b) Lr as a
function of Re in the wake of a Platonic polyhedron at the vertex angular position: TV ( ), CV ( ), OV ( ),
DV ( ), and IV ( ); markers highlighted with flow regimes: MSS ( ), PSS ( ), HS ( ), and CS ( ).

or the z axis (Cl,y or Cl,z, respectively) according to the vortex shedding plane. In the HS regime, we
compute the dominant frequency of the shedding using fast Fourier transform (FFT) by carefully
choosing a number of periods of oscillation once the vortex shedding regime is well established, to
get an accurate estimation of St. Please note that the dominant frequency in the CS regime varies at
different time intervals as the vortex shedding in the CS regime is highly disordered. We count the
number of hairpin vortices detached from the particle rear surface over a time interval to compute St,
which leads to slightly different values than simply identifying the dominant frequency in the FFT
frequency spectrum. The values reported for St in the CS regime are, therefore, approximate and
presented to show a general trend. In general, for all the Platonic polyhedrons at the vertex angular
position, the variation of St is not significant and remains between 0.1 and 0.15 for 150 � Re � 400.
It was reported that St = 0.135 for a flow past a fixed sphere [17], which is consistent with our
findings. In the range of Reynolds numbers 200 � Re � 250, the particles with high angularity
(TV, CV, OV) exhibit single-hairpin vortex shedding with an almost constant St ≈ 0.1 ∼ 0.12. St
has slightly higher values in the CV case and lower values in the TV case. With the onset of the CS
regime (Re = 270 in the TV and CV cases and Re = 310 in the OV case), St shows a very mild
increase tendency. At 250 � Re � 350, the HS regime starts for the particles with high sphericity
(DV and IV), where the St has slightly higher values than that in the TV, CV, and OV cases.

We calculate and plot the length of the recirculation region (ux � 0), denoted Lr , as a function of
Re for the five Platonic polyhedrons at the vertex angular position in Fig. 17(b). For measurement
consistency, we define Lr as the distance from the rear vertex of the particle to the farthest cell
possessing zero or negative streamwise velocity as illustrated in the CV case in Fig. 17(b). To
emphasize the relationship between Lr and regime transitions, we outline the markers with colors
corresponding to the respective regimes in Table I. The TV displays the longest Lr across the range
100 � Re � 500. As the sphericity φ increases, Lr correspondingly decreases. The pairs CV/OV
and DV/IV share similar sphericity values and exhibit comparable Lr . At Re � 200, Lr increases
with Re for all particles within the MSS and PSS regimes. However, in the HS regime, a reduction
in Lr is observable in the TV, CV, and OV cases. In the CS regime, Lr tends to increase with Re for
all Platonic polyhedrons.

In the five vertex cases, the flow recirculation region has an oval cross-sectional shape of similar
size as shown in Figs. 8 and 14, thus leading to similar St in Fig. 17(a). However, the angular
position of the particle can greatly influence the shape of the recirculation region and, subsequently,
the vortex shedding frequency. This is particularly evident in the TE and OE cases, where the hairpin
vortex shedding is characterized by St ≈ 0.2. To demonstrate quantitatively the significant influence
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(b)(a)

FIG. 18. Recirculation region and vortex shedding frequency: (a) size of the recirculation region in the OF
case at Re = 350; (b) St as a function of the aspect ratio χr of the recirculation region at x = xp + 1: T ( ), C
( ), O ( ), D ( ), and I ( ).

of the recirculation region [blue region in Fig. 18(a)], we compute and analyze its aspect ratio
defined as

χr = max(Lr,y, Lr,z )

min(Lr,y, Lr,z )
, (20)

where Ly,r and Lz,r represent the size of the recirculation region along the y and z axes at x = xp + 1
as depicted in Fig. 18(a). With this definition, χr always remains equal to or larger than 1. We select
24 representative cases of particles at various angular positions in the DHS/HS regime, among
those presented in Figs. 12–14. We observe that the volume of recirculation in the DHS/HS regime
inversely correlates with the particle sphericity φ at the same Re, which agrees with Fig. 17(b).
In Fig. 18(b), we illustrate how the dominant vortex shedding frequency St is influenced by χr at
x = xp + 1. For instance, when χr is close to 1, St ranges from 0.1 to 0.15, matching the results in
Fig. 17(a). As St is also dependent on other parameters such as particle shape and Re, a considerable
number of data points are located in the bottom left of Fig. 18(b). In contrast, for χr � 1.5, we notice
a marked increase in St, rising to 0.2 or higher in the TE, CE, and OE cases. As discussed in Fig. 14,
a larger particle aspect ratio χ yields higher values of χr , which diminishes the effective volume
of the recirculation region. This results in a discernible reduction in both vortex size and vortex
residence time in the particle wake, leading to an increased vortex shedding frequency in the cases
on the right top of Fig. 18(b).

F. Drag and lift coefficients

For the sake of conciseness, we primarily focus on the vertex angular position (V) from now
on and examine the impact of particle angularity. We report in Fig. 19 the time-averaged drag
coefficient Cd as a function of Re in the interval 100 � Re � 500 for all five Platonic polyhe-
drons as well as the sphere. In the unsteady flow regimes (HS and CS), the drag force becomes
time-dependent due to the vortex shedding and Cd is time averaged once the flow regime is well
established. In general, Cd decreases monotonously with Re for all Platonic polyhedrons and the
sphere. There is a distinct gap between the Cd (Re) curves of two types of particles. The Cd (Re)
curves of the particles of high angularity (TV, CV, and OV) always lie well above the Cd (Re) curves
of the particles with high sphericity (DV and IV), for any Re ∈ [100, 500]. At 100 � Re � 200,
Cd decreases with the particle sphericity φ, i.e., the more spherical a particle is, the lower its Cd

is (Cd,TV > Cd,CV > Cd,OV > Cd,DV > Cd,IV ). Then the TV tends to have a smaller Cd compared to
that of the CV and the OV when Re > 250. The particle angularity is no longer a determinant factor
of the magnitude of Cd in this case. Instead, the particle angular position has a more pronounced
impact on Cd at high Re, which was also reported in our previous work on the tetrahedron
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FIG. 19. Cd of Platonic polyhedrons at the vertex angular position as a function of Re: TV ( ), CV ( ),
OV ( ), DV ( ), and IV ( ), and the sphere ( ).

[43]. For particles of high sphericity (DV, IV), Cd approaches the value of the flow past a fixed
sphere. Especially the IV has a very close Cd to that of a sphere, with a maximum difference of
approximately 8%.

The time evolution (t = t∗/t∗
ref) of Cl,y and Cl,z in the CV and OV cases, as two representatives

of a particle with high angularity, is plotted in Fig. 20 at Re from the end of the MSS regime to
the early stage of the HS regime. In the MSS regime, both Cl,y and Cl,z have values close to zero.
As Re increases, the PSS regime begins and we observe an increase of Cl,y at Re = 150 and of Cl,z

at Re = 140 in Fig. 20(a). In the PSS regime, Cl,y and Cl,z increase temporarily before reaching a
stable time average value. Cl has a preferred direction in the CV case with Cl,y > 0 and Cl,z > 0. In
contrast, the OV shows a distinct change in lift direction with increasing Re as depicted in Fig. 20(b).
At Re = 140, Cl maintains a stable value in the y− direction (Cl,y < 0 and Cl,z ≈ 0), but at Re = 150
it shifts to the z+ direction (Cl,y ≈ 0 and Cl,z > 0). This switch of lift direction can be attributed to
the alteration of the symmetry plane in the PSS regime. During the transition from the MSS regime
to the PSS regime, the wake structure selects one of the symmetry planes in the MSS regime. From
Re = 170 to Re = 180, instead of a smooth curve, we see the Cl,y and Cl,z oscillate with a single
frequency in the CV case in Fig. 20(a), marking the onset of the HS regime. We observe the same
transition from the PSS regime to the HS regime on the lift curves in Fig. 20(b), where Cl,y increases
and then oscillates around a stable value in the y+ direction while Cl,z increases temporarily before
settling back to a near-zero value while oscillating.

In general, at a higher Re, the transient evolution of Cl,y and Cl,z becomes faster. However, the
establishment of the flow regime requires a particularly long time when Re is close to the critical
Reynolds number Recr. In Fig. 20, we see that the PSS regime requires t = 200 to reach a steady
state at Re = 150, whereas it takes approximatively t = 1000 in the OV case to establish the PSS
regime at Re = 160 and the HS regime at Re = 170. In addition, in the TV, CV and OV cases, the
transition time is relatively short compared to the particle with high sphericity.

Figure 21 illustrates the time evolution of Cl,y and Cl,z in the DV and IV cases. Cl,y and Cl,z

maintain the same direction throughout the range of Re from the MSS regime to the HS regime. In
the range of Re presented, we see that Cl,y remains negative in both the DV case and the IV case.
Cl,z has positive values in the DV case but negative values in the IV case. The switch of lift direction
during the transition from the MSS regime to the HS regime in the OV case is not observed in the DV
and IV cases. Similar to the particles of high angularity (T, C, O), Cl,y and Cl,z have near-zero values
in the MSS regime at low Re such as Re = 180 in the DV case and Re = 200 in the IV case. In the
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FIG. 20. Time evolution of Cl,y and Cl,z of the CV and of the OV during the transition from the MSS regime
to the HS regime.

PSS regime in the DV case, Cl,y increases continuously to a stable value, while Cl,z initially increases
and then returns to a lower stable value in the range 190 � Re � 240. As a key characteristic of the
PSS regime, the significant increase of Cl is observed with increasing Re. In contrast to Fig. 20, it is
not necessarily the case that the transition to the steady state is faster at higher Re in the DV and IV
cases. From Re = 210 to Re = 240 in Figs. 21(a), we see that the transient time increases with Re
for both Cl,y and Cl,z in the DV case. In the IV case, Cl,y at Re = 220 reaches its steady-state value
at about t = 300, whereas we need to wait until t = 1700 for Cl,y to reach its steady state value at
Re = 240. The regime establishment requires a long time when the Re becomes close to the critical
value of the transition from the PSS regime to the HS regime. We need about t = 1500 for Cl,y to
reach the steady state at Re = 250 in the IV case, which is longer than the CV and OV cases. In
the DV case, the time required for the establishment of the HS regime is even longer than t = 1800
at Re = 250 in Fig. 21(a). Cl,y and Cl,z start oscillating around their stable value in the HS regime,
depicted by, e.g., Re = 250 in the DV case and Re = 270 in the IV case.

To clearly depict the time evolution of the lift force, we plot the phase diagram of Cl,y versus Cl,z

from the MSS regime to the HS regime. We select two particles of high angularity (CV, OV) and
two particles of high sphericity (DV, IV) in Fig. 22, given that the tetrahedron cases are analyzed
in detail in the companion paper of the present work [43]. The rainbow color of the curves (from
purple to red) indicates a time increase. In the MSS regime, the transverse force is small due to
the flow symmetry and the two components Cl,y and Cl,z are randomly distributed in space. As
soon as the PSS regime starts, Cl has a preferred direction as shown in Fig. 22(a), where Cl,y and
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FIG. 21. Time evolution of Cl,y and Cl,z of the DV and of the IV during the transition from the MSS regime
to the HS regime.

Cl,z increase and reach a stable value depicted by the red dots. This process is followed by all the
Platonic polyhedrons in the PSS regime, as shown in Figs. 22(e), 22(i), and 22(m). With increasing
Re, the Cl,y-Cl,z curve becomes wavy and fluctuates in Figs. 22(b) and 22(c). However, we still
observe a stable value of Cl given a long enough simulation time. Subsequently, in the CV case at
Re = 180, Cl oscillates around a fixed value represented by the red curve as shown in Fig. 22(d).
The CV is now ready for the onset of the HS regime. At Re = 180, it is difficult if not impossible
to observe clear hairpin vortex structures using λ2 or ωx isosurfaces, even though the lift force has
begun oscillating, but they are clearly observed at Re = 190.

In the OV case, we see a clear transition from the PSS regime to the HS regime in Figs. 22(f)–
22(h). In the PSS regime, the lift coefficients converge to a fixed value smoothly at Re = 160. At
a higher Re, the lift coefficients undergo a similar transition process as in the CV case and then
start to oscillate at Re = 170, marking the onset of the HS regime. We observe a clear hairpin
vortex shedding at Re = 170 using the λ2 = −1 isosurface. The vortex shedding is also depicted in
Figs. 22(g) and 22(h), where we see the spring-shaped trajectory of Cl in red. Cl,z drops to a very
small value while Cl,y oscillates around a fixed value at Re = 170 and Re = 180. Eventually, the
shedding of hairpin vortices occurs in the x-y plane, with a higher oscillation amplitude at Re = 180.

In the case of particles with high sphericity (DV, IV), the transition process is similar. Cl,y and
Cl,z start oscillating at Re = 250 and Re = 270 in the DV case and the IV case, respectively, as
shown in Figs. 22(j) and 22(n). Then the amplitude of the oscillation increases with Re. In the DV
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FIG. 22. Cl,y-Cl,z phase diagram of Platonic polyhedrons at the vertex angular position, comparison be-
tween the PSS regime and the HS regime. Time evolution given in rainbow color from purple (start time) to
red (end time).

case, we see a red elliptical trajectory in Figs. 22(j)–22(l), which indicates that the direction of the
hairpin vortex shedding rotates in the y-z plane. The shedding plane keeps oscillating between two
stable planes of symmetry. In contrast, we only see a red straight line for the trajectory of the lift
coefficient in the IV case in Figs. 22(n)–22(p). This is a special case of hairpin vortex shedding,
where the shedding plane is very stable and almost fixed in the Cl,y-Cl,z phase diagram. According
to previous studies, the hairpin vortex shedding in the flow past a sphere exhibits a fixed-orientation
shedding plane [17], which is also observed here in the IV case. Consequently, the icosahedron (I)
has many similarities with the sphere, such as Cd , wake symmetry and shedding modes, due to its
high sphericity φ = 0.94.
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FIG. 23. Wake structures identified by the isosurface λ2 = −1 and colored by ux in the flow past a Platonic
polyhedron in the CS regime in the x-z plane (left) and in the x-y plane (right).

G. Chaotic vortex shedding

At high Re, the periodic vortex shedding starts to become disorganized with the onset of the
CS regime. In the CS regime, the vortex structures are more dynamic and irregular than in the HS
regime. The lift force also becomes less predictable and may fluctuate chaotically, and the frequency
spectra of the vortex shedding may contain multiple secondary frequencies and vary over time in
the CS regime.

1. Chaotic vortex shedding modes

We show the vortex structures in the CS regime in Fig. 23. For consistency with Figs. 2 and
12, the vortex structures are again identified as isosurfaces of λ2 = −1 in the x-z plane and the x-y
plane. In general, akin to the HS regime, the hairpin vortices in the CS regime are shed alternatively
but disorganizedly. Compared to Fig. 12, we see that these hairpin vortices are more intricately
intertwined and contain small coherent structures in the flow past a particle of high angularity, such
as TV, CV, and OV as shown in Figs. 23(b), 23(c), 23(d), and 23(e). These small vortex structures
are generated from the breaking of the larger hairpin vortices or by the instabilities in the particle
wake flow, when the flow recirculation region becomes chaotic and has irregular and unpredictable
fluctuations. They have significant effects on the overall flow behavior characterized by the vortex
shedding frequency and the hydrodynamic forces exerted on the particle. At Re = 500, the small
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FIG. 24. Cl,y-Cl,z phase diagram of Platonic polyhedrons at the vertex angular position, comparison be-
tween the HS regime and the CS regime. Time evolution given in rainbow color from purple (start time) to red
(end time).

vortex structures are less evident for particles with high sphericity such as the IV. In Figs. 23(i)
and 23(j), we still observe the bulky hairpin vortices, even though they shed randomly from the
particle wake region. We know from Table I that the flow past the IV transitions to the CS regime at
Re = 340. The CS regime in the IV case at Re = 500 is less developed than in the CV case in which
the CS regime begins at Re = 270. At a higher Re, the recirculation region becomes further unstable
and the quantity of small coherent structures increases.The energy that was previously used to form
large vortex structures is instead used to form smaller, less organized and more numerous structures.
From a computing viewpoint, the advantage of the adaptive grid refinement is clearly demonstrated
in Fig. 23. The regions with significant changes in velocity gradient are properly refined to have a
more accurate description of the chaotic vortices at a relatively low computational cost.

2. Phase diagrams and shedding frequency

We compare the Cl,y-Cl,z phase diagrams in the HS regime to those in the CS regime in Fig. 24.
We observe in Fig. 24(a) that the vortex shedding in the CV case in the HS regime at Re = 260
occurs in the x-y plane. The preferred direction along the y axis disappears in the CS regime at
Re = 270, as depicted in Fig. 24(e), where the Cl changes its direction randomly over time in the
y-z plane. In the HS regime, the hairpin vortex shedding shifts its plane but still has a preferred
direction over a long time interval in the OV case. More specifically, even though the shedding
plane keeps oscillating around the x axis, the vortex shedding happens mostly in the x-y plane in
Fig. 24(b). As Re increases, Cl loses its preferred direction in the CS regime as shown in Fig. 24(f).
In both the HS regime and the CS regime, Cl in the OV case has a smaller amplitude than that in the
other particles. For particles with high sphericity, Figs. 24(c) and 24(g) show the Cl time evolution
in the DV case at Re = 300 and Re = 310, respectively. Cl keeps its preferred direction along the
y axis at Re = 300. However, at Re = 310, Cl turns to be randomly oriented in the y-z plane. We
notice a clear transition from the HS regime to the CS regime from the Cl,y-Cl,z phase diagram. In
the IV case, we see a fixed plane of periodic vortex shedding at Re = 330 once the HS regime is
established as shown in Fig. 24(d), whereas at Re = 340, the vortex shedding plane changes over
time and the orientation of Cl becomes erratic, indicating the onset of the CS regime.
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FIG. 25. Vortex shedding frequency f spectrum in the HS regime ( ) and in the CS regime ( ). I
denotes the dimensionless frequency intensity obtained by FFT.

Figure 25 illustrates the vortex shedding frequency spectrum f = f ∗D∗
sph/U ∗

0 of flow in the HS
and CS regimes. These frequency spectra are obtained using classical FFT. The Re chosen in Fig. 25
are the same as in Fig. 24 for a better comparison. We observe that in the HS regime, the dominant
oscillation frequency of Cl,y and Cl,z, that represents the vortex shedding frequency in the particle
wake region, has a single peak with f ≈ 0.12–0.14, in line with the St plot of Fig. 17(a). As Re
increases, the intensity of the secondary frequencies amplifies, marking the onset of the CS regime.
Identifying the CS regime is challenging, as it requires multiple indicators such as: the deformation
of vortex structure identified by λ2 or ωx isosurfaces, the variation of lift coefficient components and
the appearance of multiple high-intensity frequencies. For example, the vortex structures identified
by the λ2 isosurfaces reveal the disorganization, degeneration of the hairpin vortices, and the
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FIG. 26. Cl/Cd of Platonic polyhedrons at the vertex angular position as a function of Re: TV ( ), CV ( ),
OV ( ), DV ( ), and IV ( ); markers highlighted with flow regimes: MSS ( ), PSS ( ), HS ( ), and CS
( ).

emergence of small coherent structures. The Cl,y–Cl,z phase diagram shows the variation of the
lift direction. We recommend combining these indicators for a more accurate identification. Given
the limited data we generated through highly resolved simulations, we provide the critical Reynolds
numbers Recr with an error bar of ±5 in Table I.

H. Lift to drag ratio

We plot in Fig. 26 the ratio of the time-averaged Cl over the time-averaged Cd for the five Platonic
polyhedrons. To better illustrate the transition, we outline the markers representing the five Platonic
polyhedrons with colors corresponding to the flow regimes, as indicated in Table I. In the MSS
regime, the vortices generated on the particle surface, with their cores situated in low-pressure
regions [56], exhibit multiplanar symmetry and thus equally influence the particle as depicted in
Figs. 7 and 8, resulting in a counterbalance of the lateral forces. Consequently, Cl is small and
amounts less than 1% of Cd for all Platonic polyhedrons.

The transition from the MSS regime to the PSS regime results in a significant increase in the
lift-drag ratio Cl/Cd , which corresponds to Recr,M→P shown in Table I. We underscore the jump
of Cl/Cd from the MSS regime to the PSS regime with solid lines in Fig. 26. For instance, the
CV exhibits a notable increase of Cl/Cd between Re = 120 and Re = 130. In contrast, the jump of
Cl/Cd in the IV case occurs between Re = 200 and Re = 210. As the most angular particle, the TV
experiences the jump of Cl/Cd at a higher Re than that in the CV and OV cases, between Re = 150
and Re = 160. Hence, Recr,M→P corresponding to the significant increase in Cl/Cd is not governed
by the particle sphericity φ, which is consistent with Fig. 6. As illustrated in Fig. 10, the onset of
the PSS regime directly results from the merging of vortices with the same sign. In the PSS regime,
the similar size of the merged large vortices (illustrated in Fig. 11) maintains a plane of symmetry
within the wake vortex pattern, which offsets the lateral forces orthogonal to the symmetry plane.
Nonetheless, the difference in the size of the vortices along the direction of the symmetry plane can
generate a significant lift force, which results in the jump of Cl/Cd in Fig. 26.

In the PSS regime, the OV exhibits a high Cl/Cd ratio of approximately 10%. This ratio then
sharply decreases in the HS regime before rising again to around 2% in the CS regime. The V-shape
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evolution of Cl/Cd observed between Re = 200 and Re = 260 in the OV case is a consequence of
the evolution of the vortex shedding plane state with Re: unsteady, then stable, and subsequently
unsteady again (more details available in Appendix C). When vortices of comparable size are shed
in an alternating fashion from the particle wake and the shedding plane is stable, the lift coefficient
Cl exhibits a similar magnitude in two opposite directions centered at 0, resulting in a small time-
averaged Cl . Please note that between Re = 200 and Re = 260 in the OV case, the magnitude
of the Cl oscillation stays relatively constant, at approximately ±0.1. Thus, the decrease in the
time-averaged Cl/Cd is attributed to the existence of a stable shedding plane. We observe similar
trends in the TV and CV cases, although the decrease of the magnitude of Cl/Cd in the HS regime
is not as pronounced as that in the OV case.

For the particles with high angularity (TV, CV, OV), the maximal value of Cl/Cd is reached in the
PSS regime and remains lower than 10%. In the case of particles of high sphericity (DV, IV), Cl/Cd

increases to around 10% in the PSS regime and maintains this value at higher Re. These two particles
exhibit higher values of Cl/Cd compared to the TV, CV and OV in the unsteady regime. Intriguingly,
we observe a phenomenon akin to a saturation in the Cl/Cd curve in both the DV and IV cases. This
phenomenon initiates in the HS regime and persists into the CS regime. A plausible explanation
for this could be that the size of the wake recirculation region is bounded by the dimensions of the
particle, as portrayed in Figs. 8 and 14. Thus, the difference in size of the vortices produced in the
recirculation region would inherently have a limit since they are formed and shed alternately from
a wake of finite volume. This limit on the temporal vortex size difference would consequently lead
to an upper bound of Cl/Cd . For all Platonic polyhedrons, Cl/Cd is bounded by a maximal value
of 10% in the range of 100 � Re � 500. Figure 26 underscores that Cl/Cd is closely tied to the
evolution of the wake vortex structures across various flow regimes.

VI. DISCUSSION AND PERSPECTIVES

We investigated the regime transitions of an inertial flow past a Platonic polyhedron fixed in
an unbounded domain at three different angular positions: an edge, a face and a vertex facing the
upcoming flow in the range of Reynolds number 100 � Re � 500. The key factor of the interaction
between the flow and the Platonic polyhedron is the vortex structure generated on the particle
surface and in the particle wake, which are pivotal in distinguishing different regimes and governing
lateral forces. While we utilize various tools like ωx, λ2, and flow velocity streamlines in LIC, their
collective purpose is to provide a more detailed portrayal of the vortex structures across differing
regimes. Quantitative measures, including Cd , Cl/Cd , phase map of Cl,y − Cl,z, f and St, reveal the
outcomes of the evolution of vortex structures.

At low Reynolds numbers, the multiplanar symmetry steady (MSS) regime is identified for all
Platonic polyhedrons, of which the number of symmetry axis of the vorticity pattern projected in
a plane perpendicular to the streamwise direction in the particle wake region is determined by the
geometry of the particle front surface. We reveal that the leading edges have a dominant influence
on the particle wake structure and symmetry. Each leading edge generates a pair of opposite-signed
vortices that are transported by the flow to the wake of the particle while keeping the symmetric
properties of the particle front surface. In all flow regimes, the drag force decreases with increasing
Re, but in the MSS regime the lift coefficients are negligible compared to the drag due to the
symmetry of the flow structure around and in the wake of the fixed particle. With increasing Re,
the vortices with the same sign merge to form pairs of large vortices in the PSS regime. We show
that the merging of the vortices into pairs occurs on the rear faces of the fixed particle, leading to the
breakup of the multiplanar symmetry. The symmetry plane in the PSS regime is randomly chosen
among the possible symmetry planes of the MSS regime and the lift force starts to increase. As
an indicator of the flow symmetry breakup, the total lift coefficient Cl increase with Re in the PSS
regime and have values bounded by 10% of the corresponding drag coefficient Cd in the unsteady
flows.
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A further increase of Re leads to unsteady flows, starting with the periodic hairpin vortex
shedding (HS, DHS) regime. From the tetrahedron to the icosahedron, the vortex shedding mode
varies with the particle sphericity and angular position. In general, the periodic vortex shedding
has a Strouhal number of SSt ≈ 0.1 ∼ 0.15. As a general trend, angularity reduces SSt. For several
special particle angular positions such as TE and OE, the shedding frequency can be up to SSt ≈ 0.2.
We observed and discussed new vortex shedding modes, such as the DHS shedding mode in the TE
case and the compact vortex shedding mode in the OE and OF cases. We find that the shape and
size of the recirculation region are the key factors that determine the shedding mode and frequency
in the HS/DHS regime. A plausible explanation is that particles with a higher aspect ratio of their
crosswise cross-sectional surface area tend to have a more flattened recirculation region that results
in a higher vortex shedding frequency. Additionally, the shape of the rear surface of the particle
influences the recirculation region, thus affecting the shedding mode. With increasing sphericity and
as intuitively expected, the shedding mode becomes similar to that in the flow past a fixed sphere,
regardless of the particle angular position. In the flow past an edge or face octahedron (OE or OF),
we observe single-frequency periodic vortex shedding at a Reynolds number as high as Re = 500,
which indicates that the critical Reynolds number Recr of the transition from the HS to the CS regime
occurs at Recr > 500. In the CS regime, the vortex shedding becomes highly disturbed by the strong
flow unsteadiness, but this does not translate into any significant change of the Cl/Cd ratio. The
dominant shedding frequency St shifts over time and multiple secondary frequencies arise.

Our study reveals the intrinsic relations between the angular edges and the hairpin vortex
generation, clarifies the effects of particle angularity on the flow regime transitions and highlights
the crucial role of the flow recirculation region in determining the vortex shedding mode. However,
the effects of the particle angularity on the dynamics of the vortex at any angular position remain
unclear, as we selected three specific angular positions only. This could be an interesting subject of
future investigation. Even with a presumably incomplete data set, the present study does help to de-
pict the general picture of how the angularity of a fixed Platonic polyhedron affects the flow around
it. While the increase of the drag coefficient with increasing angularity was intuitively expected,
the globally reverse trend of the lift coefficient (Cl/Cd decreases with increasing angularity when
Cl/Cd > 0.01) is far less intuitive. Eventually, what distinguishes the most a Platonic polyhedron
from a sphere is the emergence of nonnegligible transverse forces at much smaller Re. Setting aside
a few specific angular positions, the shedding frequency of Platonic polyhedrons is not significantly
different than that of a sphere. We envision two important extensions of the current work before
further investigating a fully dynamic suspension of Platonic polyhedrons that we already attempted

FIG. 27. Pressure distribution colored from min in dark blue to max in dark red in the x-y plane at z = zp

around the Platonic polyhedron at different angular positions in the flow at
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in Ref. [20]: (i) pairwise or multibody hydrodynamic interactions in a random array of fixed Platonic
polyhedrons and (ii) understanding the Magnus force of Platonic polyhedrons. These two extensions
are currently a work in progress and will contribute to complementing the understanding of the
effect of angularity in suspensions of isometric angular particles. Platonic polyhedrons, with their
well-defined geometric shape, symmetry and duality properties, are perfect toy models to study the
effect of angularity in suspension flows in a controlled manner.
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APPENDIX A: PRESSURE DISTRIBUTION AROUND A PLATONIC
POLYHEDRON IN THE MSS REGIME

Figure 27 shows the pressure distribution of the flow at Re = 100 past a Platonic polyhedron
at the three angular positions in the x-y plane. The pressure distribution around an angular particle
depends on its shape and angular position. For example, an edge particle (E) exhibits a local pressure
maximum on the leading edge and a decrease in pressure along the side surfaces as the flow is
deflected by the front edge. Two pressure minima show up on the rear tips of the TE, the DE, and
the IE. The pressure distribution around a face particle (F) exhibits a high-pressure zone on the
leading face, with a maximum at the face center. As the fluid leaves the leading face, the pressure
drops. In the vertex particle, the pressure remains high as the fluid flows along the front faces of
the particle. On the rear surface of the particle, a low-pressure zone appears. The high-pressure
distribution around a particle is determined by its front surface. Comparing the tetrahedron at the
three angular positions, we see that the TF has a larger high-pressure region than the TE and the
TV, which contributes to a higher value of the drag coefficient Cd . We note that the pressure minima
always appear on the particle tips (edges). The shape and size of the low-pressure region behind
the particle are closely related to the flow recirculation. As φ increases, the pressure distribution
becomes more similar to that of a sphere. Knowing how the pressure distribution is affected by
the particle angularity, we can better understand the shape of the flow recirculation region and the
hairpin vortex formation.

APPENDIX B: SIDE VIEW OF WAKE STRUCTURES OF A PLATONIC
POLYHEDRON IN THE HS REGIME

To provide a more comprehensive illustration of the different hairpin vortex shedding modes,
we present three-dimensional view of the vortex structures in Fig. 28. This new perspective

FIG. 29. Cl,y-Cl,z phase diagram in the OV case in the HS regime. Time evolution given in rainbow color
from purple (start time) to red (end time).
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complements and expands upon the information shown in Fig. 12, offering a clearer understanding
of both the vortex shedding mode and frequency.

APPENDIX C: ROTATING STABLE VORTEX SHEDDING PLANE

The evolution of the Cl,y-Cl,z phase diagram in the OV case at 190 � Re � 260 is depicted in
Fig. 29. The phase diagram reveals stable behavior of the vortex shedding plane on a short timescale
and a slow rotation on a large timescale at 210 � Re � 230. As Re increases, the stability of the
rotating shedding plane on a short timescale becomes compromised. The frequent appearance of
rotating stable shedding planes at vertex angular positions such as TV, OV, and DV cases is primarily
due to the challenges in maintaining a steady shedding plane when flow streams converge from
multiple directions. For example, in the OV case, three flow streams merge at the rear vertex. The
wake structures continuously seek the stable plane among the multiple symmetry planes in the MSS
regime.
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